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2.1 INTRODUCTION

This chapter presents some basic mathematical concepts needed to under-
-stand subsequent chapters. Such topics as set theory, discrete and contin-
‘uous random variables, probability distributions, hazard plotting, and
differential equations are discussed briefly and provide an overview of the
_subject. The reader requiring in-depth knowledge of these concepts should
‘consult references | and 5-7.

‘22 SET THEORY

Sets are normally represented by capital letters such as X, ¥, Z. Elements
are denoted by the lower case letters such as ¢, d, e.

If k is an element of set B, then it is denoted as: k€ B and its negation is
denoted as k& B. If X is a subset of set Y it is written as

XcY or Yox (2.1)
The negation of the above is written as
XeYy or Yax (2.2)

If two sets are equal (suppose each set belongs to the other) they are
expressed as

X=Y (2.3)
The statement (2.3) is true if only

XcY¥ and Ycx (2.4)

221 Union of Sets

The union of sets is denoted by the symbol U or +. For example if
X'+ Y=2Z, it means that all the elements in set X or in set ¥ or in both sets
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Figure 2.1 Vean diagram for the union of sets X, Y.

X and Y are contained in set Z. The statement

Z=X+Y (2.5)

may also be written as Z=XU Y.
This case may be represented on the Venn diagram as shown in Figure
21,

2.2.2 Intersection of Sets

The intersection of sets is denoted by n or dot (-). For example, if the
intersection of sets or events C and D is represented by a third set, say T,
then this set contains all elements which belong to both € and D, It is

Figure 2.2 Venn dingram [or intersection.

& @

Figure 23 Venn diagram for disjoint sets € and D,

denoted as

T=CnD or T=C-D (2.6)
above expression is shown on the Venn diagram in Figure 2.2.

~If the intersection of sets C and D is zero then sets C and D are called
; ally exclusive or disjoint sets. This may be represented on Venn
am as shown iIl Figm 2.3-

223 Basic Laws of Boolean Algebra
Some laws of Boolean algebra are as follows:

1. Distributive laws
X(Y+Z)=(X-Y)+(X Z) (2.7)
X+(Y-Z)=(X+Y)-(X+2) (2.8)

2. Boolean identities
X+X=X (2.9)
X-X=X (2.10)

3. Absorption laws
X+(X-¥Y)=X (2.11)
X(X-¥)=X-Y (2.12)



s Reliability Mathematics
23 PROBABILITY THEORY

Probability theory may be defined as the study of the an‘J:Ium experiments.
The most important event-related properties of probability are as follows:

1. For each event X, the event probability is
0<P(X)<1 (2.13)

2. In the case of mutually exclusive events, say x,, X, X3,..., X,, the
probability of union of events is given by

Plx,+x3+x3+...+x,)=P(x,)+P(x;)
+P(x,)+...+P(x,) (2.14)
3, The union of n events is given by
Px,+xy+x3+ ... +x,)=(P(x))+ P(x;)+ ... + P(x,))
—{P{xtx,]+P(x,x,}+...+P[x_'.xu_,'}}+..,
+(= D" P(x,xy%5...x,))} (2.15)
For example, in the case of two statistically independent events x, and
x5, the probability expressions becomes:
P(x,+x3)=P(x,)+P(x,)—P(x,)P(x;) (2.16)
4. Probability of the sample space § is always equal 1o unity, that is,
P(S)=1 (2.17)
The negation of the sample space § is written as S. Thus
P(§)=0 (2.18)

5. The n events intersection probability expression is as follows

P(x,x3%y... X, )=P(x,)P(x3/%,) ... P(x,/%1%3-.. X0y)  (2.19)

where P(x,/x,) implies probability of x, given x,. :
If all the events are statistically independent, the above expression
becomes

P(x,x3%5...%,)=P(x,)P(x;) P(x5)... P(x,) (2.20)

Random Variables 9
6. The events X and Y are said to be independent, if and only if
P(XY)=P(X)P(Y) (2.21)

If events X and V¥ cannot satisfy the above relationship, then these
events are said to be dependent. The conditional probability of x,,
given that the events x,, x,, xy,..., x,_, have occurred is obtained by
the following relationship:

P{xh,xz,xi....,x"}

PUX, /Xy, X Xyursey X y) = (2.22)

P{xl,xz,x3,...,xn_1]

24 RANDOM VARIABLES

Random variables may be discrete or continuous. Both discrete and
continuous variables and the associated probability distributions are de-
scribed in these sections.

24.1 Discrete Random Variables
If ¥ is a random variable on the sample space S along with a countably

infinite set ¥(S)={»,, »;, »3,...}. then these random variables along with
- other finite sets are known as discrete random variables.

- Density Function. For a single-dimension discrete random variable Y, the
discrete probability function of the random variable Y is represented by
f(y) if the following conditions hold:

fiy)=0 forall  yER, (range space) (2.23)
‘and

2 f(y)=1 ; (2.24)
all

¥y

Cumulative Probability Distribution Function. The cumulative probability

distribution function is defined as

F(y)= 2 f(») (2.25)

Y=y

where F(y) is the cumulative probability distribution function.
Furthermore, the area under the probability density function curve is

0<F(y)<1 (2.26)
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Binomial Distribution. The binomial distribution is a frequently used
distribution in reliability engineering. This is also known as the Bernoulli
distribution. We are often concerned with the probabilities of outcome
such as the total number of failures in a sequence of n trials. For this
distribution, each trial has two possible outcomes, success and failure,
where the probability of each trial remains constant.

The binomial probability function f{x) is defined as

1
flx)= mp‘q"_‘, x=0,1,2,...,n (2.27)

where x=the number of failures in n trials
p=the single trial probability of success
g =the single trial probability of failure

It is always true that the summation of probability of failure and success
for each trial is always equal to unity (i.e., p+g=1).

The probability of x or less failures in n number of trials is known as the
probability distribution function, F(x), i-e.

Fxy= 3 (")r'a™ (2.28)

i=0
where () =n!/it(n—i).

Poisson Distribution. This distribution model is used in reliability studies
when one is interested in the occurrence of a number of events that are of
the same kind. Occurrence of each event is represented as a point on a
time scale. In reliability engineering each event represents a failure. The
Poisson density function is defined as

f{n}mw, n=0,1,2,... (2.29)

n!

where ¢ is the time and A is the constant failure or arrival rate.
The cumulative distribution function F is given by

F=3 &L":_ijﬂ (2.30)

Multinomial Distribution. This distribution is applicable to those cases
where a system or device has more than two states. This is an extension of
the binomial distribution which is only applicable to systems or devices
with two states. The multinomial distribution probability function is de-

Random Variables n
fined as follows:

n’_
Xl gl x

%y X3, 2300205 %,) !
"

POPEPS. P (231)

L
Eﬁ-‘l
for o 0<P<l

E X;=n

24,2 Continuows Random Variables

A real-valued function defined over a sample space S is called a continu-
‘ous random variable. In the case of the continuous random variable, the
probability density function is defined as

finy=20 @32)
where
Foy= [ fx)dx (2.33)
and
F(oo)=1

F(t) is called the distribution function of a continuous random variable
t. The probability distributions of the continuous random variable are as

follows:
Uniform Distribution. This is a continuous distribution whose probability

density f(r) and distribution functions F(t), respectively, are defined as
follows:

J"ntr}-m—lF f<i<a (2.34)

otherwise

f(1)=0
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and
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MMM This is a widely used distribution in reliability
engineering [2]. It is one of the simplest distributions to perform reliability
analysis. The exponential probability density function f(¢) is defined as

f)=re™ 130 A>0 (2.36)

where A is a constant failure rate and 1 is time.
' The cumulative distribution function F{r) is given by
Flt)=1—¢™ (2.37)
Weibull Distribution. This distribution is due to Weibull [8]. This distribu-
tion can represent many different physical phenomena. Weibull distribu-

tion is a three parameters distribution whose probability density function is
defined as follows:

f{:)-%{r—u}*" ~Ww-a*/m)  for t>a  b,m,a>0 (2.38)

where b, n, and a are shape, scale, and location parameters, respectively,
The distribution function is given by

F(t)=1=e l0=®%n  for t>a n,b>0 a>0 (2.39)
Rayleigh Distribution. This distribution has its applications in the theory
of sound and reliability engineering. The Rayleigh distribution is a special
case of the Weibull distribution (b=2, a=0). Therefore, the probability

density and distribution functions may be directly obtained from (2.38)
and (2.39), respectively, as follows:

j'[:}-%:e“'f" >0 >0 (2.40)
and

F(t)=1—¢""/" (2.41)

Gamma Distribution. This distribution is an extension of the exponential
distribution. Some of its applications are found in life test problems.

~ Random Variables 13

Probability density and distribution functions are

A(M}"_'e_l

f(t)= T(a)

20 Aa>0 (2.42)

! )
F{:j-]-z—i’L >0 A,a>0 (2.43)

=0
In the case of a= 1, this distribution reduces to exponential form.

Extreme Value Distribution. It is a good representative of the failure
behavior of mechanical components. Probability density and distribution
function of the extreme value distribution are as follows:

f(t)=e'e" -0 <i<on (2.44)
and

F(t)=1—¢* —w<i<o (2.45)
Normal Distribution (Gaussian). This is a two-parameter distribution,

which also has its applications in the rehability field. Its probability density
function is defined as follows:

I t=pu)?
f{r}-ﬁ_ 1724 ﬂ"] —w<t<ow o0>0 -—m<p<ow

(2.46)
The cumulative distribution function is

F(t)= f_’ t-l;:(ﬂ)zdf ' (2.47)

lmo e
The numerical values of the cumulative function (2.47) may be obtained
from the standard tables.

Log Normal Distribution. This is another distribution often used to repre-
sent the repair times of failed equipment. The probability density and
distribution functions are

|

m‘]-W’I__r"“"“‘"*-""f“‘ for t>a>0 a>0
' § Tao

(2.48)
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and

Fli)= .J-I— f;lr““'””z‘:dx for >0 (2.49)
mado *

Beta Distribution. The beta distribution is a two-parameter distribution

finding some uses in reliability engineering. The probability density func-
tion of this distribution is defined as follows:

(y+B+1)!
f(:}-w-:[l )

for 0<i<l1 y>=1 B> -1 (2.50)
The cumulative distribution function is given by

Fi)= 'My'[lﬂy]‘!n}' for 0<t<1 (2.51)
o v!B!

The General Distribution (Hazard-Rate Model). This section presents a
general distribution [3] which might be useful to represent failure behavior
of items that are not adequately represented by the existing failure distri-
butions.

The hazard rate A(r) and reliability function R(t) are defined by

Ae)=kAet* '+ (1—k)be*'Bef"

for b.c,f,A>0 0<k<l (30 (2.52)

R(1)=exp[ —kAt<=(1—k)(e” ~1)] (2.53)
where b, c=shape parameters
B, A=scale parameters

f=time

In special cases, the above distribution becomes

c=1, b=l Makeham distribution
k=0, b=1 extreme value

k=1 Weibull

c=05 b=1] bathtub curve

Randoem Varigbles 15
The Hazard Rate Model Distribution. The hazard rate function A(r) [4] of
this model is defined as follows:

A(t)=kAtanh Ar+ (1 —k )bt~ 1ge A"

for 5,8,A>0 0<k<lI t=0 (2.54)

where b=the shape parameter
B, A=the scale parameters

The reliability function is given by
R(r)=exp( —kIncosh A1+ (1—k)(e " ~1)) (2.55)

Figure 2.4 shows some selective curves (f=A=1) for the hazard rate
function expressed in (2.54).

sir}

L

0 0.85 1.7
r

Figure 24 Hazard rate function plot.
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25 EXPECTED VALUE AND VARIANCE OF THE RANDOM
VARIABLES

The expected value, E(x), of a continuous random variable is defined as

E(x)= f_'" xf(x)dx (2.56)

Similarly in the case of a discrete random variable x, the expected value,
E(x), 15 given by
3

E(x)= X x,f(x,) (2.57)

=]

where & are the discrete values of the random variable x.
The variance o?(x) of a random variable x is defined by

a?(x)=E(x*)-{E(x)) (2.58)

2.6 MOMENT-GENERATING FUNCTION

The moment-generating function, M,(#) is defined for both continuous
and discrete cases as follows:
Continuous case

H,{E]-f+mexp(ﬂ)_f{r}d£ (2.59)
and discrete case
M(0)= 5.‘.. exp( 0, )f(1,)dt (2.60)
k=]

for obtaining the nth moment about origin we apply the following:

d"M,(8)
[ FTL }ﬂ 0 (2.61)
Therefore, the expected value and variance are given by these relation-
ships:

dM,(8)

A

(2.62)

Hazard Plotting for Incomplete Failure Daia 7

and
d’M,{ﬂ}

E(t?)= FTE
#=0

(2.63)

2.7 HAZARD PLOTTING FOR INCOMPLETE FAILURE DATA

This is a graphical data analysis technique [7] to establish failure distribu-
tions for units with incomplete failure data. Failure data are complete
failure data if the failure times for all units in a sample are contained. In
contrast, the failure data are called incomplete failure data if a sample
contains both the failure times of failed units and running times of
unfailed units. The unfailed units running times are called censoring times.

In addition, if in a sample all the unfailed units under observation have
different censoring times, then the failure data are called multiply censored.
Furthermore, if the unfailed units in a sample have the same censoring
time and in addition the censoring time is greater than the failure times,
then the failure data are called singly censored. This type of data results
when a sample of items undergo life testing and termination of testing
before all units fail, whereas the multiply censored data result from any of
the following:

l. From the operating units,
2. Some extraneous causes.
3. Units removal before failure.

Some of the advantages of this hazard plotting technique are as follows:

L. It provides a visibility tool because the pictorial plots are easy to grasp.
2. Data plots are an easy way to fit a theoretical distribution to data.

3. It simplifies for the analyst to assess the adequate fit of a theoretical
distribution to data.

2.7.1 Hazard Rate Plotting Theory

This technique is based on the distribution hazard rate function concept.
The following three basic relationships associated with the hazard plotting
technique are defined as

_ M) _ A
HO= 2 " T=FD
where z(¢)=the hazard rate function
R(1)=the reliability function
F(t)=the failure distribution function

(2.64)
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The cumulative hazard, z (¢}, is given by

z(t)= f_’;nm-—[ln{l—mn] (2.65)

The cumulative distribution function F(1) is defined as
F(t)=1—e"%c" (2.66)

The above relationship is very useful to determine hazard function
properties.

2.7.2 Hazard Plotting for the Weibull Distribution

This example is presented for the Weibull distribution. However, interested
readers should consult reference 7 for other distributions as well as for a
detailed presentation of this approach. Here the theory behind the Weibull
hazard plotting is briefly described.

The Weibull hazard, z(r), and the density function, f(r), are defined as
follows:

a,n—l

1)=*5 e WE” 4 B30 130 (2.67)

at®*!
ﬂ.
Both cumulative distribution and hazard functions are obtained by

integrating expressions (2.67) and (2.68) over the time interval [0, (] as
follows:

()= (2.68)

F(t)=1—g W/BY (2.69)

z(1)=(¢/B)" (2.70)
By taking the log, of (2.70) we get
In(t)=a"'In(z,)+In(B) (2.71)

The above equation indicated that the left-hand side of this expression is
the linear function of In(z_), which indicates that the log-log graph paper
is the Weibull hazard paper. Therefore, parameters a and g can be

estimated graphically by using the log-log paper.

Laplace Transforms 19

The shape parameter, a, is estimated from the fact that 1/a is the slope
of the straight line. At z_ =1, the value of the f is equal to time ¢, therefore,
by using this relationship, the value of the scale parameter # can be
estimated.

2.8 LAPLACE TRANSFORMS

Some of these transforms are used in this book to solve systems of linear
differential equations with constant coefficients. Furthermore, these trans-
forms are applied in conjunction with other differential equation tech-
niques to solve simpler type of partial differential equations. The basic
definition of the Laplace transform f(s), of a function f(7) is as follows:

fls)=e{f(0)=[ “e~rp() dr 2.72)

where s=the Laplace transform variable
f=the time variable

Example !. Find the Laplace transform of the function f(r)=1, that is,

f(ﬂ-J;mr"’:d:- f—:;(f+ l)]m

it

|
= 3—2 for s =0 (2.73)

Example 2. 1f f(r)=e®, the Laplace transform of this exponential func-
tion becomes

f{s}-j;uc'"e"df-j';me{""}'

n[— I. ea.{:—n]:jlm
{S—ﬂ} o

1
-E for s>a (2.74)

28.1 Laplace Theorem of Derivatives
IFE{f(r)}=f(s), then

E[ﬂdf—]} =$/(5)~£(0) (2.75)
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18.2 Laplace Transform Initial-Value Theorem
If the following limits exist, then the Abel’s theorem is

F_{%f(l}-’l_iﬂ!f(-r} (2.76)

28.3 Laplace Transform Final-Value Theorem

Provided the following limits exist, then the final-value theorem may be
stated as:

E.T.f{'}' Elfiﬂ (2.77)
Laplace Transform Table

f(r) fls)

! 1/s
o f(5)~1(O)

2
LD o-g0-ro
1 l >0

5
e Ll 5>a
F—a

t* k! $>0

k+1

L)

19 PARTIAL FRACTION TECHNIQUE

This is used when finding inverse Laplace transforms of a rational function
such as G(s)/Q(s), where G(s) and Q(s) are polynomials, and the degree
of G(s) is less than that of Q(s). Therefore, the ratio of G(s)/Q(s) may
be written as the sum of rational functions or partial fractions in the
following forms:

A Bs+C

(as+p)"’ (as?+fs+C)"

n=1273,...

Heaviside Theorem. This is used to obtain partial fractions and inverse of
a rational function, G(s5)/Q(s).
The inverse of G(s)/Q(s) may be written as:

= M - . G_{"B‘_).! F1l
e S| Zom” Gl

Differensial Equations n

where the prime represents derivative with respect to s, 8, represents ith
zero and & denotes total number of distinct zeros of Q(s).

Example 3. Suppose

G(s) _ s+2
Q(s) (s—4)(s—6)

find the inverse Laplace transform. Hence,

G(s)=s+12 Q(5)=35"—105+24 Q'(s)=25-10
B,=4 f,=6 k=1

Therefore,

G@) ar, G6) 6 s 61 na
Q’[‘ﬂt +Q'{6]E 4% -3¢ (2.79)

2.10 DIFFERENTIAL EQUATIONS

The single-independent-variable linear first-order differential equations in
the reliability study are mainly associated with the Markov technique. In
this section we discuss how to solve such equations using integration
techniques.

The first-order first-degree linear differential equation may be written in
the following form

& +PG(1)=Q(1) (2.80)

%[PEI““”’}n %e FGdt 4 pG(1)e S Gl de

,.,,reum[% +PG’[:}] (2.81)

The above expression shows that e /" is an integrating factor of the
differential equation (2.80). .
The primitive of differential equation (2.80) may be written as

p,ﬁmdrmfg(:}e-”""""dHc (2.82)

where ¢ is a constant.
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Example 4. Obtain the solution equation for the following differential
equation:

E} +6P=8 (2.83)
Hence,
efﬂ-‘tﬂir“‘._rodr_eﬁr (134}

By substituting (2.84) into (2.82), we get

Fe"'sﬂfe“dﬁc

P=%+ce™® (2.85)

For given initial conditions; at r=0, P=1; the following value for the
constant ¢ is obtained from (2.85).

1
c==3

P=3—1e% (2.86)

2.10.1 Differential Equation
Solution with Laplace Transform Technigue. Solving the same differential
equation

dP
= +6P=38 (2.87)

with the Laplace transform method for same initial conditions we get

;P-1+6P-§
5
P= . +—l- (2.88)
s(i+ﬁ} 546 .
S

The inverse Laplace transform of the above equation is
P=3%_1e"® (2.89)

This shows that solution (2.86) is same as the solution to (2.89),

Differential Equations i)
Failure mode
|
i1
Ay
Normal
oparation
midn
(@)
:.'J
Failure mode

]
21

Figure 2.5 State space disgram

2.10.2 System of Linear First Order Differential Equations
The following system of linear first-order differential equations with con-
stant coefficients are associated with the transition diagram* of Figure 2.5,
This transition diagram represents a three-state device, for example, a fluid
flow valve, electronic diode, an electrical switch, etc.

"P;f” (A +A,) (1) =0 (2.90)
dP

;ﬁ” A Py(1)=0 (2.91)

"P";’} —A,Py(1)=0 (2.92)

At 1=0, Py(1)=1, and other probabilities are zero.
The Laplace transforms of differential equations (2.90)-(2.92) are

(54X, +A;)Py(s5)  OP(s)  OPy(s)=Py(0) (2.93)
_AIPD{J} JP.{S} ﬂPz[J}-Pl{'ﬂ'} {2.“}
Ay Py(s)  OP(s)  Py(s)=Py0) (2.95)
S+A;+A, 0 0 Py(s) |
=& E 0 Pis)|=|0
—As 0 5 Pi(s) 0
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By solving the above we get

1

Pu[-‘]=m (2.96)
= ‘]"l
Ft(.}'}—m (29‘?}
Ay
e yoe
The inverse Laplace transforms of (2.96)-(2.98) are
Po(t)=e=Prthak (2.99)
i '}"l — (A +hgde
Py(1) ?t.+h:“_e S e ol (2.100)
Pyt)= Ay (1—e~hi*dad) (2.101)
" A A, :
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