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ABSTRACT
Explicitly or implicitly, any reliability analysis involves searching the system state space for states that represent the events of interest, typically failure of the system. This generally translates into a search procedure to efficiently identify states to be examined and then using a mechanism to evaluate these states as success or failure. Traditionally, reliability analysis methods are based either on an implicit or explicit enumeration process or Monte Carlo sampling. More recently, methods based on artificial intelligence have been investigated both as an alternative to Monte Carlo for the search process as well as state evaluation techniques in conjunction with the Monte Carlo methods. This paper will examine the conceptual basis of overall reliability evaluation process and explore the role of artificial intelligence methods as alternative to Monte Carlo Simulation. 
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1. INTRODUCTION
The basic steps of reliability assessment are shown in Figure 1. The first step is to define the system being analyzed and its operating policies. The models of the components and system need to be defined and specified. Component states together with system operating strategies describe system states. A possible approach would be to select each possible state in turn and evaluate it for its status as success or failure defined for a subsystem or the system. Then based on the probability of the failed states and the magnitude and location of problem, the relevant reliability indices can be computed. It can be seen from this process that the following are needed for the reliability evaluation.
1) Component and system models, data and operating strategies;

2) A state evaluation procedure;

3) Definition of failure and specification of reliability indices to be computed.

In all but very small systems, complete enumeration scheme is not feasible as the number of states increases exponentially with the components. The two categories of methods that have been developed in the past can be classified into analytical and Monte Carlo simulation (MCS). The analytical methods deal with this problem by several basic approaches such as state space reduction, state space truncation, implicit enumeration and contingency ranking [1-3]. The Monte Carlo method deals with this problem of dimensionality by sampling states using the basic concept that they occur proportional to their probabilities of occurrence [1, 4]. More recently, computational methods based on metaheuristic techniques have been developed for this purpose and show the promise of more intelligent search of state space [5, 6] than Monte Carlo. In a sense these metaheuristic techniques provide a more systematic and intelligence based truncation or pruning of state space. The intelligent methods have also been used for faster evaluation of the selected system states [13] but this topic will not be discussed in this paper.
This paper examines the conceptual basis of the overall reliability evaluation process and explores the role artificial intelligence methods as an alternative to Monte Carlo Simulation.
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Figure 1: Reliability evaluation steps

2. CONCEPTUAL CONSIDERATIONS

System reliability analysis can be considered to fall into two broad categories: analytical and computational methods where the computational methods include Monte Carlo simulation and intelligent search techniques. Basically, there are three stages inherent in any reliability method: state selection, state evaluation and index calculation. The analytical techniques and computational techniques differ mostly in the process of state selection as the number of possible states is extremely large for most practical applications. The analytical techniques use some device to circumvent the problem of straightforward enumeration such as state merging, truncation, implicit enumeration and sequential model building [1, 3]. The computational methods select system states based on their respective sampling or searching mechanisms. For instance, Monte Carlo techniques accomplish this by sampling states proportional to the probabilities of their occurrence while Intelligent Search (IS) techniques choose system states based on their fitness values in relation to the target problem. Analytical techniques represent the system by mathematical models and compute reliability indices using mathematical solutions.
The state space is graphically illustrated in Figure 2 with classification of all system states into different sets. The total state space can be broadly divided into two sets: success and failed system states. The failed states can be further classified into dominant and non-dominant failed states. Dominant failed states here mean states that have more dominant effect on the computation of reliability indices. Any system reliability model using computational methods comprises at least the following steps:
· Sampling of states: The states may be selected using an analytical approach, random and sequential sampling in Monte Carlo Simulation (MCS), or fitness-guided sampling in intelligent search (IS). The sampled state is defined by the status of all components comprising the system.

· Evaluation of states: This step is to determine whether the intended function of the system can be accomplished with the given status of components.
· Estimation of indices: Reliability indices are estimated from the repeated use of the two previous steps. The stopping criterion is based on the coefficient of variation being less than a stipulated value or other suitable consideration.
It is important to note that any selected state first needs to be evaluated before it can be classified as a failed or success state. The state evaluation may be simple in some situations but considerably more complex in others. Since every state selected needs to be evaluated, the number of states selected for the computation of the indices has a significant effect on the computational efficiency. There are two important observations from this discussion:
· The number of states sampled or selected for evaluation should have as higher percentage of failed states as possible within the computational framework of the method.

· The technique for state evaluation should be efficient.

The focus of this paper is the role of IS in the state selection. For comparison we will use the Monte Carlo simulation (MCS). For the role of artificial intelligence in the state evaluation process the reader is referred to references [13].
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Figure 2: Classification of system states in the whole state space

3. COMPARISON OF MONTE CARLO TO INTELLIGENT SEARCH

Let us first examine the MCS by considering its application to the estimation of the failure probability, Pf . The various steps are outlined below.
Step 1: Select the seed for the random number generator. Set the maximum iteration number and let the initial iteration number k = 1;

Step 2: Sample the system state randomly and perform an evaluation to classify it as failure or otherwise. 
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Step 3: Calculate Pf , variance of the estimated Pf and the coefficient of variation.
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Step 4: Check whether the coefficient of variation 
[image: image7.wmf]s

 is less than a specified threshold
[image: image8.wmf]d

.  If 
[image: image9.wmf]d

<

s

or 
[image: image10.wmf]max

K

k

>

, stop; otherwise, k=k+1, go to step 2.

It can be seen from equation (2), that in MCS both the success and failed states enter the index calculation. Therefore one can not focus on the identification of the failed states alone but a proportional number of success states need also be generated to calculate the reliability index. One should keep in mind though that both success and failure states will need to be evaluated before they can be classified as such.

In IS, sampling can be interpreted as an “optimization process”. The process of applying IS optimization operators in deriving the next generation of individuals is the sampling mechanism of IS algorithms. Here the individuals with higher fitness values have higher chances to be sampled in each iteration. The general computational flow of any population-based intelligent search (PIS) algorithms can be described as following:

• Step 1: A population of individuals is randomly created.

• Step 2: Each individual is evaluated based on the specified objective function, which is used to measure the “fitness” of each individual. Here the term “fitness” is used to generally indicate the “goodness” of each individual with respect to the specific problem, though this term is usually used in genetic algorithms.

• Step 3: Determine if any stopping criterion is satisfied. If yes, halt the PIS algorithm; otherwise, go to next step.

• Step 4: Different PIS operations are applied to each individual in order to create the next generation of individuals.

• Return to Step 2 until a stopping criterion is satisfied.

It will be noticed that in IS, only the failure states contribute to the index calculation. Thus the focus here is to generate the dominant failure states. Success states also will be created during this process but the efficiency depends on the design of the fitness function to minimize the generation of success states. In this fashion, fewer states need to be evaluated than the MCS. Therefore, unlike MCS, PIS is rather problem dependent, where system states with higher failure probabilities have higher chances to be selected and evaluated. Here in PIS the failure probability of system state is used to guide the search. In some sense, this characteristic enables PIS to potentially outperform MCS for some type of problems due to its higher algorithmic efficiency. The driving force behind each PIS renders the search more purposeful by avoiding problem-independent random sampling. Due to the difference of estimation philosophies between MCS and PIS, the deviations of estimated results in relation to the “real” values may be different between them. For instance, in MCS, the estimated values of indices may be larger or smaller than the actual values; however, in PIS, the estimated values are always somewhat smaller than the actual ones. Especially, in highly reliable systems, since failure states are scattered in the state space in an extremely sparse fashion, it is possible that, in a given sampling window, the MCS method can not sample the failure states in their “real” ratio with respect to the total number of system states. This will inevitably lead to larger estimation errors of the intended reliability indices or even cause convergence problem. It should be noted that PIS-based algorithms can have a special advantage in cases where evaluation of a sampled state is time consuming.

In PIS algorithms, each individual is regarded as a potential solution and many individuals comprise a population. For a specific PIS algorithm, individual has different names. For instance, in GA, each chromosome is an individual, which is made up of a bunch of genes. In ACS, the tour traveled by each ant (referred to as “ant” for brevity) is deemed a potential solution. In PSO, each particle flying in the search space is thought of as a candidate solution. In AIS, each antibody is seen as a potential solution. A binary coding scheme may be used to represent each individual, where each bit takes one or zero to indicate the component state. “One” and “zero” represent the working and failed status of each component. The various steps can be outlined as follows:
• Step 1: Generate a population of individuals randomly. The states of components are represented by binary numbers.

• Step 2: Evaluate each individual i based on the defined objective function, for example probability of failure. If its value is less than the specified threshold, it is assigned a very small fitness value in order to reduce its chances of participating in subsequent PIS operations. Also if the state is a success state, the fitness of corresponding individual is assigned a very small value so as to reduce its chances to contribute to next generation. 

• Step 3: Increase the iteration number by one;

• Step 4: Check if any stopping criterion is met. If yes, halt the algorithm and output the state array derived. If no, go to the next step.

• Step 5: Different PIS operators are applied for producing the next generation, and then repeat the procedure from Step 2 to Step 4 until any stopping criterion is satisfied.

• Step 6: Calculate the adequacy indices based on the achieved state array.

4. A CASE STUDY
In this section, a case study using PIS methods is reported using [6] a power system having wind turbine generators. The system used is a WTGs-augmented IEEE RTS-79. The original RTS (Reliability Test System) has 24 buses (10 generation buses and 17 load buses), 38 lines and 32 conventional generating-units [7]. The system annual peak load is 2850 MW. The total installed generating capacity is 3405 MW. In this study, one unconventional subsystem comprising of multiple identical WTGs is added to the RTS. Each WTG has an installed capacity of 1 MW, a mean up time of 190 hours and a mean down time of 10 hours. The hourly derating factors for WTG output can be found in [8]. Reliability indices are calculated for a time span of one week and the load cycle for week 51 with peak load 2850 MW, low load 1368 MW and weekly energy demand 359.3 GWh. The impact of wind power penetration is examined by incorporating installed wind power capacity of 400 MW.

For peak load of 2850 MW with wind power penetration of 400 MW, the system adequacy indices obtained using the exact method [8], MCS, and proposed PIS methods are listed in Table 1. The PIS techniques include ant colony system (ACS) [9], artificial immune system (AIS) [10], binary particle swarm optimization (BPSO) [11], and genetic algorithm (GA) [12]. 
The following reliability indices commonly used to indicate the reliability power systems are calculated:
· LOLE: Loss of Load Expectation is the expected number of hours of load loss, ie, the demand not satisfied during a specified interval.
· LOLF: Loss of Load Frequency – expected number of load loss event during a specified interval.
· EENS: Expected Energy not supplied.
The units for LOLE, EENS, and LOLF are hours/week, MWh, and occurences/week, respectively. The computation time is given in seconds. Here all the four discrete PIS optimizers are used to derive the meaningful system states. The population size for all PIS algorithms is set 300. We can see that the performance of MCS is the worst among all methods in this scenario of our problem in terms of solution quality and computational time. The solutions derived by all PIS algorithms are comparable to the exact ones. Among them, the solutions from ACS are slightly more accurate than those of others. GA is the most computationally expensive one primarily due to its time-consuming genetic operations. BPSO has the shortest convergence time because of its simpler operations.
Table-1: Reliability Indices For Unconventional Capacity 400 MW
	Method 
	LOLE      EENS      LOLF 
	Time 

	ACS 
	0.789780   98.921   0.193233 
	21.6 

	AIS 
	0.789768   98.912   0.193229 
	22.7 

	BPSO 
	0.789760   98.909   0.193221 
	15.4 

	GA 
	0.789740   98.900   0.193213 
	29.3 

	MCS 
	0.771991   96.211   0.190632 
	59.4 

	Exact method
	0.789840   99.085   0.193275 
	29.9 


To measure the efficiency of the various methods, we define a ratio to measure the convergence performance (i.e. sampling efficiency) of different PIS algorithms for the scan and classification task.
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This ratio can be used in each generation or across the whole optimization process. It varies depending on the algorithm efficiency and solution density in the search space. It should be noted that although this ratio is defined for measuring the convergence performance of PIS, it also has significance in the context of MCS which is virtually the estimate of LOLP as defined in (2), if the “meaningful states” are also interpreted as the “dominant failed states”. As compared with PIS, in MCS a smaller proportion of sampled system states are expected to be dominant failed states.

5. CONCLUDING REMARKS

Artificial intelligence techniques have drawn much attention in dealing with complex and challenging problems in power systems. Among them, reliability evaluation is a type of representative applications. In this paper, some concepts on reliability evaluation based on population-based intelligent search are presented. Also a case study is presented to demonstrate the effectiveness of the proposed methods. It appears that the intelligence based methods hold promise as an alternative for reliability studies and merit further investigation.
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