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9.1 INTRODUCTION

A Ip_rimary requirement of a modern electric power system is
ab_ih_l}r to satisfy the customer load requir:mfnls. In ysume clail:l?-:suntli;?t?:
this involves generation, transmission, and distribution facilities. In othe
the responsibility may extend over a part of the total facility, A cumpl:ﬁ
power system 15, however, composed of generation, transmission, and
t:hrstpbufmn facilities each one of which contributes its own inl;erent
difficulties to the problem of satisfying customer requirement. A power
system sl:!nuld be designed and expansion facilities planned so }11at it can
Perf—::mn its intended function with a reasonable risk. The risk of power
interruption or capacity shortage can be reduced by providing more
redundancy in the transmission and distribution networks and enough
reserve generating capacity. There has, however, to be a trade off between
rcha1?|llly of power supply and the cost involved. Reliability models
pr?r\;d: Encans of carrying out this trade off.

_ There has been considerable growth in the techni ita-
t{\rcl ev.:ﬂuatinn of the reliability of power systems. B:g::::g;‘ :: s?:uan;::::l
su:l:ul,a_nly of the various power systems, a number of generic reliabilit
techniques have been developed for planning, design, and operation o!;
these systems. This ensemble of concepts, indices, and methods is generall
referred to as the power system reliability. Numerous papers [12] and twﬁ
:::;l::m[?,a 1;] h.?;edbeen written on this subject. This chapter gives a

nd unified approach to iabili
to more detailed discus]:?ans are prgs:i:ii.sﬁwm S e

.Th.e major areas of a power system are generation, transmission, and
d:stn_bulmn. For determining the reliability indices, the entire pcwc;' sys-
tem is not cn_:-nsiderad, Although conceptually possible, the complexity and
dimensionality make this task rather impractical at present. It appears
however, that this task will become possible in the future partly b},f
Eicvelaprqents in better techniques of modeling and partly due to an
increase in !::-qth the speed and power of computers. At present, however
the_ major divisions in power system reliability are the generating eapacit):
reliability, bulk power system reliability, interconnected systems reliability
and the reliability of distributions systems. 1
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9.2 GENERATING CAPACITY RELIABILITY

Generating capacity reliability evaluation can be considered in two basic
forms, which may be designated static reserve and operating reserve
requirements. The static reserve studies are concerned with determining
the installed reserve capacity sufficient to provide for unplanned and
planned outages of generating units and uncertainties in the forecast load.
The operating reserve consists of spinning or quick starting units and is a
capacity that must be available to meet load changes and also capable of
satisfying the loss of some portion of generating capacity. Whereas the
static reserve is of primary concern to the planning engineer, the operating
reserve provides assistance in decisions on daily operation of the power
system. Ideally both of these areas must be investigated at planning level
but once a decision has been reached, the operating reserve becomes an
operating problem. This section is concerned with the static reserve area
and the operating reserve is described in Section 3

Generating capacity reliability studies assume the transmission network
to be perfectly reliable and capable of transferring the energy from any
generation point to the load point. This amounts to the assumption that all
the generating units and loads are connected across a single bus. The
assessment is basically concerned with the certainty with which the system
load can be satisfied by the generation facilities. The three basic steps

involved are [17]:

1. A model describing the probabilistic behaviour of capacity outages is
developed first. This is referred to as the “generation system model.”

2. The probabilistic nature of the daily load curve is incorporated into a
“demand model” or “load model.”

3. The generation and load models are then merged or convolved to give a
“generation reserve model,” which depicts the expected occurrence of
surplus capacity and capacity deficiencies. Several indices are defined
on the generation reserve as measures of generating capacity reliability.

9.2.1 Generation System Model

Model of a Single Unit. A generating unit, especially a large thermal one,
may have several different capacity levels. The consideration of partial or
derated capacity states is nol a major problem; however, in order to
illustrate the basic approach each unit is assumed to exist either in an up
(full capacity) or in a down (zero capacity) state. This binary model can be
characterized by the following parameters:

c=capacity of the unit in MW
m=mean up time of the unit
r=mean down time of the unit
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Using these par. i i
fnu.}wﬁ parameters, the model of the single unit can be expressed as

m
m-+r
e

Pr(capacity out=0}=

e (9.1)

Pr{capacity out=c} = =
m=r
.

A+ pu 02)
Fr(capacity out=0)= Fr(capacity out=r)

LDl
y (9.3)

where

A, p=the r‘er:iprocals of m and r and are called the failure and
repair rates of the umit

Pr(-),Fr(-)=the steady-stat ili
tively. y-state probability and frequency of (-), respec-

Equations 9.1-9.3 are inde
_ ) pendent of the form of the bahili i
function of the up and down times. Equation 9.2 can MPE;T;Ld:smtii

unavailability of the unit and has been traditi M
e el aditionally called “forced outage

FOR = - forced outage hours
in-service hours + forced outage hours (34)

::*sreme‘iﬂfade{. : The guncr&licn system consists of many units and they are
sumed statistically independent. Such a system can have many possible

capacity levels and th iabili .
i) e reliability measures of the following form are

1. Pr(lost system capacity > x), the steady-state probability of lost capacity

Ezumail ;loivzr fﬂr::.aler than x MW. The state, > x is commonly called
state as compar i i
e pared with the exact state, that is, equal to x
; :‘.:gnslt s:.}rmtrn capacity = x), the mean frequency of encountering the
ulative state of x or more MW lost capacity. The reciprocal of this

function gives the i ean time between two
mean cycle time, that is, the m i
successive encounters of this state. [ l
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The problem for a small system can be solved by enumerating the possible
system states, calculating the probabilities by the multiplication rule, and
then determining the subset probabilities by addition. The frequencies can
be readily calculated using the frequency balancing approach [19]. This
method is practicable, however, only as long as the number of units
comprising the system is relatively small. A generation sysiem may have
several hundred units and therefore this approach is not feasible. The
generation system model is typically developed by the sequential addition

of units.

Algorithm for Unit Addition. This algorithm [20] is basic to system model
building by sequential unit addition. The system is assumed to consist of
binary units, that is, it can exist either in an up (full capability) or down
(zero capability) state. There is, however, no inherent limitation in develop-
ing similar algorithms for multistate units using the same methodology.
The assumption of binary units is for keeping the discussion simple. It has
been already shown in reference 26 that the probability density functions
of up and down times do not effect the steady-state probabilities and méan
frequencies when the units are assumed statistically independent. The
following notation is used:

C=ith lost capacity state. Capacity states are assumed to be
arranged in an increasing order of lost capacity, G4y > G
P, f,=steady-stale probability and mean frequency of lost capacity
=C
¢, =capacity of the kth unit
Ag=1/my
m, =mean up time of unit k
pe=1/n
pr=pe/ (Ap+ i
lP“”’ ] =steady-state probability and mean frequency of lost capacity
fivwr ) 5(C4ey)
N, =number of capacity states for the k unit system
r, =mean down time of unit k
a=to “after,” that is, after the unit addition or after the unit
removal (superscript)

The process of model building is started with a single unit and then each
unit is added in turn. The model for a single unit is, of course, quite
straightforward. Now assume that a system model exists for (k=1) units
and it is required to add the kth unit. Since the unit is assumed to exist
either in the up state (lost capacity = () or in the down state (lost capacity
=¢,), two groups of system states would be obtained after unit addition,

(C+0) and [C+cy), i=12..., N, (sec Figure 9.1). The states in the
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Figure 9.1 State frequency dingram for unit addition.

fm-me: group are termed “existing lost capacity states” and those in the
latter “generated lost capacity states.” As an example consider C, such that
{{5', +¢;) 2 C and (G, +¢,) < C;. The boundary for this state is shown in
Figure 9.1 and the associated frequency is

=fsPx+ il —p ) +(Pi—Ps)p A, (9.5)

In general, modified cumulative probabilit isti
neral, v and frequency of
capacity state / is given by o e

Pl =Pip,+ ﬁ'ﬂ“ —Pi) (9.6)
and
£m=ﬂp'ﬁk+ﬂu“_Fk:""(ﬂd_ﬂu}ﬂk'lh (9.7
such that
E_ﬁ(ﬁ_‘-‘n}

:m Capacity Reliability bl

‘Superscript ¢ refers to the old values of probabilities and frequencies and
superscript m refers to the modified values after unit addition. The proba-
tulmes and frequencies of generated lost capacity states are similarly given

by
Puriy=F(1—=p )+ F/-pi (9.8)
and
Jivr=F (0 =p )+ 1 i+ (B2 = P )pihs (9.9)
such that
C-_, .‘a{(_?,+ck}

The flow diagram for the computer implementation of this algorithm is
provided in reference 20. The procedure described in reference 20 accom-
plishes calculation and state reordering at the same time and is very fast.

Algorithm for Unit Removal. Several times it may be necessary to remove
a unit from the system model. For example, during the period of a year
different units are on scheduled maintenance and therefore the same
system model cannot be used for the whole period. The year can be
divided into a number of intervals during which the units on scheduled
maintenance stay the same and a single system model can be used. These
system models can be derived from the master system model by removing
the units on maintenance.

Unit removal is the reverse of the process of unit addition described by
(9.6)-(9.9). To reconstruct the system model prior to the addition of unit
k, (9.8) and (9.9) can be modified. Since C, is equal to or just greater than
Citeg,

PSyiy=PF (9.10)

and
Fey=f’ (9.11)

Substituting (9.10) and (9.11) into (9.8) and (9.9) and replacing sub-
scripts (i+k) and i by i and j, respectively,

fim=fepp+f(1=p) (P =P )Pk (9.12)

Pr=Pep,+ PP (1-py) (9.13)
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such that
E} }{ Eﬂ €y ]'

Equations 9.12 and 9.13 are the same as (9.6) and (9.7). Probabilities and
frequencies of the old system model are therefore,

[ 2r—2(1-p,)]

Pl= L 0.14)
and
LU= (L=p )+ (P —PF)p, A
fjuﬂ [ A & Fk{ i ¥ }F* g] {9‘15}
such that
G>Ci—¢y

The algorithm is started with P’=1 and f=0. After each unit removal,
the system model may contain sets of states with different lost capacity
values but the same probabilities and frequencies. In these sets, all the
states except the last one should be deleted to obtain the exact system
model prior to the addition of unit k. The flow diagram for the computer
implementation of this algorithm is given in reference 20.

9.2.2 Load and Generation Reserve

Load Model for Loss of Load Expectation. One of the indices used in static
reserve studies is loss of load probability (LOLP) or loss of load expecta-
tion (LOLE). The load model generally employed for LOLE calculation is
of the shape shown in Figure 9.2. This cumulative load curve indicates the
time for which the load is more than a specified level in MW, This curve is
either from hourly load durations or more generally from the daily peaks.
In the latter case, it indicates the number of days on which the peak
exceeded a specified value. The LOLE is an expected value and is given by
[6].

LOLE= E Pt (9.16)

where p,=probability of a capacity outage equal to ¢,
t;y=number of time units, in the study period, that a capacity
outage of ¢, would result in a loss of load
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Installed capacity

Figure 9.2 Cumulative load duration
Percent time |oad exceeds indicated value curve.

The values of p, can be obtained from lhe_gcnc_ratiﬂn system model
discussed in Section 9.2.1 by the following relationship,

F!':'PF_PI+|

The LOLE is expressed in days/year, that is, the ﬂpi_:cted time in days
that the load would not be met by the capacity in a l?en-:}d of 1 ye{;;:gt_le
magnitude of load loss is not mﬁidcred. The rec1pmca! [.;L; Gk $
years/day is often used as 4 reliability measure; however, it n
obscure the fact that LOLE is a simple expectalion.

Load Model for Frequency and Duration. The load model for loss f}f :uag
probability method does not adequately reflect the shape uf the dm{y oa

variation curve. Reference 16 suggested a load model mtm_:lun;ng t;n
exposure factor to indicate that the pleak load does not persls; ﬂ: g(‘_ﬁ;,
entire day. The mean duration at a particular load level, usu.:a]]y abou e
of the daily peak, is assumed to be exposure factor. 1Th;§ amc:;m; 0
approximating the daily load variation curve as shown In Fsin.;r:] ;,h, anis
taking the mean of e, as the exposure factor. The load model, hﬁl i

assumed to consist of a random sequence of N load states, ear,l-hf of which is
followed by a low load state (see Figure 9.4). The state transition dmg‘ram
for this load model is shown in Figure 9.5 and some parameters are given

below.

ipti i=1,2,..., N

f load levels, MW Ly, i=1,2,000,
Description o e,
Number of occurrences of L, n -
Interval length D= n

i=1
Exposure factor, that is, the mean duration of L, e<1days
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Figure 9.4 The basic load model.
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Flgure 9.5 State transition diagram of the basic load model.
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PACITY RESERVE MODEL. Assuming stochastic independence of genera-
jon system model and load model, they may be combined or convolved to
orm @ capacily reserve model. Capacity reserve or margin is an excess of

F,'.Faﬂ&bllt capacity over demand, that is
d margin=capacity — load

The probabilities and frequencies of cumulative margins (margin < M) are
of primary interest and these may be computed by combining the cumula-
(ive capacity states with the exact load states. Using the margin state

‘matrix approach [18], it can be proved that

N+1

Ay = 12 P.A; (9.17)
-1

where A, =steady-siate probability of margin < M
A=ne/D (9.18)
P, =probability of capacity < C. such that C, <(L, +M)

N+ | =the low load state, Lg

The margin <M could be encountered either by the change in the
 system capacity or the change in system load. The contributions to fy,, the
frequency of encountering a margin <M, by these two respective modes
of transitions are termed the generation system transitions and the load

model transitions [18]

fu=T+Tx (9.19)
where
N+l
Ji= Ej S A, (9.20)
=
and
N "
fli= 2D F(P=Pu) (9.21)

D

=1

It should be noted that in (9.17)-(9.21), vis a function of load level L;
selected and is so determined that C,<(L;+M). The probability P, i
that of capacity level corresponding to low load level such that C g < (Lot

M).

The CVEF and MLEF Load Models. The single exposure factor load
model discussed previously assumes a random sequence of daily peaks.
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This is generally not true and there is likely to be a strong sequential
correlation between the daily peaks. The choice of the exposure factor is

arbitrary and its nature is questionable. For example if the capacity level ¢

exists for the day shown in Figure 9.3, then according to this load model g
negative margin of m will exist for a duration e,. This obviously is not an

accurate representation.

Load models for accurate representation of the system load were devel-
oped in reference 18 and described in the related publications [7, 8] In
these models, the expected daily load variation curve is approximated by
the mean durations at various load levels determined as a percentage of
the daily peak. The expected daily curve may or may not be symmetrical,
It is shown in references 7, 8, and 18 that the asymmetry does not effect
the steady state probability and frequency of encountering a margin. The
MLEF (Multilevel exposure factor) representation amounts to approximat-
ing the daily load variation curve as shown in Figure 9.6. For a bimodal
curve this means transferring segments like 4 to @’. This does not alter the
steady-state availability of the failure state, but the frequency is slightly

decreased and the mean duration slightly increased. For example, for a
given capacity level ¢, the load exceeds the available capacity twice in a

day with durations e, and d, respectively, Using this approximation, the
load exceeds ¢; once with duration (e,+d ). Such an approximation may
even give more realistic indices.

Whereas the MLEF representation assumes discrete variations in the
exposure factor, the CVEF (continuously varying exposure factor) model
assumes the exposure factor as a continuously varying function of the
percentage of daily peak. The continuous approximation does not involve
any additional difficulty and relatively little extra computational effort is
required.

CAPACITY RESERVE MODEL. Four types of load models are described in
references 7, B, and 18 depending upon the manner in which low load is
taken into account and the sequential interdependence of the daily peaks.

-

Load leveal

Time (hours)

Figure 9.6 The discrete approximation of a continuously varying daily load curve,

1. Low load assumed same 0N all days and
assumed random.

2. Same as (1) above excepl that the
between daily loads.

3. Low load different on different d

random.

4. Same as (3) except that the
daily peaks.

Both MLEF and CVEF rep
tions described above.
representation is derive
- referred to references 7,
frequency of margin <
9.7, which shows exposure
daily peak. For a give
for a margin < M can

that 1s,

The expec
“shown [18],
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The four possible combinations are

ted duration of margin <M for the ith load cycle can be e
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the sequence of daily peaks
re is sequential interdependence
ays and the sequence of daily loads

re is sequential interdependence between

resentations are possible for the four combina-
Expression for combination one, USINE C\’EIF
d in this section. For other cases, t!:fe rF{adu is
8, and 18. The derivations for the avall&bﬂﬂy" and
M can be understood with reference to t!:le Figure
factor as a continuously varying function of the

n capacity level C,, the mncgpﬂnqing load level L
be determined using the relationship

C,—L,<M

L,>C—M

asily

S 9.22
2 'Pu+x{du+x_d1.1+x-r I.] { }
x=0
& >
% ﬁﬂi__-___"- ..'E___- Lo
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b
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Figure 9.7 Exposure factor as a continuously varying function of the daily .
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where d,, =the mean duration for which the load > L, such that
Lu+x-cn+x_M

P, .=the probability of capacity <C_,,
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Generalizing from (9.25) and (9.26), the expected transitions due 1o all
the capacity levels, in the ith load cycle are

é‘ .rui-_:{dl;-i-x '_dn-h:—l] {9*‘2?}

In (9.22), v is such that C,— M makes the first intercept with the daily xm0

load cycle and n is such that C,,,—M is at or just below the low load

level. Assuming n, identical peak loads L,, the expected duration of margin

The expected generation system transitions out of margin <M during D
< M in the period of D days

days are

N n
H " doys ~dyyx-1) =fuD (9.28)
¥ i?lni;@ﬂpn+x{dn+x_dn+z_l} ‘gln.‘xz-:nfp+x{ o M
: 9.2
=D-A,, (9.23) From (9.28) ; "
N fﬁ-% 2 "f E -I'::+xl;du+x_du+:—l] {929}
f=1 x=0

where ~ N=total number of peak loads, that is, 3> n,=D

& The load exceeds a given capacity level once a day. Therefore,
A p=probability of margin < M

From (9.23)

1 "
AM L E E n, Eu'Ptl-l-xl:dud-x _dn'i-:- l] [924)

g nP,— Py (9.30)

From (9.29) and (9.30)

=t +, .:a‘

FREQUENCY OF MARGIN < M. The contribution to the frequency by the
generation system transitions can be determined by finding the expected
transitions out of the margin states < M. In the period h,h, (Figure 9.7)
the load is > L and therefore for the capacity level C,, the margin < M.
The generation system may transit, during this period, to a higher capacity
making the margin > M or to a lower capacity without change of cumula-
tive margin state. Therefore,

N n 1 N
b % E ﬂ; 2 ju+.t[du+:_-dp+x-l]+ _E E "!Pn"_Puﬂ (9‘31}

jm]  xm0 i=1

expes it ‘ 0 (9.24) and (9.29) v is different for different
L ted transitions during It should be noted that in (9.24) (
load cycles.
fls DR U S A=, (025 EXTENSION TO THE LOSS OF ENERGY CONCEFPT. The load models proposed

can be readily extended to evaluate the probable curtmlr_ncnt of :nuf‘]gyldu:
to capacity shortages. Assuming the CVEF representation, the daily mga_
variation curve is shown in Figure 9.8. The mean durlatmns dare stored in
the computer in discrete steps and the mean duration between an]ird 1w:;
discrete steps can be computed by linear mtuj:rpﬂlatmn. The nmgnllt I: ;
load corresponding to the mean duration 4, is called the subload level L,
where i refers to peak load level. L

For a capacity level C,, the energy curtailed is equal to lhri u;a
bounded by the expected load variation curve and the mean duration

where f, =the frequency of encountering a capacity <C, or >C,.

During periods h h; and h;h,, the load is > L_,, and the transitions
to capacity level >C,,, can cause change of cumulative margin state.
Therefore,

The expected transitions during

hyh, and hyh, from margin <M to margin>M=(d, ,,—d,)f.,,

(9.26)
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Duration [hours)
Figure 98 Expected daily load variation curve for the ith peak.

for which the load exceeds C,. The area of the shaded portion is

1
" E(di— l+d1'—1 :'Ir

where [, =the interval in MW between the successive subload levels, for

the ith peak load
=L;p/100

where L,=the ith peak load, MW

p=the interval between successive subload levels as a percentage

of the daily peak

The energy curtailed

-"i{dj'l‘dp}xu"l‘il:dj-i'd -I)!J"' arsu E[dﬂ+'dl]ff

= S (At d ) =, )+ (d by M+ +(dotdy )]

1
o i[dn.xﬂ_dj'_}'ujﬂ'\f"ﬁ}
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J
Ej'= E dy
k=0

_ the cumulative total of the subload mean durations up to jth sublevel
such that L, > C,

‘where L,;=the value of the jth sublevel of the i th peak, MW

The expected curtailment of energy, given C,, L;
|
- p [ (dx—dpr) 1)
‘The total expected curtailment of energy in a period of D days

N R
EN=Sn3 Pé[%(dp-xu—dj-y,]+fiu€‘,] (9.32)

=1 o=1

where P/ =the exact stale availability of capacity level C,
n,=number of occurrences of peak L, 1=1,2...N

‘such that

N
D=3 n,
i=1

m"‘li'htji::r‘:sm'ﬂn (9.32) is suitable for digital computation and its exccu-
tion is very fast. The value of EN given by this expression m{ay :
multiplied by a suitable cost factor in $ ﬂn.:lW-Hr to get the expecteq oss in
dollars. To act as an index of reliability EN must be nf:-mm]:za_d hy
dividing it by the total emergy required by the system. This quantity is
given by the expression

N

ENP=3 n,[;,(ld +E, ) +24( L,.—n-m] (9.33)

i=1 &L

where n=the sublevel just at the low load. This q}lﬂ.ﬂﬁi}f. W!'Iil:h is rat.h:;
small, may be subtracted from unity to get what 1s conventionally call
the Energy Index of Reliability. Thus

EIR=10—EN/ENP (9.34)
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SEQUENTIAL CORRELATION OF DAILY PEAKS. A number of models have
been proposed and analyzed in references 7 and 18. The essential dif-
ference between the various load models is the assumptions regarding low
load and the sequential correlation of daily peaks. The analysis leads to an
interesting conclusion that, if the low load can be considered of constant
magnitude, the numerical values of the probability and frequency of
margin states are the same whether the sequence of peak is assumed
random or correlated. For most systems, the probability of having capacity
as low as the low load period is very small and therefore the error in the
numerical indices of reliability because of the assumption of constant low
load is insignificant. The model discussed here is thus adequate in most
situations of interest. If, however, low load cannot be assumed constant,
the numerical indices are effected and appropriate load models [7, 18] can
be employed.

9.3 ASSESSMENT OF OPERATING RESERVE

The operating reserve evaluation is concerned with the ability of the

generation system to meet the load within the next few hours. If a
generating unit fails, additional capacity can be brought in after a time
equal to the start up time of the reserve units. This time known as lead
time, delay time or start up time is different for different types of units. It
is of the order of a few minutes for hydraulic, gas turbines; for the thermal
units on cold standby it may be 4-24 hours. One way of reducing this time
is to keep the boilers banked; these units are called hot reserve units, The
reserve connected to bus ready to take load is called spinning reserve. This
spinning reserve together with the rapid start and hot reserve units is called
operating reserve. The basic problem is to decide how much reserve to
have so that the load can be satisfied with reasonable level of risk. Three
methods have been proposed for the assessment of the operating reserve
and an excellent review of these is provided in reference 15, These methods
are briefly discussed in this section,

9.3.1 Basic PIM Method

This method was first described in 1963 by a group associated with the
Pennsylvania—New Jersey—Maryland interconnection [2]. The index com-
puted is the probability of having insufficient capacity in operation at 4
future time equal to the time needed to bring in additional generating
capacity. It is assumed that there is enough installed capacity and it is just
a matter of time before the additional capacity can be brought in to share
the load. The present state of the system is assumed known and the start
up time of all the stand-by units is considered the same. The procedure for
computation is basically similar to the static reserve evaluation. The
essential difference is the time.

Power System Reliabiliyy
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Assessment of Operating Reserce r
k.Gene i i ed using a two
tem Model. The concepts will be l“l.lﬁ'!.l:ﬂ[. _ :
terf;:tj}t" '?hire is. however, no additional difficulty in including u;rlnls
::t]'; derated states. The probability of a two-state unit being down at ume

T, given that it is operating at 1=0 is [23]

2 O (9.35)
= ]—e ®

i ir rates of the unit.
where A, p are the failure and repair ra .
Y (A+u)T<], then (9.35) can be approximated as

A
o —— h+ T
(9.36)

=AT

i ing that there is no
ression (9.36) can also be obtained by assuming 2 1
1:’:: i:!;;ﬂ 7)) and that T is small. If T is the start up time of adﬁum:;.l
il it ﬂ;en AT is the probability of loosing capacity and not being :f e
ﬁﬁ;:ﬂi& it and is called ORR, that is, the outage replan;mtn;nl ra{t;-;nbi I:t:;
i he units scheduled at time 7=0, the prot
computing the ORRs for t ! i
i i t T can be calculat ¥
h various levels of capacity outage at £ . .
:.]:e ;:-nd%mt rule or more generally by the algorithm described for the static

reserve evaluation.

' ' load model for the operating
Model and Risk Calculation. The : _ i
lr::fve evaluation is the forecast load at 7. The risk, that is, the probability

of having insufficient capacity at T, is

R= Pr(load at T=L,) Pr(capacity at T<L,) (9.37)

ast load. The continuous disuihut.ianl of
screte distribution. If no uncertainty
is only one value of L; and

where L, is the value of forec :
forecast values is approximated by a di
in forecast load is assumed, then there

R = Pr{capacity at T<loadat T') (9.38)
i ith a maximum tolerable risk R
The computed R is then compared wit R,
lo decidcr:r;l:lether the system is adequatlaly secure. If the cumilétﬁlk S:k ::
more or less than the reference value, suitable action can then mﬁd. el
present the selection of R g is not simple and 1s generally

judgment and past experience.

9.3.2 Modified PIM Method

The basic PJM method can be modi
start and hot reserve units [10]. The models for

fied to incorporate the effect of rapid
the rapid start and hot
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b
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=2 Ay Ay
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Ready for service In service

Figure 99 A 4-state model for rapid start units,

reserve units are shown in Figures 9.9 and 9.10
, E 0. The state transiti
diagrams are self-explanatory and the transition rates are given by =

n,;
T,

.

L)

(9.39)

where A  =transition rate from state i to state j

n, =number of transitions f ] f duri 1
J : itions from state i to state j duri
spent in state i : Rdaiar

Assuming the times in the various states i i
1 tohee i
the state differential equations can be writien as R

_F.:.{u')= 5 PN, —P(t) % Ay

fot P (9.40)

Failg 1o take land

Failed
3 M3
- 4
F hag T
haa X1a
Aan
& Cald
reserve
ha o g A
1
g g
2 o> -] 4_:_ |
A >
Hot resarve v Aay

In sarvice

Flgure 9.10 A S5-state model for hot reserve units.

1.

mumﬂﬂ of Operating Reserve

The set of differential
conditions to calculate the
ing the start up times of rapid
&
following steps:

£, During (0, t,) the rapid start units

235

equations (9.40) can be solved using the initial
probabilities of being in various states. Denot-
start, hot reserve, and cold reserve units by

ty, and 1. respectively, the modified PIM method proceeds in the

units, that is, the units on line at 1=0, the
at 1, is computed using the

Using the scheduled
probability of having insufficient generation
basic PJM approach, that is,

R(t,)=risk during the interval (0, ¢,)

= probability of having insufficient generation at f,

are assumed to be in ready for service
with probability of unity. Using the differential equations (9.40) and
initial condition, Py(1;)=1-0, the probabilities of finding the rapid
start units in states 3 and 4 at time ¢, are determined. Denoting these
probabilities by Pyy and Fa, the probability of having the rapid start
unit failed at t, is ( Pyy + Py ). These probabilities of the rapid start units
are combined with the probabilities of scheduled units at ¢, to develop
the generation model at f;. The generation model at 1, consists of the
units in operation at =0 and the rapid start units that are assumed to
become available at #=¢; . This generation model is combined with the
load at t, to find the probability

R(t, )=probability of having insufficient generation at

Also R(t} ) is computed by considering all the units in operation at 1=0
and using their probabilities along with the probabilities of the rapid
start units at =1, which is, in fact, zero time for these units.

At time 1} , the hot reserve units are assumed to become available. The
probability of insufficient capacity at f is calculated by modifying the
generation model at 1, by combining with the probabilities of hot
reserve units at {§ which is, in effect, zero time for these units since in
the interval (0, t,), the hot reserve units are assumed in the hot reserve
state with a probability of unity. The probabilities of hot reserve units at
t, are computed with Py(t})=10 and using differential equations oOf
matrix multiplication technique [23]. The generation system at t, there-
fore, consists of (a) units in operation at 1=0, having operated for £, (b)
rapid start units having operated for (1,—t,) and (c) the hot reserve
units having operated for (t,—1t,). This generation model is then
combined with the load at ¢, to find the probability of insufficient
capacity at f,, that is, R(£.). The risk at ¢, according to reference 10 is
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given by

R=R(t,)+[R(t,)—R(])]+[R(t,)=R(15)]  (941)

The risk given by (9.41) is used as an index in the modified PIM method,
It appears, however, difficult to assign a physical significance to this index,
Also it appears that reference 10 does not incorporate the models for rapid
start and hot reserve units in a realistic manner. Denoting P, (¢) as the
probability of being in state j starting in state i, reference 10 appears to

compute the probability of a rapid start unit as

Py(1)=Py(1)+ Py(r) (9.42)

and

P(1)=1="Fy1) (9.43)

where P,(t), Py(r) are the probabilities of the rapid start units being up
and down, respectively, at time ¢, The initial condition assumed is P5(0)=
1.0, which does not reflect the fact that at =0, the unit was commanded
to start. Reference | suggests an improvement in the procedure for
incorporating the effect of rapid start and hot reserve units. When a rapid
start unit, for example is commanded to start, it either starts (state 1) or

fails to do so (state 3). Denoting the probability of starting or failing to
start by s and f, respectively,

}"1!

i S (9.44)
Az

g vy (9.45)

The probabilities of various states are now computed with the probabili-
ties of starting in states 2 and 3 as s and f, respectively. After computing

P, (1), the probability of the unit being down and up given the period of
need are computed as

p o P +Pu(1)

out _T (gﬁ.ﬁ}
and
_ Pylt) P
Pil'ln e PN [SI_ }
where

Pu=Py (1) + Pyt )+ Poyu(t)

237
Assessient of Operating Reserve

The probabilities calculated by (9.46) and (9.47) are then used in the risk

‘computation instead of P,(r) and P,(1) given by (9.42) and (9.43).

9.3.3 Security Function Method

1 i i ference 14 and later
rity function method was prnpu?sed in refere: _
Eo%ﬁa:; nn}::l expanded in several publications [15]. Basm;]@ mls’[ﬁmﬁ
| ili ble as a function of time. 1he
calculates the probability of system trouble time.

.'?w]mcﬂ of cnmpf:tatjnn is the lead time required for the modification of the
m;tem operating configuration to achieve impm!.rec_l system security. The
'ufnrm of security function suggested in reference 14 18

s(1)=3 P(OW(1) (9.48)

where P,(1)=probability of the system being in state [ at time ¢

W,(t)=probability that the system configuration of state i results
in system trouble

i in i lied to the entire set of
uation 9.48 in its general form can be app _ :
ouiqpunems comprising a bulk power system. When applied to the operat

' indi bability of insufficient capacity
ing reserve problem S(1) I.l'IdiCl-H.tl.‘-S the probabi ! ;
'-ntgtim: { into future. The function 5(7) 15 examined for a time period equal

to the lead time, that is, the time to start and synchronize additional

_capacity. If the security function is exceeding a predefined reference value,

then a decision to start additional capacity can be taken. Lik:wi;z :L:E:
system appears l0O secure, appropriate generating capacity may

' out for economic operation. This method treats the standby generators in a

rational manner and in conformity with the normal operating pr&c[‘l-c\;i. In
the modified PJM method, the standby generators are started only wd na
scheduled unit fails. The amount of standby generators are Shutudﬂ
when the scheduled unit has been repaired. In ‘mntrasl. to ﬂ.“ r? ﬁ;:m
PJM method, there is no difficulty in interpreting Ehe security func 5
S(t). It should be noted that when only _thc generating system 1§ cunl;
ered and when 1 is the shortest start up time for stland-hy generators b&;n
the risk obtained by the security function method is the same as the basic
PIM method.

9.3.4 Frequency and Fractional Duration Method

The frequency and duration method for short-term ‘reliabillty cal;;la%;i
originated in reference 18 and 1s also desr:}-jbe.-.:i in rcier._::}ce : ; .
previously described methods calculate the pointwise probability ; 'caziﬂ
ity deficiency. Although the security function methlcd calculates 5(1) s
the entire period, the total interval is not considered at a tme.



dices, interval frequency, and fractional duration.

Basic Concepts. The entire sample space X can be partitioned into dis-
joint subsets X* and X~ . Whenever the system enters any state contained
in X*, this subset of states is said to have been encountered. The following

indices can now be defined.
TIME SPECIFIC PROBABILITY OF X',
being in any state contained in X' at time r,

P (1)= X P(1)

iex*

where P,(¢) is the probability of being in state i at time r. When X% is
constituted by states indicating system trouble, (9.49) becomes identical

with (9.48).

FRACTIONAL DURATION, The fractional duration of X* in the interval
(t;.1;) is defined as the expected proportion of (r,,¢,) spent in X%,
Denoting fractional duration by D, (1, ¢5),

S [CRirya

iEXT T

ff “p.(1)

D, (t,,t;)=

s

=y (9.50)
INTERVAL FREQUENCY. The interval frequency F (¢, f;) is defined as the
expected number of encounters of X* in (1, 1,).

Futint)= 3 ["P() $ At

fEX™"h JEXT

(9.51)

where A, is the constant transition rate from state i to state j.

Application to Operating Reserve. The relationships (9.49)-(9.51) are gen-
eral and can be applied to the entire system or parts thereof. The applica-

tion of these concepts to operating reserve evaluation involves the follow-
ing two basic steps.

GENERATION SYSTEM MODEL. The generation system model depicts the
time-specific probability, the fractional duration and the interval frequency
as functions of the cumulative capacity outages, that is, capacity outages
equal to or greater than specific values. The numerical techniques for
developing generation system model are described in references 18 and 22.

Power System Reliabilie

frequency and duration method in addition to the pointwise probability of
generation deficiency, also calculates two additional interval related in-

This is the probability of the system

(9.49)

GENERATION RESERVE MODEL. The load is assumcd_ to be forecast with
arobability one and to stay constant over the lrmurl?' lI'Il[ﬂTlt&lS. If, however,
: is forecast with a certain probability ms}:ﬁhumm there is no
itional difficulty in incorporating this and alsu if a closer r:pres\:nta-
tion is required, the intervals over which lh-:‘ load is assum:d: constan n'::n
‘be made as small as desired. Since the load is assumed to exist at a ce ul:;
pumber of discrete levels and as the ca_pamty sl:,ates are also d:sc;el,:.ﬂuid
gperating or generation reserve which is capacity minus t_he nal o

also exist in discrete levels. This can be illustrated by assuming the load for

four hours as
' 3-4
60

-3
50

1-2
40

0-1
20

Hour
Load

ill now be indicated by interval numbers, for anmplg, 0-1
Efs: udr:n:tled by interval # 1. This fn}'ecast load is _c:}mhmad with T.I?e
generation model, the resulting generation reserve will be as shnwn u;
Table 9.1. The boundary of any cumulative margin, that is, a margm:; equar
to or less than a specified value can now b:l drawn. The bnt;:ura:'y 05,1
capacity deficient states, for :xmple. is §hluwn in Table 9.1. If e in ﬁ:en
frequency of encountering capacity Feﬂcmncy s to be datmmnnd.bﬂow -
F,(0,4) will be determined where X * will contain all the states
th}:: lglf.:cral, denoting the capacity associated with t!'le ith nu:nﬁ;tu?c
capacity outage state by C,, the boundary for cumulative rcsedr:rn . ﬁ:
M, that is, a margin equal to or less than M M‘-‘:’, corresponding
load during the jth interval L, is fixed by the relationship

C—L<M
That is,
CsL+M (9.52)
Table 9.1 The Generation Reserve Model of the Example
Interval #
1 2 3 4
Load 20 40 50 60
: s
Cum%ntwr. Capacity Outage 5 e - =
25 30 10 0 ! =10
50 5 1 =15 =25 —-35
75 —20 —40 —50 —60
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The expressions for the different indices can be written using the
following notation:

i

F5(0,T)= 2 Flt,-n 1))
J=1

T=the lead time :
P,(t)=the probability of the ith cumulative capacity outage state

at time ¢
"BJ[II o !}-
F(1,,1;)=the fractional duration and the interval frequency of en-
countering the ith cumulative capacity outage state in the
interval (f, {5)
Py (T)=the probahility of the cumulative margin M at the end of
lead time

F,(0,T) = g[ma}—ﬁ(u}]

cuch that C, < M+ L, at the end of the jth interval and
D, (0,T),

Fy (0, T)=the fractional duration and the interval frequency of en-

countering the cumulative margin M in the interval (0, T),
that is, during the lead time.

C, < M+ L; at the beginning of the (j+ 1)th interval.
Finally,

Probability. The expression for time specific probability of the cumulative

FM{U* T}_ % 'F;{r'—li tj)+ 2 ﬁ[ P.k{"_,r:'_"pl(lj}] {955]
margin M is straightforward: =

i=1

ere B=1if [P(1,)—Pl1,)] 15 positive
Harired (%38 =() otherwise
ontas i d to determine the three indices for
ressions 9.53-9.55 can be use . ; , ces
-.ix:lulativc margin M. If M is such that it defines the capacity deficiency

states the three indices are the three risk indices.

C<L(T)+M

e 94 INTERCONNECTED SYSTEMS
;‘Tﬁe Fractional Duration. Denoting the time at the end of jth interval by B e e e pﬂwe[; S
. generally improves the generating capacity reliability. W_]:len e pav:lt:r
system suffers a loss of load, assistance 1s g:nera]_ly ava!labic from the
‘systems to which it is interconnected. The benefits of mtermnne;t::]}]n
result from the diversity in the occurrence of the peak loads and the
of capacity in different systems.
m:?xgzaiuaﬁ]:zg lie reliability of interconnected systems, the load 1::15
generation in each system are assumed to be connected to a mmm;;_ ‘
and the tie lines are assumed to connecl these busesl l:!gi:ther. is is
shown schematically in Figure 9.11. This means that within each sy_sle;t]l.
the transmission system is assumed capable of transferring tl%: a?'mla de
generation to the points of demand. Also when uoedledl generation |; Tnth:
available to a system from a neighboring system, it is a.ssumjlad tha
intratransmission system can then pmparlljr distribute this capacity. ey
The type of agreement with the assisting systems :ff:-:*ts Fhe eva uatﬁ %
of the reliability of an interconnected system. This discussion assum

D, (0,T)= ﬁ D.'("'—lv‘j] (9.54)

f=1

where m is the total number of intervals in the lead time T, and the

cumulative capacity outage state i during the interval j is determined using
(9.52).

The Interval Frequency. The state of margin equal to or less than M may
be encountered either due to a decrease in capacity or increase in load.
There are, therefore, two components of interval frequency, the generation
system transition F(0, T') and the load transitions, Fj, (0, T') such that

Fo (0, T)=F&(0, T)+FL(0,T)
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Figure 9.11

basic agreement that one system helps the other as much as it can without
curtailing its own load. The concept may, however, be easily extended 1o
cover other agreements. The discussion in this section is limited to a
system A connected to system B, which is generally called a two area
problem. For a detailed discussion of this problem and that on multi-area
problems, the reader is referred to references 17, 18, and 3—5. The methods
of reliability analysis discussed in this section were developed in refemum'; 1

Generation

Tia line
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Ganeration

—_—l

Load

r

System A

17 and 18 and later described in references 3-5.

9.4.1 Independent Load Models

The relationships for the probability and frequency of negative margins
(load loss) in system 4 connected to system B are developed assuming the
generation and load models in the two systems to be stochastically inde-
pendent. Assuming the capacity and load in each system to exist at
discrete levels, the margin state, which is capacity available less the load on
the system, would also exist at discrete levels in each system. In Figure
9.12, M,, M, contain the margin states in systems 4 and B, respectively,

Mg

iR =
L

Load

Systam A
Schematic diagram of system 4 connected 1o system B,

M
F'ﬂm Imhz lmb! |""'lr4| rﬂuna—l [""bl ]"‘lhz |mu'.'r ["“h- I
Mg Mg
Mgy My M My | My LT Mgy M | Mz | M | mie
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INTERCOMKECTION UP

INTERCONNECTION DOWN
Figure 9.12  Effective margin states matrices for system A connected to system B,
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: .
without including the effect of interconnection assistance. These states are

arranged in the order of decreasing reserve, that is,
mﬂi}mﬂ} veeIm e 2Ny

and

Py =My My >0 2Myyp

The effective margin states in system A, that is, when the tie line is in
‘operation, are given by the elements of matrix M,

m =mg,+h, {9.56)

-where h, , is either the help available to system A from system B -:: it ;; th:
help required by system B from system A. In the latter case hy; :; !
negative sign. If no assistance is possible from one system to l_hlc 0 T-;.,
h,,=0. The maximum of h;; is limited by ‘thc_ tie line capa_bljnj.r. e
:gtii:ctive margin states in system 4 while the tie line is out are given by the

r ents of M’,
" (9.57)

mh‘“m
pations 9.56 and 9.57 define the bnundariﬁ‘ in M and H !, respec-
ﬁv?l;r. of any effective cumulative rnargm In this dtscussmn, m with w
subscript represents an exacl margin and : M with the same subscnp
denotes the corresponding cumulative margin, for example, M;; means a
hargin equal to or less than m, . The pmhs:brﬂ:t;.r and frequency nc!uatu;ns
for the negative cumulative margin are derived and for the oquaun;s or
any margin, positive or negative, the reader is referred to reference 3.

Probability of Margin Equal or Less Than N. The pru:tnftl?ri]ity of a marg,in
equal to or less than N is simply the sum of the pr:_]bah!mes‘ of the margms
states comprising this cumulative state. The equation for this probability is

easily seen to be

PNI: E [ Pn-“'_i_Pn.“_',”}{A“th{*}'*'Adb] {9_53}
Lok

where Py, Pouy=the pmbabilit_icsl of cumulative margins M, and

My ), TESPECUVELY L E

A p=the availability of the tie line between A4 and B

Ap=1-4, e

I. k=the indices defining the boundary of the margins less
than or equal to N. The index / indicates !he margin
in array M, and k indicates the corresponding margin
in M, to give an effective margin <N. For example
the boundary in Figure 9.12 is identified by (NA, 1),
(NA—=1,1),...,(6,1), (5,2). (4,3), and (3.4).
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Equation (9.58) can be easily seen to be an application of conditiona]

probability theorem [23] - Equation 9.59 can be easily derived by the application of the conditional

frequency formula [23],
fu=Fr(N/TL Up) A+ Fr(N/TL Down)A
+[ P(N/TL Down)—P(N/TL Up) ] AapAas (9.60)

Frequency. Define

Jagys foquy=the frequencies of encountering the cumulative margin states
M, and M, respectively ‘
A aps thap=the mean failure and repair rates of the tie line

nere
d Fr(+), P(-) are the frequency and probability of (-).
an
3 TL=Tie line
J=the frequency of encountering an effective margin in system 4, :
equal or less than N i o
Fr(N/TL up)= 3 {[ fury ~fore ) Pocwy *+ [ Pocry = P+ 0] Sy
System A can transit from one effective margin state to another in any i (9.61)
of the following ways.
. Fr(N/TL down)= 3 [ fuy—facrs] ey
1. Capacity or load transitions in System A. System A4 will shift vertically in Ik
M when the interconnection is in operation and in M’ when the nd
interconnection is on forced outage.
- =S(-P (9.63)
2. Capacity or load transitions in System B. Due to transitions in system B, P(N/TL Down)—P(N/TL Up) E{ by

system A will transfer horizontally from one effective state to another in
the matrix M, when the interconnection is up. With the interconnection
in the down state, the system A will transfer horizontally in the matrix
M’, These latter transitions do not ultimately reflect into the effective
operation of system A.

3. Failure or repair of the interconnection. When the interconnection fails or

is repaired, system A will transit from a state in M’ to the corresponding
state in M and vice versa. '

It can be easily seen that substitution of (9.61)—(9.63) into (9.60) will
yield (9.59).

9.4.2 Correlated Load Models

In the discussion in Section 9.4.1., the load models in 'L!.'IE two systems are
assumed statistically independent. It is, however, more ]1k:tl}r lhat_lhi: ]m:nﬂs
in the two interconnected systems will bear a correlation. This sm;:u?n
“develops the relationships for the probability and frequency of a cumula-
tive margin, assuming the loads in the two systems [0 be perfectly corre-
lated.

Let

The frequency of encountering a cumulative margin in system A equals the
expected transitions per unit time across the boundary defining that
cumulative margin plus the transitions per unit time associated with the
boundary states. The boundary states are a subset of the cumulative
margin when the interconnection is down but leave this set as a result of
repair of the interconnection.

Summing the frequency due to the three modes of transition gives the
following relationship. '

(L,,, L,,)=perfectly correlated load levels in systems A4 and B where
x=12..,n
M7, My=the reserve margin state arrays of systems A and B corre-
sponding to the load condition (L., Ly,)
o {[Lm _LUH}HA“ PH“+I”] The margin state arrays M7 and M can be obtained by subtracting
4 loads L. and L,, from the capacity states of the systems A and B,
rtnpccti;.;ly. The arrays M and Mj are shown in Figure 9.13 where the

* [ Fon™Fuas ”]{ So + [ [ _Pb':ﬂ] h"b}A"b} (03 margin states are arranged in the decreasing order of magnitude.
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Figure 9.13 Effective margin states matrices for system 4 connected to system B,

As before ¢ and m* with proper subscripts represent exact capacity and
conditional exact margin state and C and M* with the same subscript
denote the corresponding cumulative states. For example, C,, means a
capacity equal to or less than ¢, and similarly M, means a margin equal
to or less than m,. The effective margin states in system 4 given the load
condition (L,,, L,,) and the interconnection in the up state are given by

7

- Interconnected Systems
the elements of matrix M* of Figure 9.13,

mi=mg+hi; (9.64)
available to system A from system B or it is the

i i system A, given the load condition

help required by system B from
{Lax* be]' ’

" The effective margin stat : 1
(L. Los) and with the interconnection down are &

matrix M'*

es in system A given the load condition
ven by the elements of

myy=mg, (9.65)

i ; 9.65 define the boundaries of effective ::umuiah'l:rr:
-mﬁi;:?:? t;f;ﬂ;ﬂf Mafind M'*, respectively. The effective margin states in
system A, given the low load condition (L., Ly,) and the mt-:rcnnm:ull]:}:;
:.in the up state are given by the rnmmr.l!lrf‘* {s?c F:gFe 9.13), and th
effective margin states for the above condition with the interconnection in

' the down state are given by M '°.

Probability of Margin Equal or Less Than N. Using (9.58)

Finey™= ::Eu[ Pa{l}_PnU-H}l[ A gy Pypyt4 ﬂr] (9.66)

= probability of an effective margin < N, given the load

where  Finyx precse o
condition (L., Ly, : .

Ix. kx=the indices defining the boundary af1 N in M ._for
example, if the boundary is “abefhie”, the mfimes
are (NA,1)—(6,1), (5.2), (4,3), and (3,4) (see Figure
9.13) | B

Py Po 4= probabilities of MY and My,, given the load condition
{Luxl ‘be}
Since
m:l'= Cal™ Ln:
and

My =Cpp— Lpx
it can be seen that P, Py, are probabilities of C,, and Cpy, respectively.
Using conditional probability, for n load levels and low load level
{x=0),
]
A_Hs E 'AJPka (BJET}
x=0

where A, =probability of load condition (L, Ly )
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Frequency. The two different modes of state transition in system A4 for a
given load condition (L, L;,) are

1. The generation system transitions in system A or system B.
2. The state transition due to the failure or the repair of the tie line.

The frequency of encountering any cumulative effective margin in system

A due to these two modes can be determined using (9.59),

i .'2:; {[J;m “Jos “J[Aﬂ#"ba{k} "'“Tub]
X, KX

+ [ Parﬂ ‘.Pd[.flil:l:[[ fb:k: + [I _Pb{k]]lab] Adb} {9,{53}

where  f 5., =the frequency of encountering an effective margin <N,
given the load condition (L., L,,)
Jatrys foriy=the frequencies of encountering M, and M, respec-
tively, given the load condition (L_,, L,,)
=the frequencies of encountering C,; and C,,, respectively

The frequency of encountering the effective margin <N with the load
condition (L,_,, L,,) is

axt

Tv=Acfinse

The frequency due to the two modes listed previously is given by the
summation over all the load conditions, that is,

Ton= 2 S5 +1%

x=]

This f-, represents the contribution to f (the frequency of encountering
the margin <N') due to the generation transitions and also takes into
account transitions due to failure or repair of the interconnection. It does
not, however, take into account the contribution due to the load transi-
tions.

THE CONTRIBUTION DUE TO THE LOAD TRANSITIONS. The peak loads are
assumed to be followed by the low load period. Thus the system can
transit from a load condition (L,,, L,,) to (L,,, L,,) and again to some
load condition (L,;, L,;). It should be kept in mind that there are no
interpeak transitions, that is, the system cannot transit directly from
(Lgis Ly;) to (L, L,;). The contribution to f, will thus result from the
transition of system 4 from a given load condition to the low load
condition and vice versa.

M*and M 1= respectively. The correspon

“may be re qr
:I:r:rsult of the load transitions are

wgbcfhie” and “jlk[" but notin

states be represegt
from load condition (L.«

given by

Whﬂfﬂ A(:,ﬂ'l"ﬁ
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Let the boundary of N be represented by wabefhie™ and “jIkI™ n

ding boundary in M° and M

£ o “nigl”. The boundary states as

e & stion mﬂW1J:u;m:-‘::fl stit:s included in the boundaries

“grstuvw” and “plql™. Let T.hr:s:

ibuti the transition

set S. The contribution d!:{.t to

0 L,,) to the low load condition (L. Ly,) are

] x

Jr,l:s 2 Atd‘f:'ﬁ.A:.lxﬂ

SES

i d
= the probability of a boundary state sES, given the loa
condition (L., Lex)

A, =the transition rate from t

{Lnﬂ Lba]

he load condition (L, Lys) t©

It can be seen that

S A= Ann~Awser

sES
Therefore,
L‘[“im;x}—f"mm]‘r"x'lm
The total contribution can be found by summation over all the load
conditions, and is
L
o
x=1
Adding this 10 fex
L . ' + .
fn= 2 {flw;}‘f“ﬁ'E_J"w,.rn"f“m,.fu}] A, -}\zo} Iy
x=1
(9.69)

: @

=3 A {fovo* [Atﬁ'f’x!"{th'hl]hrn}'i'fﬁ

x=] L .

The step by step procedure for evaluating the reliability indices in system
A :?thcnrrelnmd Joad models is outlined as follows.

iti .« selected first and from each
load condition (L , Ly,) 18 S€leC _ : i
1. The lptw st:te inC.,L_ 18 mubimcled to obtain M:,_ My 1: nb;m;fe:lci 1:; :
E:mpgilrymmner. T;!.E b‘;:-undar}' of the failure state in M" an

be fixed using (9.64) and (9.63).
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2. Ay, and fy ,, are evaluated using equations (9.67) and (9.68). Here N Load System
represents the effective margin < the first negative margin in M? or M'?, ‘E:tr!mium factor=0.5 day
If the low loads in the two systems are assumed zero, Period =20 days
A =) '
e Load Condition
'ﬁﬂ'!s}ﬂ 0 9 No. of
: MW, MW) Occurrences
3. A,y and f5 ., for every load condition are evaluated in the same (x) (
manner as outlined for the low load state. | {1450, 1450) 8
4. The probability and the frequency of the failure state in system 4 can 2 (1255, 1255) 4
be finally found using the (9.67) and (9.69). Assuming the low load level 3 (1155,1155) 4
in both the systems to be zero, these equations simplify to 4 (1080, 1080) 4
n
A _ 2 AJ.'{[N}'J:'I )
e The low load level in both the systems was assumed Lo be at zero Mwézj
Ll The study was carried out by varying the tie capability from e

" i i i maintained at 0.01

MW. The mean failure and repair rates of the tie were mal
g AJ[ hﬁﬁhﬁdw;ﬂk] and 2.5 per day. The results of this study are shown in Figures 9.14 and
3 9.15 "i'he curves representing the correlated load models are labeled 1 and
LT e e tl.lm}: corresponding to the independent load modeis by 2. With the lower

9.4.3  Systern Studies

10-3 T T T T
The techniques described in Sections 9.4.1. and 9.4.2. have been imple-
mented in a computer program [21] and several studies based on this Peak In sys. A = 1450 UG
program have been reported in references 17, 18, and 3-5. A typical study, mf“ﬂ; line = 0,01 failure/day
the effect of tie line capacity on risk level in system A, is reported here. MR ot 8 I S GRS
A system designated 4 is assumed to be connected to an identical

system B by a single tie line. The mean failure and repair rates of the tie ; E",J;;I::,:dm
line are assumed to be 0.01 and 2.5 per day, respectively. The description 4
of the generation system and load model in each system is provided in =
Table 9.2. 2

| 8
Table 9.2 Generation System 5

Mean Down Mean Up
No. of Identical Unit Size Time Time
Units (MW) (Years) (Years)

1 250 0.06 2.94
3 150 =4 ([ I
2 100 |
4 L —
9 ;3 % 0 25|m 350 480 GEO
3 25 Tie line capability (MW

Total number of units=22

in system A with the variation of tie line
Total installed capacity = 1725 MW

Figure 9.14 Variation of risk level (unavailability)
capahility.
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104

Peak in System A = 1450 MW
Peak in System B = 1450 MW
MFR. of tie line = 001 failure/day
MAR. of tie line = 2.50 repairs/day

Cycle time (days)

10° =

1. Correlated
2. Independent

l | | l |
0 G0 150 250 as0 450 650

Tie line capability (MW}

Flgure 9,15 Varation of risk level (cvecle time) in system A4 with the variation of tie line
capacity.

values of tie line capability, the system is closer to being isolated rather
than interconnected. The effect of the interconnection is, therefore, not
significant and the difference between the two sets of results is not
discernible. As the tie capacity is increased, the interconnection becomes
more effective, and, around 125 MW, the two results begin to deviate
significantly. It can be seen from Figures 9.14 and 9.15 that beyond 250
MW there is no marked improvement in reliability indices for curve 1. This
is then the practical limit for tie capability with the correlated load models
and in this case it is reasonably close to the independent load models
condition. The limiting values of unavailability and cycle time for the two
cases are, however, significantly different. The independence assumption
gives optimistic results as compared with the correlated load models.

9.5 TRANSMISSION AND DISTRIBUTION SYSTEMS

A number of techniques have been proposed for the quantitative evalua-
tion of transmission and distribution system reliability. It is now generally
accepted that within the bounds of distributional assumptions, the Markov
approach is the most accurate. If the fluctuating environment is not
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i in the analysis, the transmission system elerments can be ca_:msad-
ﬁﬁem&ml an}-:ri the probabilities and frequencies calculated d::ci};
and simply. In the case of indap-gn_dent components, ::utlhsetﬂ-::]rc oo
methods can also be effectively utilized. Wh_en. hmfwer. e o .;j
environment, stormy and normal weather, 18 curnsgdtr:d. the sta i
behavior of the components cannot be.- regard_ ed :pdepen:em zmls o
solution of 2"*" linear algebraic equations is required, where n i

mponents. _
nm;:i:ﬂtizﬂnu!:ber of components is large, the numherl of linear equa-
tions becomes unmanageable. Methods like state merging, state space
truncation, and sequential truncation have been proposed for aﬂngi
this problem and are described in reference Il'}. The most Icffn:;n:_nt rge i
for dealing with transmission and dismbuu{nn systems, involving eﬁ:;)d
dent modes like the fluctuating environment is the Markov Cut Set ml; .
[27]. This method is a combination of the cut 15:!; and Markov met :;S
This composite approach consists in decomposing the system by cut s: .
and then using Markov processes and frequency balancing concepts fo
the calculation of the terms in the cut set expansion. The Markm pmc:s
of only the cut set members is considered and, therefore, a limited nu;nlh‘r
of equations need to be solved at a time. A very useful fe&ufr_ero 1;
approach is that both time-specific and steady-state pmbab:hn?ls}} anw
frequencies of system failure can be calculated. 1t is also possi fELhis
control and measure the degree of accuracy of the results. The us;:l 0 :
method is illustrated for transmission systems exposed to a 2-state fluctuat-
ing environment. The method can, however, be used to :}I-:al with depen-
dence due to maintenance outages and common mode failures,

9.5.1 Minimal Cut Set Method

The equations for the steady-state probability and average frequency of
system failure are

Po=3 Pr(C)- 2 Pr(CNGC)+ S Pr(CGNGNGCy)---
! i i<f i< f<k

(- 'PriC,NG N NG) (9.70)
and

=2 Pr(C)ix; — > Pr(C NGty
i ij

+ .2 Pr[c' n Cf ﬂck]ﬁa’+}+kt - [_h l}m_lPr{ci n C:_'I.'I il Cm]
i<j<k

(9.71)

B2 e 4m
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when  F;, f=probability and frequency that the system has fail
C;=cut set i and also the event: all components z? Cm o i
e i
1 NG)= ihty of the com ' i
= jt;=repair rate of componeﬁl}mts e (T ity
Bivksi=2 1
JE(GUC,UC)

The min cut sets can be

: caleulated using Fail

e . E ure Mode

I r{;ﬁn and for some Iwel!{lefmed reliability block diagmmafdspEef:r;fl

minjmumsnam bﬂlso available. The min cut sets are defined as sels :;:‘

oBilty rﬂ‘:’?h:fs;;;;mgpﬂne;ts whose outage will result in loss of

it . Once the min cut sets have be termi

E;Sb"éb!;:t)’ and frequency of system failure can be d:tenfl!ni{:i i ing.;; the

(9.71). The mean duration of failure state can be delemxined“:fsigx;m

1
% (9.72)

v ; oy i
or practical applications, A /p, <1 and the upper bounds [24] to

probability and frequency of fail i
T Tt e ar:l ure give results very close to the exact

Fru= 2 Pr(C) (9.73)
and

f.,= r(C it

f %P (G, (9.74)

where Py, f;, are the fi
Jur Jf e first u -
system failur;, pper bounds to probability and frequency of

The interval in which P, and f, li ;
lower bounds as well, i $567 6’40 be detenined by caloulafing 8

Fy=2 Pr(C)- Z Pr(Cing
=2 ) % (cnC) (9.75)
and

_r= Pr L, — ir

11 E'- (G, r%’"’{cfﬂc}}#:ﬂ (9.76)

EI}'
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powever, be reiterated that for al
‘pent failure rates are much small

(9.73) and (9.74) give results very close to the exact results.
e probability of system failure is true whether or

Expression 9.70 for th
independent. Equation 9.71 for the frequency of

not the components are
m failure also does not depend on the independence of components so

long as there is no restriction on the repair of a failed component [25]. This
restrictive assumption can also be eliminated by a more general expression

for f; as shown subsequently. The basic quantities to be calculated in (9.70)
‘and (9.71) are the probabilities of cut sels and their intersections. When the
e quantities can be calculated

components are assumed independent, thes

by the simple product rule. It is this problem that has restricted the
application of cut set methods to the systems where components can be
assumed independent. A method is proposed in the next section for
calculating these probabilities when the components cannot be assumed
independent and this method, therefore, significantly extends the capabil-
ity of the cut set approach to the transmission and distribution systems.

most all the practical systems, the compo-
er than the repair rates and therefore

9,52 The Markov Cut Set Method

This section describes a method for calculating the probabilities and
frequencies of cut sets and their intersections when the components cannot

be regarded statistically independent.

Concept of Equivalent Subser. The proposed method depends upon the
relationship between a minimal cut set and the equivalent subset of the
system state space. In a cut set C;,, having componenis [ and m as
members, if [ and m fail, the system will be failed irrespective of the states
of the other components of the system. The failure of the members of C; is
equivalent to the system being in subset S; of the state space S, where

§,=(s;: in the state s;, the components [ and m are failed
and the other components exist in either state }

in which members of C; are failed and all the other
called the vertex state of subset §;. The system can
ther upward (in the sense of less components
f the members of C, or it can transit
ts failed) by the successive
consists of states generated

The state s
components are good is
transit from the vertex state ei
in the failed state) by the repair o
downward (in the sense of more compaonen
failures of the nonmembers of C;. The subset §,
by the downward transitions from 5.

It can be seen from the discussion that

Pr(C)=Pr(5) (9.77)
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where Pr(S,)=probability of the system being in S,
= 3 Pr(s) (9.78)

/R =17
where Pr(s;)=probability of being in system state 7

The frequency formula, not dependent on component independence, can
also now be stated in terms of §,,

f=2 F(5)-Z F(5nS)
i<

+ ¥ FASNSNS,)—---
i<i<k

(=)™ 'F(8,n8N--+NS,) (9.79)

where F(S,)={frequency of encountering subset S,.

Equation 9.79 is true whether or not the components are statistically
independent.

The Method. The problem of calculating the probabilities and frequencies
_nf cut sets and their intersection can be transformed into that of determin-
ing these values for the corresponding equivalent subsets using (9.77)-
(9.79). It is now proposed that the Markov and frequency balancing
approach be used for the calculation of probabilities and frequencies of
equivalent subsets.

Consider, for example, subset S, equivalent of cut set C,. If Pr(S,) and
F(S,) could be calculated from transition rate matrix of only those
components that are members of C,, this would present a big step forward,
This is because in a large network, the number of elements in a minimal
cut set is generally much smaller than the number of components in the
whole network. The number of components to be dealt with at a time can
also be kept within reasonable limits by excluding minimal cut sets beyond
a specified (Imrderi As an example assume that the number of components
in a system is 50. The total number of states, if the equations for the entire
system are to be solved is 2°!, that is, 225 10" when the 50 components
are exposed to the same 2-state fluctuating environment. Now if the largest
cut set to be considered is of the order 5, then only 2°*' = 64 states need to
be dealt at a time using the purposed method. The solution of 64 linear
equations on a modern digital computer is a trivial task.

[E can be shown that in a system exposed to a 2-state fluctuating
environment Pr(5;) and F(S)) can indeed be calculated by developing the
transition rate matrix for the elements of C, only and neglecting other
components of the system.

the remaining components, that is,
€, Here n is the total number of
and n,, will be denoted by X, and X,
number of states in each
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isi nd n,=n—n, be
umber of components comprising C; & b I
‘e 4 components that are not members of

components. The sets of components 7
respectively. Now X, can exist in 2%
of the environmental states. The component

configuration of each state in either of the two environments 18 ;1}:[ sam:z
but the interstate transition rates in the two weather state;-s are ln [;:Er:nm "
i iti te from co -
nding to X, the transition ra
For the state space COTTespo ; *
tion i to j will be denoted by a,, and j in the num_‘ml ?hud 11%1-57 wwe:::ihg;
i iti from a state in the norma
ectively. The transition rate : veathe
:ﬁfﬂilion to the corresponding state in the adverse weather mndm:?nml;
assumed as w, and in the reverse direction as w,,. The states associa
n

i indi ....,a, in the normal weather aml:l
S s o Ml f being equal to 2"-. Simi-

s gt ...,a"in the adverse weather condition p
E.\:l;zthe staics generated by X, that is, components not membei nt,C,, 3;
indicated by by, by,..., b, in the normal weather condition and b}, b3,.... bg

i iti being equal to 2.
in the adverse weather condition, ¢
The state space of the entire system can now be generated from the state

space of X, and X,. When X, and X, are cur_nbirlmd, there will b;: p:-;q
states in :?u:h weather condition. This combination of state s lor the

normal and adverse weather is shown below.
Naormal Weather State Space

ba, ba; ... ba,
bya, ba, ... B4,
bqﬂl bq.ﬂj_ 4 qup

Adverse Weather State Space

J X

baj, bBlag.... ba,
i |

biaj, bas..... bia,
[ S ¥ ¥

b;ﬂi, b'a:...., bl?EF

The transition rate from b,a; to ba, 15 o f"",thja.l is, the trans;:mn ".'r*mi:
The transition rate from ba, to bjaj; 15 w, = 1/T,w erl:l »

weather. The transition rate from bja; to
T, is the mean duration of the adverse

from a, to aj.
the mean duration of the normal

ba; is likewise w,, =1/T, where

ther. ey
“’E:ﬂﬂfthe states be grouped into subsels D, and D] in the normal and

adverse weather conditions, i=1,2,..., p- These subsets are such that
Dr' = {blai" b:ﬂi,,..f bqﬂ"
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and

D= {bia], bia],..., bia})

The necessary and sufficient condition [23] f

, ‘ or the states to be merge

into s1ubse1.s is that for any two subsets D,, D,, the transition rate frmﬁ :azl;

ga!: E subset D, to each of the states in D, when summed over all states in
), 15 the same for each state in D, and this equiv iti

DD s , quivalent transition rate from

2 Ay

JED,

:.fiil::;}his !::uudif.ion of mergeability is satisfied between all the subsets
a in pairs, the Markov process of the system is said to be mergeable

into these disjoint subsets. : iis e
4iid De i lf., s Let us apply this condition of mergeability to D,

1. For all:y]:wn D;, D;, Z ;e p, A, is the same for each i€ D, and is equal to
3; ; Which is the normal weather transition rate from a, to a,. Therefore
: e Cl}l:dlrhﬂn of mergeability is satisfied for any D, D, anflr the transi
ion rate from subset i i iti :
e s5u D, to D, is a;;, that is, the transition rate from a, to
2.Ina simjla:‘ mannfr the condition of mergeability is satisfied between
any two D and D/ and the transition rate from D! to D} is 8, ,, that is,
the adverse weather transition rate from a! to aj. ! 3§
3. For any pair _I?, and D/, the condition of mergeability is also satisfied
and the transition rate from D, to D/ is w, and from D to D, is w,
e

From the preceding discussions, it can be concluded that the Markov
process for the system is mergeable into subsets D, D', It can also be
recognized that the merged Markov process is id:rIticail to the Markov
I1:.;1::«;::5-;iui for components of X, that is, components member of cut set C,.
ow if the states a, and a,, represent the failure of all the elements of C i;J
the normal and adverse weather respectively, then :

D, = {subset of states in the normal weather having members of C

failed and other components of th in ei i
e po of the system in either failed or

L - r{slubsct of states in the adverse weather having members of C
ailed and other components of the system in either of states) [

That is,
§=D,uD;=D,+D;

_  p——
DP _ap, Dp _Ep
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.’I'he merged process is identical to the process corresponding to the
sembers of cut set C,. Therefore

Pr(C,)=Pr(S))
=Pr(D,)+Pr(D;)
=Pr(a,)+Pr(a;) (9.80)
F(S)=F(D,uD;)
=Fla,Ua;) (9.81)

Here Fla,Ua,) is the frequency of encountering the state where all the
elements of C; are failed and can be readily calculated using frequency

-:b_alancing concept. For steady-state

Fla,ual)= 2 [Pr{ap}a_,,+.”r{ﬂ;}ﬁp,] (9.82)
isp

From (9.80) and (9.81) it can be seen that the probability and frequency
of a cut set C,, for the system exposed to fluctuating environment, can be
calculated by considering the Markov process associated with the members
of cut set C, only and that the transition rate matrix of the entire system
need not be generated. Therefore, the terms in (9.70) and (9.71) can be
computed by generating the (ransition rate matrix of the elements of each
cut set or intersection at a time and as noted previously these matrices are
much smaller in size than the matrix for the entire system. It is to be noted
that since the necessary and sufficient condition of mergeability is satis-
fied, (9.80) and (9.81) can be used for both time specific and steady state,
It becomes, however, obvious that the higher the order of intersections
considered, the less advantageous the procedure becomes since the number
of components to be considered at a time increases. Therefore, for the
successful implementation, the following procedure is suggested.

FROCEDURE

1. Identify the cut sets to be considered. The cut sets having more than x
components may be ignored. It will be reasonable to have x=5, since
the probability of more than 5 overlapping outages can safely be
regarded negligible.

2. Since in all practical systems the component failure rate is much smaller
than the repair rate, the upper bound will give an almost exact result.

Therefore P, and f; can be approximated as

A > Pr(C) (9.83)
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4 | 3
= y _1_1 Load
fr=fu=Z F(S) (9.84) Sogros 5
' =
3. The terms of (9.83) and (9.84) can be calculated by generating the _E__1_ :

transition rate matrix of the components of each cut set at a time and

Figure 9.16 An example of a complex configuration.
computing Pr(C,) and F(S)) using (9.80) and (9.81).

It can be seen that if the above procedure is followed only 2*+!
equations need be solved at a time, x being the number of elements in cut
set. If x=35, it means 64 equations, which is a trivial task when digital
computers are employed. The calculation of the first lower bound will not
involve much additional difficulty and can provide insight on the margin
of error.

It should be carefully noted that (9.80) and (9.81) for the calculation of
the terms of (9.70) and (9.71) or (9.83) and (9.84) are exact. The approxi-
mation involved is either in the ignoring of higher order cut sets or using
upper bound approximations by (9.83) and (9.84) instead of complete
(9.70) and (9.71).

the results by exact Markov and Markov cut

et methods. The results obtained by the Markov cut sel methofi ar:fnxz
negligibly higher than the Markov method. The mean dumu]::n e
:'?:ilure state can be obtained by the (9.72). The error 151 snm'le: ai: e
: i i dverse weather. This

: igher percentage of failures durmg adver : :

;for hlﬂ’l si:fce this results in effectively increasing the ratio of failure ra.:':
E 1d be reiterated here that any error introduced by the

d is because of the use of upper bound appmxift!na
ulation of terms of the equations for the probability

also gives the comparison of

to repair rate. It shou
- Markov cut set metho

tion and not in the calc
~ and frequency of failure.

Comparison with State Space Truncation. If the cut sets of say order 6 or

: : ez ts of Figure 9.16
higher were to be ignored, one might ask, “How is the Markov cut set Table 93 Minimal Cul S¢ e

approach superior to state space truncation when contingencies of order Cut Set Component Members
higher than 5 are ignored?” Consider a system of say n components 1.2
exposed to normal and adverse weather. If contingencies of the order G 3'4
higher than x are ignored, the number of linear equations involved is, C, ]’ 45
C e
g ,:: 2,3,5
=22 (.)

If, for example, n=50 and x=35, the total number of states or corre-
sponding equations is 2369936, which is beyond the capability of the today
computers. On the other hand using Markov cut set approach only 64
equations need be considered simultaneously, which for state space trunca-
tion, corresponds to considering only single-order contingencies.

] kov Cut Set Methods.
able 9.4 Comparison of Markov and Markou ( _
Components are assumed identical. Average failure rate =0.5 fallwegyaa;, 1
Normal weather mean duration =200 hours. Adverse weather mean duratio

Failure Frequency

AFPPROXIMATIONS AND EXTENSIONS. The Markov cut set method has been ! Failaz {per year)
shown to deal in an exact manner with the form of dependency induced by : gy b

the fluctuating environment. Even though this method may not exactly je of Each E;:clrlfe Markov Markov
apply to all forms of dependency, it could provide good approximations Weather, % Markov Cut Set Stk e

for certain limited forms of component dependence due to maintenance

" -3 75% 10 ~°
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Example. The Markov Cut-set method is illustrated by application to a
complex configuration shown in Figure 9.16. The cut sets of this system
are identified in Table 9.3. The relevant data is shown in Table 9.4, which
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ON QUALITY OF SERVICE. The method discussed can be used for both
continuity of service criteria as well as indices considering the voltage
levels. The difference lies in the calculation of minimal cut sets. The
process proceeds in essentially two steps. First a set of components is
assumed out of service due to forced outage or maintenance outage. Given
this event, the level that will cause unacceptable voltage level is then

determined using load flow. Repetition of this procedure for different sets

of component outages, then identifies the minimal cut sets in terms of
component outages and load levels. Once the minimal cut sets have been
identified, the Markov cut set method can be used.
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