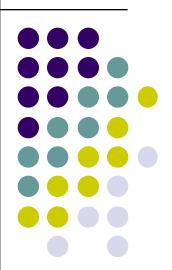
Module 2-1 Review of Probability Theory

Chanan Singh
Texas A&M University

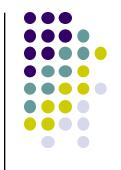


Outline

- Definitions
- Combinatorial probability rules
- Application to power system reliability

Definitions

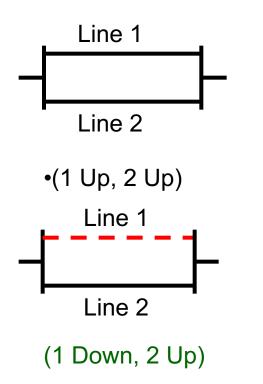
- Sample space or state space
- Events
 - Union of events
 - Intersection of events
 - Disjoint events
 - Complement of an event
 - Independent events
- Probability of an event
- Conditional probability

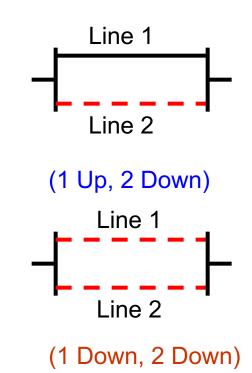


 The set of all possible outcomes of a random phenomenon

Example

- A status of a generator,
- state space = {Up, Down}

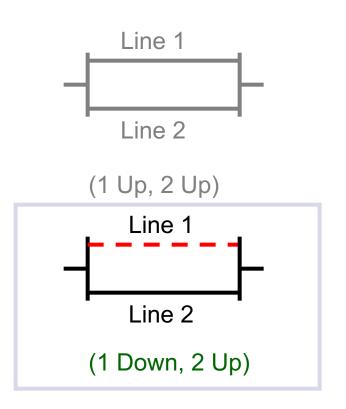


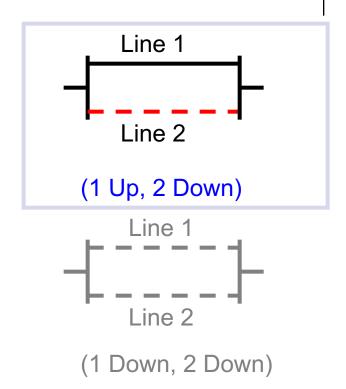


State space = $\{ (1U,2U), (1U,2D), (1D,2U), (1D,2D) \}$

- A set of outcomes or a subset of a sample space.
- Example
 - Event of a generator fails, E = {Down}

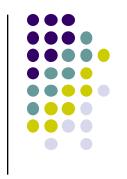
An Event of One Transmission Line Fails





$$E = \{ (1U,2D), (1D,2U) \}$$

Union of Events



- Union of event E₁ and E2 (E1 U E2) contains outcomes from either E1 or E2 or both.
- Examples
 - E₁ is an event that at least one line is up,
 E₁ = { (1U,2U), (1U,2D) , (1D,2U)}
 - E₂ is an event that at least one line is down, E₂ = $\{ (1U,2D), (1D,2U), (1D,2D) \}$
 - Then, union of event E₁ and E₂ is,
 E = E₁ U E₂ = { (1U,2U), (1U,2D) , (1D,2U) , (1D,2D) }

Intersection of Events

- Intersection of event E₁ and E2 (E1∩E2)
 contains outcomes from both E1 and E2.
- Example
 - E₁ is an event that at least one line is up,
 E₁ = { (1U,2U), (1U,2D) , (1D,2U)}
 - E₂ is an event that at least one line is down,
 E₂ = { (1U,2D) , (1D,2U) , (1D,2D) }
 - Then, intersection of event E₁ and E₂ is,
 E = E₁ ∩ E₂ = { (1U,2D) , (1D,2U) }
 Which is that only one line is up

Disjoint Events

- Events that can not happen together.
- Example
 - E₁ is an event that two lines are up,

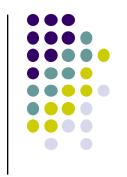
$$E_1 = \{ (1U,2U) \}$$

E₂ is an event that two lines are down,

$$E_2 = \{ (1D,2D) \}$$

Then, E₁ and E₂ are disjoint events.

Complement of an Event



- The set of outcomes that are not included in an event.
- Example
 - E₁ is an event that two lines are up,

$$E_1 = \{ (1U,2U) \}$$

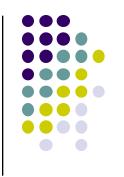
Ē₁ is a complement of E₁,

$$\bar{E}_1 = \{ (1U,2D), (1D,2U), (1D,2D) \}$$

Independent Events

- Events that happen independently.
- Example
 - Failure of a generator and failure of a line
 - Failure of line 1 and failure of line 2

Probability of an Event



- Number of times that an event occurs divided by total number of occurrences
- Properties,
 - $0 \le P(E) \le 1$
 - P(Impossible event) = 0
 - P(Sure event) = 1

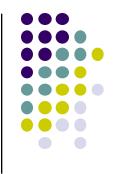
Conditional Probability

- The probability of E2 given E1, P(E2 | E1), is the probability that event E2 occurs given that E1 has already occurred.
- If E₂ and E₁ are independent, then
 P(E₂ | E₁) = P(E₂).

Probability Rules

- Combinatorial properties
 - Addition rule
 - Multiplication rule
 - Conditional probability rule
 - Complementation rule

Addition Rule

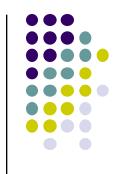


 A method of finding a probability of union of two events: Prob of E₁ or E₂ or both.

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

If E₂ and E₁ are mutually exclusive, then
 P(E₂ U E₁) = P(E₁) + P(E₂).

Multiplication Rule



 A method of finding a probability of intersection of two events: prob of E₁ and E_{2.}

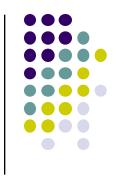
$$P(E_1 \cap E_2) = P(E_1) \times P(E_2 \mid E_1)$$

If E1 and E2 are independent, then
 P(E₁ ∩ E₂) = P(E₁)×P(E₂).

 If an event E depends on a number of mutually exclusive events B_i, then

$$P(E) = \sum_{j} [P(E|B_j) * P(B_j)]$$

Complementation Rule



 Probability of the set of outcomes that are not included in an event.

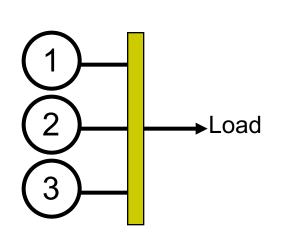
$$P(\bar{E}) = 1 - P(E)$$

Example

Probability of success = 1 – Probability of failure

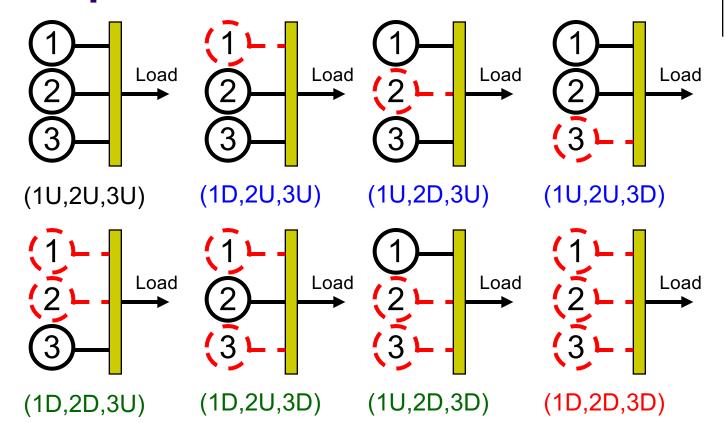
Example of Application to Calculation of Loss Of Load Probability - LOLP





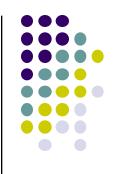
- 3 generators
- Each with capacity 50 MW
- Identical probability of failure = 0.01
- Assume that each generator fails and is repaired independently.
- Find probability distribution of generating capacity.

State Space



State space = $\{(1U,2U,3U),(1D,2U,3U),(1U,2D,3U),(1U,2D,3U),(1U,2U,3D),(1D,2D,3U),(1D,2U,3D),(1U,2D,3D),(1D,2D,3D)\}$

Generating Capacity Probability Distribution



- Find a probability associated with each generating capacity levels
- 4 capacity levels, 0 MW, 50 MW, 100 MW, and 150 MW
- Let
 - E₀ be an event that generating capacity is 0 MW
 - E₁ be an event that generating capacity is 50 MW
 - E₂ be an event that generating capacity is 100 MW
 - E₃ be an event that generating capacity is 150 MW

Capacity 50 MW

- $E_1 = \{(1D,2D,3U),(1D,2U,3D),(1U,2D,3D)\}$ $P(E_1) = P\{(1D,2D,3U)\cup(1D,2U,3D)\cup(1U,2D,3D)\}$
- Using <u>addition rule</u>,

$$P(E_1) = P\{(1D,2D,3U)\} + P\{(1D,2U,3D)\} + P\{(1U,2D,3D)\}$$

 $P(E_1) = P(1D \cap 2D \cap 3U) + P(1D \cap 2U \cap 3D) + P(1U \cap 2D \cap 3D)$

Using <u>multiplication rule</u>,
 P(E₁) = P(1D)×P(2D)×P(3U) + P(1D)×P(2U)×P(3D) + P(1U)×P(2D)×P(3D)

Using <u>complementation</u>,

$$P(1U) = 1 - P(1D) = 1 - 0.01 = 0.99$$

• Then, $P(E_1) = 0.000297$

Capacity 100 MW

- $E_2 = \{(1D,2U,3U),(1U,2D,3U),(1U,2U,3D)\}$ $P(E_2) = P\{(1D,2U,3U)\cup(1U,2D,3U)\cup(1U,2U,3D)\}$
- Using <u>addition rule</u>,

$$P(E_2) = P\{(1D,2U,3U)\} + P\{(1U,2D,3U)\} + P\{(1U,2U,3D)\}$$

 $P(E_2) = P(1D \cap 2U \cap 3U) + P(1U \cap 2D \cap 3U) + P(1U \cap 2U \cap 3D)$

Using <u>multiplication rule</u>,

$$P(E_2) = P(1D) \times P(2U) \times P(3U) + P(1U) \times P(2D) \times P(3U) + P(1U) \times P(2U) \times P(3D)$$

Using <u>complementation</u>,

$$P(1U) = 1 - P(1D) = 1 - 0.01 = 0.99$$

• Then, $P(E_2) = 0.029403$

Capacity 150 MW

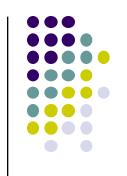
- $E_3 = \{(1U,2U,3U)\}$ $P(E_3) = P(1U \cap 2U \cap 3U)$
- Using <u>complementation</u>,

$$P(1U) = 1 - P(1D) = 1 - 0.01 = 0.99$$

Using <u>multiplication rule</u>,

$$P(E_3) = P(1U) \times P(2U) \times P(3U)$$

 $P(E_3) = 0.99 \times 0.99 \times 0.99 = 0.970299$



Capacity (MW)	Probability
0	0.00001
50	0.000297
100	0.029403
150	0.970299

This is an example of probability density function or probability mass function. Left column: values of discrete random variable 'capacity' Right column contains corresponding probabilities.

- Assume that load has
- Assume that load has the following distribution, find loss of load probability.
- Let E be the event that system suffers from loss of load, then

E = {Generation < Load}

Load (MW)	Probability
50	0.20
100	0.75
150	0.05

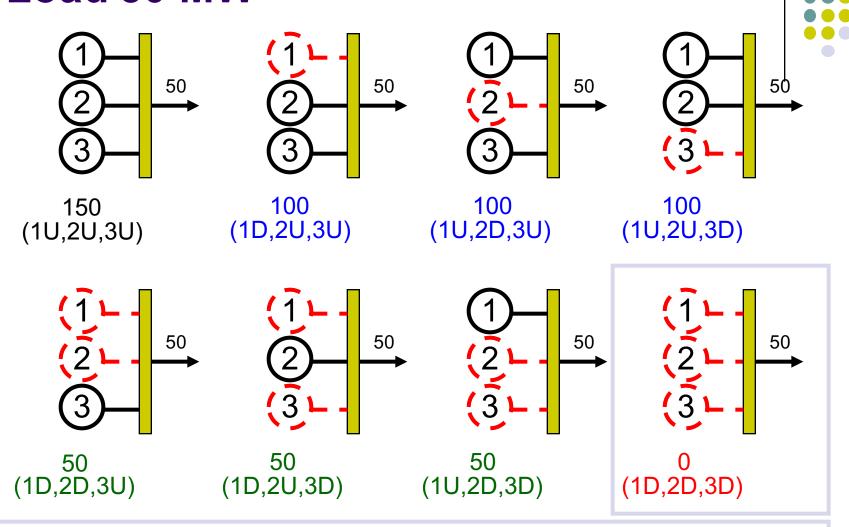
LOLP Calculation

- Let
 - B₁ be an event that load is 50 MW
 - B₂ be an event that load is 100 MW
 - B₃ be an event that load is 150 MW
- Then, using <u>conditional probability theory</u>,

$$P(E) = P(E|B_1) \times P(B_1) + P(E|B_2) \times P(B_2) + P(E|B_3) \times P(B_3)$$

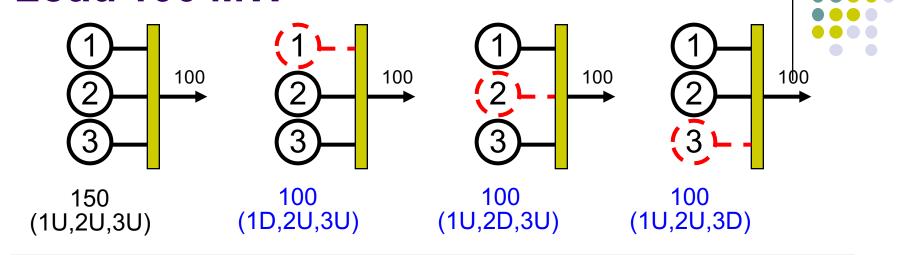
 $P(E) = P(E|B_1) \times 0.20 + P(E|B_2) \times 0.75 + P(E|B_3) \times 0.05$

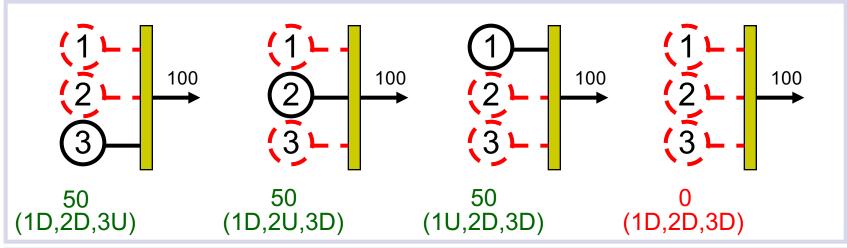
Load 50 MW



$$P(E|B_1) = P\{ (1D,2D,3D) \} = 0.000001$$

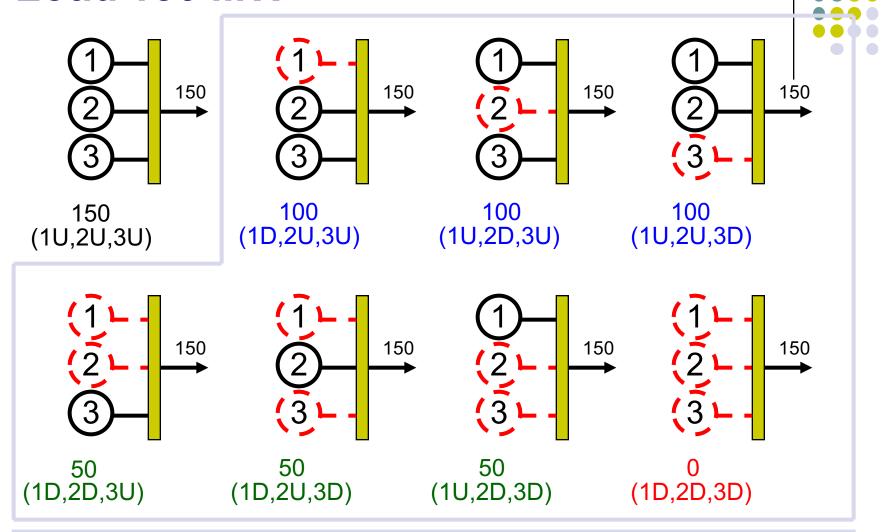
Load 100 MW





 $P(E|B_2) = P\{(1D,2D,3U),(1D,2U,3D),(1U,2D,3D),(1D,2D,3D)\}$ $P(E|B_2) = 0.000297 + 0.000001 = 0.000298$

Load 150 MW



$$P(E|B_3) = 1 - P\{ (1U,2U,3U) \} = 0.029701$$

LOLP Calculation

Loss of load probability is,

$$P(E) = P(E|B_1) \times 0.20 + P(E|B_2) \times 0.75 + P(E|B_3) \times 0.05$$

 $P(E) = 0.000001 \times 0.20 + 0.000298 \times 0.75 + 0.029701 \times 0.05$
 $P(E) = 0.00170875$