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Monte Carlo Simulation

e Introduction

The Monte Carlo method mimics the failure and repair
history of components and the system by using the
probability distributions of component states.

Statistics are collected and indices estimated by
statistical inference.

Two main approaches: random sampling , sequential
simulation.
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Random number generator

e Each number should have equal probability of taking on any one of
the possible values and it must be statistically independent of the
other numbers in the sequence. Random numbers in a given range

follow a uniform probability density function.

Multiplicative congruential method:

Random number R, , 1, can be obtained from R,, :
R, ., = (aR,)(modulo m)

where
a,m= positive integers, a < m.
R, .1 is the remainder when (¢ R n) is divided by m.
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Random number generator

suggested values
a=455 470 314
m=231 -1 = 2147 483 647
RO = seed
= any integer between 1 and 2147 483 64

e Range can be limited by truncation.

If rn between 0 and 999 are required, the last three digits of the
random number generated can be picked up.
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Random sampling

e Sampling a component state:

Consider a component that has probability distribution:

State number | Probability
(random variable)

1 N

2 2

3 4

4 2

5 N

Let us assume that the random numbers lie in the range 0 to 1. We can
assign the random numbers proportional to their probability as follows:
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Random number
drawn

State sampled

0 to.1

1+10.3

3+to.7
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9+ to1.
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Random sampling

Random
drawn

number

State sampled

0 to.1

1+10.3

3+to.7

State number | Probability
(random variable)

1 N

2 2

3 4

4 2

5 N

7+t0.9

9+ to 1.

Q| PB|W[IN] =~

So if arnis .56 ,then we say that state number 3 is sampled.
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Random sampling

e This procedure can be more simply carried out by using a cum prob
or probability distribution function. The prob mass function and
corresponding probability distribution function for this component are
shown below

1.4 1.01
0.9 0.91] _,
T 0.8 0.81
0.7 0.7
P(X:x)O.E 06]
0 05 F(x)=P(X < X)
04 04]
0.3 0.3]
0.4 0.2]
. 0.1
0.1 T ,_ Random Observation
ol | | 0 P
1 2 3 4 5 1 2 3 4 5
X—» X —»

e Now you can place the rn on the vertical axis and read the value of
the state sampled on the horizontal axis. It can be seen that this is

equivalent to proportional sampling.
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Random sampling

e Sampling a system state:

e |If a system consists of n independent components, then to sample a
system state, n random numbers will be needed to sample the state
of each component.

e For example for a system of two components with the pdfs shown
above, sampling may proceed as follows. Random numbers used

are found by a computer program and are shown on the next page.
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Random sampling

RN for component 1 RN for comp 2 System state
.946 .601 (5,3)
.655 671 (3,3)
791 .333 (4,3)
.345 532 (3,3)
438 .087 (3,1)
311 .693 (3,3)
333 918 (3,5)
.998 .209 (5,2)
923 .883 (5,4)
.851 135 (4,2)
.651 .034 (3,1)
.316 525 (3,3)
.965 427 (5,3)
.839 434 (4,3)

The actual prob of (3,3) is

4x.4 = .16
If this sampling and estimation are

continued the estimated value will come

close to .16.

Now if you want to estimate
the probability of state (3,3)

P(3,3) =n/N
where

n = number of times state
sampled

N = total number of
samples.

From the table

P(3,3) =4/14
=2/7
=.286



Random sampling

e The problems of Monte Carlo is that the indices
obtained are estimates.

e S0 one must have some criterion to decide whether the
iIndices have converged or not.
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A Sequence of Random Numbers

Generated
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946 .308
601 116
655 .864
671 917
791 126
332 157
345 837
532 029
438 .865
.087 603
311 203
693 823
333 969
918 .509
998 407
209 .355
923 .885
.883 931
851 .896
135 .680
651 057
.034 922
316 13
525 852
965 931
427 538
.839 504
434 925




Sequential Simulation

e Sequential simulation can be performed either by
advancing time in fixed steps or by advancing to the
next event.

e Fixed time interval method:

e This method is useful when using Markov chains,i.e., when
transition probabilities over a time step are defined.

e This is simulated using basically the proportionate allocation
technique described under sampling.

e This is indeed sampling conditioned on a given state.
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Sequential Simulation

e Fixed time interval method

This can be illustrated by taking an example. Assume a two state
system and the probability of transiting from state to state over a
single step given by the following matrix:

Initial State Final State
0 1
0 0.3 0.7
1 0.4 0.6

Starting in state 0, select a rn and the next state is determined as
follows:

digit event
0t00.3 stay in state 0
0.3+t0 1.0 transit to 1

Similarly starting in state 1,

digit event
0to0.4 transitto 0
0.4+t0 1.0 stay in 1




Sequential Simulation

e Construction of a realization for 10 steps:

RN State

947

.601

.655

671

91

333

345

931

478

- =
ocooowcncn-hooMA%
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.087
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Sequential Simulation

e Next event method

e This method is useful when the times in system states are defined
using continuous variables with pdfs.

e Keeping in mind that discrete rvs are only a special case of
continuous rvs ,the previously described method of reading a
variable from the pdf using a rn can be used.

e Consider forexample arv X representing the up time of a
component and distribution as shown in the following figure.

e Now if a rn between 0 and 1. is drawn, then the time to failure can
be read as shown:

RN

F(x) = P(X< x) F(x) = P(X < X)

/Value of RV
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Sequential Simulation

e Continuous distributions are approximated by discrete
distributions whose irregularly spaced points have equal
probabilities.

e The accuracy can be increased by increasing the number of
intervals into which (0,1) is divided. This requires additional data in
the form of tables.

e Although the method is quite general, its disadvantages are the
great amount of work required to develop tables and possible
computer storage problems.

e The following analytic inversion approach is simpler.
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Sequential Simulation

Let Z be a random number in the range 0 to 1 with a uniform
probability density function, i.e., a triangular distribution function:

0 7 <0

f(n)=11  0sZ<l

Similarly

0 7 <0

F(z)=1z 0=<Z<l
1 Z>1
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Sequential Simulation

Let F(x) be the distribution from which the random observations are
to be generated. Let
z = F(x)

Solving the equation for x gives a random observation of X. That the
observations so generated do have F(x) as the probability distribution
can be shown as follows.

Let ¢ be the inverse of F; then
X = ¢(2)
Now x is the random observation generated. \We determine its
probability distribution as follows P(x = X) = P(F(x) = F(X))
= P(z sF(X))
= F(X)
Therefore the distribution function of x is F(X), as required.

e Inthe case of several important distributions, special techniques
have been developed for efficient random sampling.



Sequential Simulation

e |n most studies, the distributions assumed for up and down times
are exponential. The exponential distribution has the following
probability distribution

PX<x)=1-—-eP*

e where 1/p is the mean of the random variable X. Setting this
function equal to a random decimal number between 0 and 1,
z=1—e PX

e Since the complement of such a random number is also a random

number, the above equation can as well be written as
z =e P*
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Sequential Simulation

e Taking the natural logarithm of both sides and simplifying, we get
_ In(z)
Y

X =

e Wwhich is the desired random observation from the exponential
distribution having 1/p as the mean.
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Sequential Simulation

e This method is used to determine the time to the next transition for
every component, using A or u for p, depending on whether the
component is UP or DOWN.

e The smallest of these times indicates the most imminent event,
and the corresponding component is assigned a change of state.
If this event also results in a change of status, (e.g., failure or
restoration) of the system, then the corresponding system indices
are updated.
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Sequential Simulation

e The procedure can be illustrated using an example of two
components with data as given below.

Component A (f/hr) u (rep/hr)
1 .01 N
2 .005 N
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Sequential Simulation

e — indicates time causing change and is added to obtain the total

time.
Time Random Number Time to change Compon
for Component ent

state

1 2 1 2 1 2

0 .946 .601 5« 101 U | U

5 .655 - 0/4 < 96 D | U

9 .670 - 0/40 < 92 U | U

49 .790 - 0/2 < 52 D | U

51 332 - 0/110 50 < U | U

101 - .345 60 0/11 < U | D

112 - 531 49 < 0/127 U | U

161 437 - 0/8 < 78 D | U

169 .087 - 0/244 70 < U | U

239 - 311 174 012<— | U | D

251 - .693 162 0/73<~ | U | U

324 - 333 89 0/ U | D

l




Estimation and Convergence
in Sampling

e |tis crucial to sample sufficient number of
states to estimate reliability indexes.

e This section describes the estimation and
convergence criterion of both techniques

random sampling
sequential sampling.
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Random Sampling

In random sampling, x € X are sampled from their joint distributions. Then estimate
of E[F(x)] is
] IVS
EF(x)|=—) Flx;
F W)= 5 Y F
where

Ns = Number of sampling
F(x;) = Test result for i’ sampled value

And the variance of this estimate 1s.

Var(E[F (x)]) = %i(x))

Since Var(F(x)) is not known, its estimate can be used as

] Ns

Var(F (x)) = Ns &

(F (x;) — E[F (x)])°
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Random Sampling

Convergence 1s typically based on the value of the coefficient of variation (COV),

where

SD(E[F(x)]) = Standard deviation of the estimator of E[F (x)]

Since SD \/ Var

Hence,
Var(F(x)

" (cov xE[F(x)])?
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Random Sampling

B Var(F (x)
> T (cov x E[F(x)])?

It can be seen

I. Sample size 1s not affected by system size or complexity.
2. Accuracy required and the probability being estimated effect the sample size.
3. Computational effort depends on NS and CPU time/sample.
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Sequential Sampling .

In general terms, states of the system are generated sequentially by transition from
one state to the next using probability distributions of component state durations and
random numbers from [0,1].

Consider a component 7, assume that this component is up and duration of up state
1s given by U; (a random variable). If Z 1s a random number then the observation of
up time can be drawn

2=Pr(U; <U)=F(U)

The algorithm can be described in the following steps. Let us assume that the n'”
transition has just taken place at time 7, and the time to next transition of component
i 1s given by T;. Thus the vector of times to component transitions is given by 7; and
the simulation proceeds in the following steps.
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Sequential Sampling

Step 1. The time to next system transition 1s
T = minT;

If this T corresponds to T}, , that 1s, the p'" component, then next transition takes
place by the change of state of this component.
Step 2. The simulation time 1s now advanced,

Int1 =1n+ T
Step 3. The residual times to component transitions are calculated
I =T-T

where 77" = Residual time to transition of component i
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Sequential Sampling

Step 4. The residual time for component p causing transition becomes zero and
time to its next transition 7}, 1s determined by drawing a random number.
Step 5. The time 7; is set as shown

.r.
ﬂz{ﬁ{#p
I,i=p

Step 6. From 1, to t,41 ,the status of equipment stays fixed and the following
steps are performed.

I.  The load for each node 1s updated to the current hour.
[f no node has loss of load, the simulation proceeds to the next hour otherwise

state evaluation module 1s called.
3. If after remedial action all loads are satisfied, then simulation proceeds to next

hour. Otherwise, this 1s counted as loss of load hour for those nodes and the
system. Also if in the previous hour there was no loss of load, then this is
counted as one event of loss of load.

4.  Steps (a) - (¢) are performed until ¢, 1.

o
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Sequential Sampling

Step 7. The statistics are updated as described after Step 8 and the process moves
to Step 2.
Step 8. The simulation is continued until convergence criterion is satisfied. Let,

I; = Value of relability index (for example number of hours of load loss)
obtained from simulation data for year i

N, = Number of years of simulated data available

SDy = Standard deviation of the estimate

Then, estimate of the expected value of the index 7 1s
I
I=—YI
W&
Variance of the estimate is
Ny

Zi=1(1i — i)z
2
Ny

20

Cov = <
I

Var(f) =

COVis
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Concept of Reliability Coherence

e If the system is failed with some components healthy
and some components failed, then for a reliability

coherent system, failure of a healthy component will not
lead to system success.

e If the system is in success state with some components
healthy and some components failed, then for a reliability
coherent system, repair/restoration of a failed
component will not lead to system failure.

System Status

Failed Components

Healthy Components

Success

Repair of these
components will not
lead to system failure

Failure

Failure of these
components will not
lead to system success




(Y Y )
0000
0000
o0
Y
o
Example 1
Line 1 _@
®_ A\
. \ Load
Line 2y Line 3
Load
Assumed Failed Healthy
System Status | Components Components
Success Line 2 G1, G2, Line 1 and Line 3

e Reliability Coherence: Repair of Line 2 will not lead to

system failure



Example 2

Line 1

Load

Assumed
System Status

Failed Components

Healthy
Components

Failure

G2

G1, Line 1, Line 2 and Line 3

e Reliability Coherence: Failure of Line 2 will not lead to
system success
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