CHAPTER 6

Reliability Modelling in
Non-Markovian Systems

Introduction

Most reliability models assume that the up and down times of the components

are exponentially distributed. This assumption leads to a Markovian model with
constant interstate transition rates. The analysis in such cases is relatively simple
and the numerical results can be easily obtained. The assumption is often valid for
the up time but the down times are likely to have a non-exponential distribution.
When the components are independent, the steady state results, as is shown

later, are not affected by the shape of the distribution. In the case of dependent
failures there can be a very definite affect.

If the distributions cannot be represented by a single exponential form then
theprocess becomes non-Markovian and different techniques are required for
system solution. This chapter presents some different methods for solving
non-Markovian systems by application to specific models.

The Difficulty with Non-Markovian Processes

The essential difficulty with non-Markovian processes can be illustrated by the
analysis of the reliability model of a binary unit (See Fig. 2.8). The up and
down time durations are assumed to have the distribution Aexp{-Ax ¢ and f(y)
respectively. Denoting the state occupied at time ¢ by Z(r), the equation of state
0, i.e. the up state can be written as

P{Z(t+ A1) =0} = P{Z(t + At) = 01Z(t) = 0} P{Z(r) = 0}
+ P{Z(t+ A =01Z(1) = 1} P{Z(H) = 1} 6.1)

It can be seen that as Ar — 0+,
P{Z(t+ Af)=0{Z() =0} = 1—2AAr

The distribution of down time is, however, not exponential and therefore the
repair rate u(y) depends on the time y which the component has spent in state 1.
The coefficient of the second term on the right hand side of Equation (6.1) under
the condition that the component has been in state 1 for time y, is therefore
u(»)At. The required coefficient can be obtained by integrating this conditional
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coefficient over the distribution of the time spent in state 1 up to time #. It is
this dependence of the transfer rate on the random duration y in the state 1 that
is the essential difficulty in formulating Equation (6.1). If, however, the
transition rates were to depend on time # in an explicitly known manner, there
would not be any special difficulty. For example, if the repair rate were known
as a function of time ¢, the coefficient of the second term would be u(¢).Az. The
basic approach to avoiding this difficulty is to convert the non-Markov process
into a Markov process by redefinition of the state space.

Method of Supplementary Variables

This is probably the most direct method of dealing with non-Markovian systems
and will be illustrated by application to a bank of three single phase transformers
with one spare. The state transition diagram with unrestricted repair and
exponentially distributed down times has been presented in Fig. 4.4. The state

State 2 uix) State 1
Bankup f——» Bank up
Spare 0 Spare 1
3\ 3
(X, vix)
State 4 State 3 State 5
Bank dn " Bank dn |=———=%] Bankdn
Spare 0 ”y\) Spare 1 wlx) Spare 2
- uty)

Fig. 6.1. The state transition diagram of a bank of three single phase
transformers with one spare, unrestricted repair.

State 2 x) State 1
Bank up M—b Bank up
Spare 0 Spare 1
3N N
v(x}
State 4 State 3
Bank dn > Bank dn
Spare 0 ulx) Spare 1

Fig. 6.2. The state transition diagram of a bank of three single phase
transformers with one spare, restricted repair.



166  System Reliability Modelling and Evaluation

space diagram with arbitrary down time distributions and unrestricted repair is
shown in Fig. 6.1. The corresponding model when the repair facilities are
restricted is shown in Fig. 6.2. In this model, the repair on the second unit is
not started until the repair on the failed unit is completed and it is reinstalled.
The difference between the two state transition diagrams lies in the elimination
of state 5 and the transition rate out of state 4. When the repair is unrestricted,
both the transformers are simultaneously under repair, one for time x and the
other for time y. With the repair restricted, only one transformer is under
repair in state 4 and the other failed transformer is waiting. The repair on the
second transformer cannot start until the first one has been installed and
therefore state 5 is eliminated. The following notation has been used.

Ful), (), fe(x)

The probability density functions for the up
time, repair duration and the change out period
respectively

S, (%), S,(x), S.(x) = The survivor functions for the up time, repair
duration and the change out period respectively

For example, S,,(x) = P(U>x) = [ f,,(y)dy, U'is a random variable denoting
the up time of the transformer.

Let Y be a continuous positive random variable specifying the duration of
a particular state of the component until the termination of that state. Then the
age specific transition rate is defined as

Py<Y<y+Ayly<Y) [f(»

$0) =, lim Ay 50)

u(x) = The repair rate when the repair has been going on for
x period of time )

v(x) = The change out rate when the change out has been in
operation for time x.

and
A = The failure rate of the transformer. This is constant as the
distribution for the up time is assumed to be exponential.
Exponential Models

If the repair and change out times are also assumed to be exponentially
distributed, then the transition rates are all constant, i.e. u(x) = p and y(x) = 7.
The process is Markovian as the random variables that generate it are all
exponentially distributed.
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Unrestricted Repair
This case has already been discussed in Chapter 4.

Restricted Repair

The equations for the state transition diagram of Fig. 6.2 can be written as

3\ —wp, =0
GA+wp, —s = 0
Upa —3N\p; = 0
W3 =3\ —ups =0

Any three equations of the above set together with the relationship
4
Yoi=1
can be solved to obtain the steady state availabilities
3
u
NV
—\ [Z
u

It

py = 1/Z P2

(3x+u)3)\/
ps =|—)—/Z2 Pa
Y M

where
3\ ( M tu Q)

I

Z =1+ 1+—"+
u

u
33 3+

Ppy = = (——+—“)/Z
wle

for = 1 +22)/2
7

Non-exponential Models

I

and

Il

fon

" A. General Distributions for Repair and Change Out Periods, Restricted Repair.

. When the repair and change out period distributions are non-exponential, the
repair rate, u(x) and the change out rate y(z) are functions of the age of the
repair and change out. The stochastic process is, therefore, non-Markovian. The
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most direct method of tackling this process is by the inclusion of sufficient
supplementary variables in the specification of the state of the system to make
the process Markovian. In the case of transformer banks the supplementary
variables are the times expended in the repair or change out process. The
resulting Markov process is in continuous time and has a state space which is
multi-dimensional and partly discrete and partly continuous.

Define ; o o
pi(f) = The probability that the system is in state i at time 7.
P[The system is in state £, the current operation
. having been started in (# —x — Ax, t —x)]
pix;t) = lim

Ax >0+ Ax

The current operation is the process of repair or change out due to which
the system is in state i and as soon as this operation is terminated the system will
transit out of this state. For example in Fig. 6.2

p,(xst).Ax = The probability that the system is in state 4 at time ¢ and
the elapsed time since the repair started on the transformer
bank lies in the interval (x x+Ax)

" The forward equations of the resulting Markov process can be written by
considering the transitions during the increment Atr.

pi(t+80) = pr(O(1 340 + 8¢ [ gy (63 D)

p2(x + Aty + Af) = pyx; 1) {1 — (ux) + 30 Ar}
palx + At + Af) = {1 —y(x)At}ps(x; 1)
palx + At + Ar) = {1 —u(x)At} pa(x; 1) + 3NA1p, (x5 1)

The resulting differential equations as Az - 0+ are

3p, -

th([_) = —3?\P1(t)+f P2 (x; Hulx)dx ©2)
0

0pa (x; apa(x;

‘pgﬁ+ l)a(TxQ = — 3N+ u)} palx; ) (6:3)

9113%){:7;1) +%§;0 = —r(x)ps(x;1) (64)

M+ Welit) _ —u(x)palx; t) + 3Npa(x; £) 6.5)

ot ox
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Equations (6.2)-(6.5) can be solved under the boundary conditions

p20i) = [ pstei v ©6)

P3(051) = M)+ palxs Quix)ax ©7)
and

pa(0;2) = 0 (6.8)

The boundary Equation (6.6) results from the fact that as soon as the spare
or repaired transformer is reinstalled the system enters state 2. Similar reasoning
holds for Equation (6.7). Equation (6.8) states that it is impossible to be in
state 4 without the transformer being under repair for some time.

It is interesting to indicate at this point that Equations (6.2) — (6.8) can
also be obtained using the frequency balancing concept outlined in Chapter 3.
Following the approach given in this chapter, the equation for state 2 under the
condition that repair has been in progress for time x can be written as

i

Afpa (x; 1) Ax} = — {3\ + p(x)} po (x; H)Ax . At
Ap,y(x;8) = — {3+ u(x)} pa(x; 1) At

Now knowing that small increases in both x and ¢ are Az

sz(X;t)AH apz(x;t)m

A 30 =
Pa(x;1) of o

= — 3N+ u@)}pa (x; ) At
That is

apz(x;t)_F pa(x; 1) _

— A+ .
a1 o B+ u)pa(x; 1)

which is the same as Equation (6.3).
Since the primary interest is in the steady state availabilities, Equations

(6.2)(6.8) reduce to the equilibrium equations as £ -

Ny = jo P2()u(x)dx C(69)
020 _ 3yt )} pat) (6.10)
0x
820 -y pax) ©.11)
ox
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dpa(x) -

o — 1(x)Pa(x) + 32 (x) 6.12)
p2(0) =J: p3(x)v(x)dx (6.13)
p3(0) = 3Ap: +f: Pa()u(x)dx (6.14)
pa(0) = 0 (6.15)

In these equations

p; = The steady state probability of being in state /
and
pfx)Ax = The steady state probability of being in state / and the elapsed
time since the current operation started lies in the interval
(x, x + Ax).
It should be noted that p;(x) Ax denotes the probability of a continuous
state since x may lie anywhere in the interval (0, *°). The availability of the
system condition denoted by state i can, therefore, be obtained by

= jo pix)dx (6.16)
Equations (6.9)-(6.15) together with the normalizing equation
4
=1 (6.17)

can be solved to obtain the steady state availabilities.
Equation (6.11) on solution gives

p3(@) = p3(0) exp {f | y(w)dw} 6.18)

Since it is well known that
x

S.(x) = exp 7f y(w)dw
0

p; = L p3(x)dx = Pa(o)f: Se(x)dx = psO)y

where

— = the mean change out period

)
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Therefore

1 oo
p3 = ;{3>\p1 +L p4(>f)u(x)dx} (6.19)

Solving Equation (6.10)

pa(x) = p>(0) exp [ [ u(w))dw} (6.20)
P2 = [ p20)dx = 2(0) [ exp (- 5,00
0 0
= 1 ; -
= 50D Py 621)
where
E :f: £ e~ Max = E(e7*) (6.22)

Substituting from Equation (6.18) into (6.20)
-1
P2 = 5\(1 —E)psy (6.23)
Substituting (6.20) into (6.9)

SR CIN exp{-f: (3>\+u(W))dW}u(X)dx

P20 [ )¢ ax = yEps (624)
Equation (6.12) can be solved using the boundary condition (6.15) giving
x X
pa(x) = exp {—L u(W)dW} L 3Ap2 () exp { jy u(v)dv} dy
0

Substituting from Equation (6.20) and simplifying
Pa(x) = vp3(1 —e>™)S.(x) (6:25)

f: pa(x)dx = 7%[%—(13_)\@]

and

It

Pa 6.26)

where

I

— Mean repair time
u
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From (6.24)

p3 = 3—2‘!71 6.27)
From (6.23)

p2 = IT:\E”/PB = IE;EIH » , (6.28)

From (6.26) and (6.27)

Substituting from Equations (6.27)-(6.29) into (6.17) and simplifying

(1 1
py = 1/D where: D =1+— EJF(

E Y
_1-E _ 3 d AL 17E
P2 = "pp P37 pp MY P T pEly T A
afr 1 1-E
= pytps = o | b2 6.30
PpN P3 T Pa DE{y u B3N ] ( )
The frequency
fon = [ ps@v@adx = pa(©) [ G
0
3
= = = = 6.31
p3(0) = vp3 . (6.31)

i O3
fup = 3Np1 +p2) = DE Ion

It can be seen that the equations using a general distribution are different
from those derived assuming an exponential distribution. The availabilities- -
are now dependent upon the transform E which for the exponential
distribution of repair reduces to

T T e
= e dx =
fo K N+ u
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It is interesting to note that the steady state probabilities depend only upon
the reciprocal of the mean change out time, i.e. the average change out rate.
Therefore as long as the mean change out time stays the same, the form of its
probability density function does not affect the steady state probabilities and
frequencies (see that f7;,=p, 7). This always happens when the operation is
started and completed in the same state as for example in the present case

the reinstallation is started and completed in state 3 of the system. If, however,
the reinstallation were not always completed in state 3, then the form of the
probability density affects the steady state probabilities. This is seen in the next
section.

B. General Distribution for Change Out, Exponential Distribution for Repair,
Unrestricted Repair.
It can be seen from Fig. 6.1 that in this case the reinstallation phase initiated
in state 3 may not always be completed in state 3 but sometimes in state 5.
The concept of average change out rate thus does not apply here.

Defining

pi(x;)Ax = The probability that the system is in the state 7 at time ¢
and the elapsed time since the start of reinstallation lies
in the interval (x, x + Ax)

the differential equations can be written as

% = =30t + w2 (D) +prs(x; Dy()dx (6:32)
0
s -
%EQ = @ + WP + [ pariny G d (6.33)
Bps(x; 1) | palx; '
P05 DD kot (6.34)
o
%m = —2upa(t) + 3Npa (1) (635
and
s 0 Wwslsr) — (P53 1) + ups (1) (6.36)

ot ox

These equations can be solved using the boundary conditions

p3(0;1) = 3\py(t) + 2upa(2) - (6.37)
and
ps(0;r) = 0 (6.38)
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Equation (6.38) indicates that the reinstallation phase is never started in

state 5.
Under equilibrium conditions, i.e. as # > =, the Equations (6.32)-(6.38)
reduce to
Doy = up + | psCrGo)dy

Er s = [ 1@psrax

0,

_gic(ﬁ = — {u+y(Ex)}ps(x)
2ups = 3\

9,

pasT(X) = = y(x)ps(x) + ups(x)
p3(0) = 3Apy + 2ups

and
ps(0) = 0

On solving Equation (6.41) and substituting from Equation (6.44)

pa(x) = (\py + 2ups) exp {— [7 w+ 7(w))dw}

Therefore n
ps =[ padx = oy +2up) [ 7S e
0

1—E,
7 = (3Ap, +2up4)( " )
where
E, =f fo(x)e ™ ax
[
Substituting (6.46) and (6.40) and simplifying
G+ wp, = (3\py +2ups)E.

Solving Equations (6.43) using (6.45)
ps(x) = exp {* f : 7(W)dW} f :pa(y) exp [f: 7(v)dv}dy

Substituting from Equation (6.46) and simplifying
ps(x) = p3(0)l —e )S(x)

(6.39)

(6.40)

(6.41)
(6.42)
(6.43)
(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)
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Therefore
1 1 E

ps =J: ps@)dx = (3\p, +2up4){;“>;+j] (6.50)

Substituting from (6.42) into (6.48) and simplifying
3\E,
TaA—E)+u’t
From (6.42)
K7 INE,

Pa = sz = 2_11_ [3)\(1’_‘“Ec)+;]!71

P2 - (6.51)

(6.52)
Substituting for p4 in (6.47)
3A 3NE,
= DU —E) |1+ —— :
P3 a ( ) [ 3N —E,) +M]P1 (6.53)
Substituting for p4 in (6.50)
N u 3NE,
= E g rE) 1+ 6.54
s u(7 )[ 3M1~Ec)+u]‘”‘ ©39

Substituting into the normalizing equation

S

ZP:’=1

=1
and simplifying
_ 2yu{3N(1 —E.) + u}
B
{3N(1 —E,) + p}Qym + 6Mw) + 3NE (2yu + 6Au + 3hy)
GAY(N + i
E, Ps = %_2(1 —E)
9%y _ G A+ =y +YE)

= E
Pa B ¢ Ps B

where

I

= O
B

INYE, + 6M(3A + 1)
B

i

PpN va +pstps = 6.55)

oMy + 2y
pup = DL 6.56)

The Frequency  fow = | pa@700ds +], ps(yrtaar
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p3(0) J.: v(x) exp [_fo (u+ 7(W))dw} dx

+0500) [ (1 =) fcax

p3(0) = 3Apy +2ups = 3N(p1 +p2) = 3\pyp = fup (6.57)

Semi-Markov Processes

A semi-Markov process is a stochastic process in which the transitions from
state to state are in accordance with a Markov Chain but the time spent in a
state before a transition occurs is random.

Consider a stochastic process Z(¢) which at time ¢ can be in any of the n
distinct states, Z(¢) = i denoting that the stochastic process is in state / at time 7.
Let the time just after the mth transition be denoted by 7,,,. The stochastic
process is Markovian if

PlZ(t,,) =]iZ(ty 1)

i

LZ(tmoy) =k, ..., 2(t) = 1]
PlZ(ty) =j1Z(tm-1) =1]

I

If this probability is independent of the number of the transition, the process
is time homogeneous.

Let
oy = P[Z(ty) = JIZ(tm-1) = 1]

be the probability of going from state { to j in one step. The matrix of these
transition probabilities will be denoted by A = (c;). Given that the state i has
just been entered, the probability of going to state j is specified by c;; and
Fi'(') is the distribution function of the waiting time X; in state / given that
the next transition will be to state j. The transitions can therefore be thought
of as taking place in two stages. When the process has just entered state 7, the
next state j is selected according to the matrix 4 but once j has been picked, the
waiting time X; is specified by Fij(‘)' The Markov Chain, 4 = (al--) associated
with the semi-Niarkov process is called an embedded Markov Chain.

Discrete time and continuous time Markov chains are special cases of the
semi-Markov process. For a discrete time Markov chain

0 fortr<c
F.,([) =
u
1 fort=c
where ¢ is a constant. The discrete time Markov chain is therefore a semi-Markov
process in which the waiting time Xj; is constant. For the continuous time
Markov chain ’
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0 fort<o0

Fiy(t) =
! 1 —exp{— Nt} fort>0,7,>0

where A; is the reciprocal of the mean time of Xj;.
Let .
0(1) = aFi (1)

It should be noted that F;(¢) represents the conditional probability that a
transition will take place in time <t given that the process has just entered i
and will next enter j. Ql-]-(t) on the other hand is the probability that given that
the process has just entered i, it will transit to state j in time less than or equal
tot. Let

pi(t) = PIZ(t) =j1Z(0) =]
Then

po® = 3 [0 Pt = 002000 (6:59)

and

n t
pi@ = 1= 5 [0 =t =) a0 659)

The above equations involve convolution integrals of the form

¢

| &t =x)fe0dx

o
The Laplace of this integral is of the simple form g(s) f(s). These integral
equations can therefore be reduced to linear equations by taking Laplace trans-
forms. The Laplace transform of Equations (6.58) and (6.59) in the matrix form
can be written as

sP(s) = [I—G(s)I I — Fy(s)] (6.60)
where

P(s) is the matrix whose p;;(s) term is the Laplace of the probability p;;(f)
G(s) is the matrix whose ij* term is ay; fi(s)

F(s) is the diagonal matrix whose i7" term is equal to T fi,(s) s,

I is the identity matrix. .

The probabilities can be obtained in the Laplace form and the time specific
solutions found by inversion. More often, however, the steady state probabilities
are required and these can be obtained directly using the following relationship

m; I
pi= ——— (6.61)
\% m;Il;
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where

Tl; = The steady state probability that the embedded Markov chain is in
state i.
m; = The mean residence time in state i.

The steady state probability vector can be found by solving
1A =

along with
rmo=1
i

The application of a semi-Markov process is illustrated with an example of two
three phase transformersin parallel. When a fault develops on either of the
transformers, both the transformers are shut down. After the defective
transformer has been isolated, the good one is returned for operation. The state
transition diagram is shown in Fig. 6.3.

State 1 13 State 2

2up il 1up

2\ {x) X 2u
4 4

State 3 State 4

1up Oup

Fig. 6.3 The state transition diagram for two three phase transformers in
parallel

The up time and repair time are assumed to be exponentially distributed but
the change out time is assumed to have an arbitrary probability density
function £,(f) having a Laplace transform f;(s). The A matrix of transformation
probabilities is

0 0 1 0

M A

A= [T Atu
0 1 0 0
0 1 0 0
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The steady state probabilities of the Markov Chain are

m =z ! Ty, = (u)/(3+a)
3+ 2NMu u u
1 A 22
™S T avm s (ﬁ)/(”?)

Also U 1 ] 1
= — = — == m, = —
YT 2T Py 4T 2
where
1 .
— = mean change out time.
Y

=L _ A
14 7 P2 = Z
- N
D3 vz pPa = &
where
2
7 =148, 2,0
Y

It can be seen that the probability density function of the change out time
f.(t) enters these expressions through the mean value 1/y. The

same results would therefore be obtained if the change out time were assumed
to be exponentially distributed with the transition rate equal to the reciprocal
of the mean change out time. This is due to the fact that the change out
operation starts and ends in the same state, number 3. It should, however, be
noted that the time dependent solution would be different from that assuming
an exponential distribution.

Device of Stages

The device of stages is a method of representing a non-exponentially distributed
state by a combination of stages each of which is exponentially distributed.

The method, therefore, represents a non-Markovian model by an equivalent
Markovian model which is generally simpler to solve. Any distribution with a
rational Laplace transform can, in principle, be represented exactly by a stage
combination. Though this may involve complex probabilities associated with
the fictitious stages, the probabilities of the actual states of the system are
always real. Many distributions not necessarily having a rational Laplace
transform can also be reasonably approximated by relatively simple stage
combinations. The application of this technique involves the following steps.
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1 Selection of a Stage Combination

When the distribution has a rational Laplace transform, the stage
combination can be found by examining the roots of this transform. In other
probability distribution cases or of directly fitted data cases a suitable guess has
to be made. The probability density function and the hazard rate function of a
given distribution or data should be examined. A number of simple stage
combinations and their characteristics are described later in the chapter. The
characteristics of the given distribution or data should be compared with those
of the stage combinations, and a suitable combination should be selected. The
difference between distributions like gamma, Weibul and lognormal become
significant only in the tail regions, their hazard functions are, however, quite
distinct. Therefore both the density function and the hazard function should be
compared when selecting a proper stage combination.

2 Determination of Parameters

When a stage combination has been selected, the next step is the derivation
of its parameters from those of the distribution. This can be done by a moment
matching technique which is described in this chapter.

In addition to the constant hazard rate exhibited only by the exponential
distribution, there are four basic hazard rate shapes.

1. Increasing hazard rate (Fig. 6.4a)
2. Decreasing hazard rate (Fig. 6.4b)
3. Initial period of decreasing hazard rate followed by increasing rate (Fig. 6.4c)
4. Tnitial period of increasing hazard rate followed by decreasing rate (Fig. 6.4d).

The combinations discussed in this chapter are capable of generating these
shapes. An awareness of this characteristic can be very useful in selecting a proper
combination.

General Technique for Deriving the Characteristics of Stage Combinations

The probability density function, the survivor function and the hazard rate
function of a given stage combination can be derived in a number of ways but
a general technique, often helpful in difficult situations is described below. Let O
be the equivalent state of a given stage combination. The transitions from this
state are assumed to be terminated in an absorbing state A, as shown in Fig. 6.5.
The process is assumed to start in the same stage, into which it would first transit
when state O is entered. The time spent in state O is identical with the time from
the origin as no transition is made from 4 to O. Under these conditions

fo(x) = The probability density function of state 0, i.e., the stage
combination

I

The time specific frequency of transiting from 0 to A
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(a} (b)

hix) hix)
) > (d) x—

hix) hix)
X ——P X —p

where

Fig. 6.4 Some typical hazard rate functions.

Fig. 6.5 State Fransition diagram to determine the characteristics of a stage
combination

= ¥ () \ia (6.62)

€0

Nia = The transition rate from state 7, member of 0, to the absorbing
state 4.

So(x) = The survivor function of the stage combination
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The probability of being in state 0 at any time

1l

Y pix) (6.63)

i€o

and

po(x) = The hazard rate

= fo(x)/So(x)
= ¥ paf X pilx) (6.64)
i€0 i€o

= The equivalent transfer rate from state O to 4

The evaluation of Equations (6.62) — (6.64) involves the calculation of the
probabilities of being in various stages of state 0. This is generally a simpler
method. The main advantage is that though explicit formulae may not be
possible, numerical values of the state probabilities can be easily determined
using the techniques discussed in Chapter 3. The numerical values of the three
characteristics can then be calculated using the above equations. The method
will become more clear later when the specific equations for the stage
combinations are derived.

Stage Combinations

We will now describe some specific stage combinations which are simple but
versatile enough to approximate a variety of probability distribution functions.
The stage combinations will be shown as approximating the down time
distribution of a two state component whose up state is assumed to be
exponentially distributed. This arrangement is only for the sake of illustration,
the stage combination may be used to represent a state in any other context.

The Stages in Series

The stages are traversed in a sequential order and the non-negative continuous
random variable X, representing the component state duration is the sum of ‘@’
independent exponentially distributed random variables. The Laplace transform
of the distribution of X can then easily be proved to be

) SEEY. B— (6.65)
(o1 +5)...(pg *5)

The probability density function can be obtained by expressing Equation (6.64)
in the partial fraction form

Awpi

pits
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The probability density function, therefore, is
Z Aip; exp (—px) (6.66)

It should be noted that X 4; = 1 but 4; do not all lie in (0, 1) and therefore
{4;} is not a probability distribution. It can be easily shown that for a fixed a
any fractional coefficient of variation between 1 and 1/3/z can be produced by
a suitable choice of {p,}.

The positions of the poles of Equation (6.65) determine the transition
probabilities and the number of poles equals the number of stages.

When all the stages are identically distributed with parameter p, Expression
(6.65) reduces to

P a
(p + S) (6.67)

and the corresponding probability density function is the Special Erlangian
distribution

plpx)" ! et
@—1)! (6.68)

where « is a positive integer. The corresponding survivor function is

eor o (00
& -

The characteristics of a family of Special Erlangian Distributions with a
constant mean of one day are shown in Fig. 6.6. The exponential is a special
case of the Special Erlangian Distribution with p = 1.

A generalization of Equation (6.68) is to replace the parameter a restricted
to integer values by a parameter having any real positive value. The probability
density function of Equation (6.68) then becomes the Gamma distribution

p(px)* &b

r@ (6.69)

where the gamma function
I'(@) =f u*t e Vdu
4

The mean and standard deviation of the gamma distribution are o/p and
Vajp respectively and the fractional coefficient of variation is therefore
1/7/a. For a fixed mean u = a/p any coefficient of variation between 1 and
1/3/a may be obtained by varying a and p in the same proportion. If u is
kept constant then as &, p > oo, the coefficient of variation approaches zero,
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Fig. 6.6 Characteristics of the special Erlangian distribution.
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i.e. there is no dispersion about the mean. This corresponds to the case of
constant state duration of the component.

Many empirical distributions can be represented, at least approximately by
a suitable choice of parameters acand p. It should, however, be realized that
as ais not always an integer it may not be possible to interpret directly the
distribution in terms of stages. When ais not an integer, it is preferable to
solve for integer ‘@’ using Equation (6.68) and then the numerical answer for
«can be obtained by interpolation.

The Stages in Parallel

When the stages are in parallel, there is a probability distribution wi},
i=1,...,a such that the random variable X denoting the state durationof the
component, has the probability w; of beginning on the ith stage, the life
thereafter consisting of a single stage, i.e. only a single stage is used in any one
realization of X. The probability density function of X is given by

Y. wip; e P (6.70)
=1

The probability density function of Equation (6.70) is formally equivalent
to Equation (6.66) with the important difference that w; are all non-negative
whereas there is no such restriction on 4;. The Laplace transform of
Equation (6.70) is a rational one, i.e. the ratio of a polynomial of degree at
the most ‘@’ to a polynomial of the degree ‘@’. If in practice, only two stages

in parallel are required, the Expression (6.70) reduces to

wipy 7P+ w,p, e7P2F (6.71)

State 0

Wi 1
Y

[“state1, J--- [ stated; |-« ] Statet, |

Fig. 6.7 The state transition diagram for a component having an
exponentially distributed up time and whose down time
has a probability density function of Equation {6.70)

It can be shown that by a suitable choice of Wi s P, and the distribution of
Equation (6.71) can have any desired mean and any fractional coefficient of
variation between 1 and 0. The state transition diagram for a component whose
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up time is exponentially distributed with parameter A and whose down time has
probability density function (6.70) is shown in Fig. 6.7. The total transition rate
out of the up state, i.e. O is A but it is directed towards different parallel stages
of the down time according to the probability distribution { ‘“’i:" That this
transition diagram does represent the distribution can be seen by solving for

P, (). The differential equations are

po(t) = —Apo(®) + i;l P10 6.72)

pu(t) = —pipu(t) + wApo(®) (6.73)

Taking the Laplace transform with the initial condition po(0) = 1

Po) = 1=206)+ 3 i) (6.74)
and
$D1s) = — pP1i(s) + w;NDo(5) (6.75)

where p(s) is the Laplace of p(¢).
Substituting for p;(s) from (6.75) into (6.74) and simplifying

1 1
p = —_—= 6.76
Po) = 5 g e (676)
T st
It can be easily proved that for a component having an exponentially
distributed up time and having a down time distribution of f(z)
1
Do(8) = ————— 6.77
Po(s) SEA—N() (6.77)

where £(s) = the Laplace transform of £(z). .
Substituting the Laplace of the probability density function (6.70)

This expression is the same as Equation (6.76) derived using the state transition
diagram of Fig. 6.7. The state diagram is, therefore, an accurate representation.
A generalization of Equation (6.71) is to have two series stage combinations
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in parallel as shown in Fig. 6.8. The expression for the probability density
function is

a, -1 a,~1
) 2
(p1x) + wypy 6Pe (p2x)

(@, — ! (a2—1)!

wipy €A

(6.78)

The survivor function is

! i1 @y i-1
x X
L eP Z (p1x) + e, P2 (p2x)

i=1 (— 1! PR (RN
The mean and the variance are
Mean = w;ay/py + w2a2/02
Variance = [w,a,(1 +a;)/p] + wya,(1 + a,)/p3]

— [wiai/py + w2a2/p2]?

Fig. 6.8 The state transition diagram of a system with the down state
represented by two series stages in parallel

The Expression (6.78) is a mixture of two Special Erlangian distributions
and can approximate a wider range of distributions than the Special Erlangian.
The combination has only five independent parameters. The various
characteristics of this combination are shown in Fig. 6.9. These characteristics
cover almost all the four types mentioned earlier. The theoretical analysis of the
shape of the hazard rate function is given in Appendix I1.
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Fig. 6.9 Some characteristics of the mixture of two special

Erlangian distributions
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Series Stages in Series with a Distinctive Stage

The General Erlangian distribution (6.66) can generate a wider range of
distribution than the Special Erlangian distribution but the number of
parameters involved tends to be large. A special case combining the
advantages of both is a series of identical stages in series with a distinctive
stage as shown in Fig. 6.10. This model has three parameters:

Up

Down

State 2,

I State 1, I—pvl State 1, L ——~——p-<| State 1, l

Fig. 6.10 The state transition diagram of a system with the down state
represented by a number of series stages in series with a
distinctive stage.

the transition rate p of each stage and the number of stages a in the identical

series stages and the transition rate p,; for the distinctive stage. The probability
density function is

) = pl(__/)*_,_)a [e—plx _empx i M] (6.79)

PP i=1 (f_l)!

The survivor function is

S(x) = e7?* i —(px)iil+( s )"

=1 @—1)! PPy
a _ i-1
X [efp.x P Fz] {(P(ifll);} _‘} (6.80)
and the hazard rate function
J0).
o(x) = S@)

The mean of this distribution is a/p + 1/p,
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Fig. .11 Some characteristics of the distribution associated
with series stages in series with a distinctive stage.
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The characteristics of this distribution are illustrated in Fig. 6.11 and
the theoretical analysis of the hazard rate is given in Appendix III.

Series Stages in Series with Two Parallel Stages

This combination has a series of identical stages followed by a stage with
probability w, or by another stage with probability w ,» as shown in Fig. 6.12a.
It has five parameters and the expression for the probability density function is

= P N epr —gops & o)X}t
1 wlp‘(p*m) [ep > i—1) ]

)a [e—p;x_e—px i {,(p—p_Z)x}l;l

P
+wap -
2 ’(p— 5 -1

] (6.81)

P2

The survivor function can be expressed by

a i-1 a
se = Y P e*ﬂxml( 2 )
PP

A G-D!
P _ apx O {(P’_.‘)L)x}i?1
X [e ’ ¢’ ;1 (f”'l)! }
PN pn o & {0 —p2)x} !
+w2(/:*p2> [e Pa¥% o g=p ;1 AT])‘—_:I (6.82)

The transition rate function can be found by

(%) = f(x)/S(x)

The derivation of these expressions and the theoretical analysis of the hazard
rate function is provided in Appendix IV. Comparing Expressions (6.79) and
(6.81) this combination is equivalent to two ‘series stages in series with a
distinctive stage’ in parallel as shown in Fig. 6.12b. The various characteristics
of this combination are illustrated in Fig. 6.13.

Determination of Parameters

After a model is chosen to approximate a distribution, the next problem is to
find the model parameters to fit the distribution. There are generally no explicit
formulae for directly deriving the approximate stage model parameters from
those of the distribution. In many cases, the parameters that will best define an
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Fig. 6.12 The state transition diagram of a system with the down state
represented by:
{a) A series stage in series with two parallel stages
(b} Two “series stages in series with a distinctive stage’ in parallel

empirical distribution are not known. The moments can, however, always be
evaluated for any distribution either by exact or approximate methods. A method
of determining the parameters for approximate stage models by matching the

first » moments of the model and the distribution is presented in the following
sections. This method is quite general in application.

The paramieters of the stage model are non-linear and implicit functions of its
moments. On the contrary, the first # moments for the stage combinations
discussed in this paper can be easily calculated from the parameters. The
Newton—Raphson method of successive approximation is applied to solve for
the parameters from the given moments. This method requires for each stage
of approximation: !

1. evaluation of the moments with the given parameters
2. evaluation of the partial derivatives of the moments with respect to each

parameter
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Fig. 6.13 Some characteristics of the distribution associated
with series stages in series with two paralle! stages.
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1 Moment Evaluation for a Combination of Stages

The probability density functions of the stage models discussed have simple
rational Laplace transforms. The rth moment about zero can be obtained if the
rth derivative of the Laplace of the probability density function exists at s = 0.
The rth moment m,. of the distribution is

m, = (— 1) F2(0)
where _
p a" f(s)
") = ——=
20 = =5 o
F(s) being the Laplace transform of the probability density function. Moment
calculations for some of the stage models are given in Appendix V.

2. Newton Raphson Method for Parameter Calculation

The first » moments are matched by successive approximation starting
from the initial parameters. If a model has r parameters, x;, X5,. .., X,
to be determined by matching the first » moments, the » functions, ¢,,
&y, - - -, ¢, are defined such that

¢ = 6:1(X) = my(X)—M,
by = (X)) = ma(X)— M,

¢ = ¢(X) = m(X)—M,

where X is the column vector (x1x; - - - x,)f and m;(X) is the ¥ moment of
the stage model and M, is the 7 moment of the distribution to be
approximated. The conditions of exact match of the first » moments are

¢ =¢y =---=6¢.=0

Let Xo = (x10%20 - - - X,0)" be the vector of the parameters at a

certain stage of approximation, and let ¢ be a column vector such that

¢ = (¢10, - - - ¢,). The correction vector for parameter

AX = (Ax; Ax, - - - Ax,)Y, can be calculated from the following matrix
equation by the Gauss elimination method if ¢(X,) and ¢'(X,) are known.

$(Xo) + ¢'(Xo)AX = 0

where ¢(X,) is the vector ¢ and X = X, ¢'(X,) is the Jacobian matrix
of g at Xy, i.e.
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09, 9% 94y
GOl CONE )
99 99y 2
st - | B0 (o) —o 2 (X
%9, r %,
a0 G0 - S0

The improved parameter values are obtained by X = X, + A X. The ¢(X,)
can be calculated directly from the first » moments of the model when
X = X, (Appendix VI). ‘

The method for finding ¢'(X,) is discussed for some of the stage
models in Appendix VI.

Example system study

The technique of stages is applied to a two state unit having the up time
exponentially distributed and down time with a lognormat distribution. The
following numerical values are used

Mean Up Time = 1500hr
Mean Down Time = 20hr

The standard deviation of the down time is varied as

(i) 10hr
(i) 14.14hr
(i) 20hr

The lognormal distribution is completely specified by its mean and
standard deviation. The expression for a lognormal probability density function
of the random variable X was given in Chapter 2.

1 2 2
— ~(logx-m)“/20
x) = e
&) xoN/2m
where m and o are the standard deviation of log (X'): The rth moment of X is
m,(X) = E(XT) = emrroire (6.83)
The mean is
m+g*/2

myx = e

(6.84)

and the variance is

2 B

2 2 ‘
ok e2m+20 _elm+c (6.85)
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Solving Equations (6.84) and (6.85)

2

Ox 2
" =log||—) +1 2 2 2
mx s 5 & ] 2 5
and £ £ 3 £
H 5
_ 1 ox | 8 ¢ 8 ¢ g 8
m = logmx —zlog{{—) +1 g o< " g £ v R
mx : B |8 e lg B
g &5 < rty < 288
The parameters m and ¢ can therefore be found from the mean m and standard E 25 3 g E &% g 8¢ E %% 8
deviation ok of the log normal distribution. The hazard rate of a lognormal 8 gg 3 = 5 g:e $ = 5 °3 8
L . e . . . 2T 9 2% o 835
distribution shows initial positive ageing followed by negative ageing. §’ 88 5 §’ 32 ,E g g 3 § E
This suggests two combinations: LT N0 A
o o
(a) two series stages in parallel = o
(b) series stages in series with two parallel stages
N L o
The log normal is approximated by these two combinations using moment 2 3 3 2 3 = 2 3 o
matching technique and the parameters are listed in Table 6.1. The transition uonoUNy JOMAING LoRAUNY JOAAINS uoIIOUNY JONAING
rate functions, probability density functions and the survivor functions of the
log normal distributions together with the stage combination models are % £
shown in Fig. 6.14 < 8 %
£ £
= [S
p=4 4
Table 6.1  The parameters of stage combinations for the approximation of ¥
lognormal distributions - L)
o ) E q
The mean of the distribution m, = 20 hours, 0, = Standard deviation of the s -Z
distribution S M
© W T.O N2 0 W MmN = 0O T ONT O
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4 £ ~ 1o 5 ]
© 5 = D 2
} s E2
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- o
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S
20 3 0-02250 1221384 0-016180 0-060515 S £ ¢
=
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Ox a4 a Wy P1 P2 = By ° 2
= — =) L L=
(hours) per hour per hour s 8 g8 T2 8 38 = ] &
10 4 6 021601 0-144001 0336001 anoy sad a1ed uollIsueI | inoy Jad a1eJ uollIsuel | inoy 4ad a1e uonIsues |
14-14 2 4 0-25464 0-066666 0241201

20 2 2 0-06699 0-031698 0-118301

60
Time hours

40

20

60
Time hours

40

20

60
Time hours

40
approximate stage combination models.

20
Fig. 6.14 Characteristics of lognormal distributions and their
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Several techniques exist for finding time specific probabilities of the states
of Markovian process. The probability for the down state was evaluated up to
24 hours assuming the system was initially in the up state. The continuous time
Markov process is approximated by a discrete time process using a small time
interval and the state probabilities are obtained by muitiplication of the
transition probability matrix. The results are shown in Table 6.2. The results
compare well with the direct approximate expression derived by assuming that
the time period considered is so short that no more than one forced outage
and repair can occur in it. Denoting the up and down states by 1 and 2
respectively, and assuming p, (0) = 1

P2 (t) = p5(¢) = P(one forced outage and no repair in t)
¢ A
= f Ae ™ Sy(t —x)dx
where 0
= failure rate
d Sq = survivor function of down time
an
p%(¢) = the approximate expression for the probability of being in the

down state at time ¢

Assuming the interval (0, #) to be divided into k equal subintervals each of
length &

i) = Y, [P(forced outage in ith interval)P(no repair in interval of
=1 length (k —i)8]
k n .
= Y [ e M 5 {(k— )8}
=1
when Az < 1
e M =1—N
Therefore
3
pi) =N Y Sa{k—i)8}
i=1

A8 f Su{G—1)8}

k-1
=25 Y, Sq{is}
i=0

It may be necessary to find the state probability values at the end of each
equal time interval, i.e. in a 24 hr period, calculate p3(z) at the end of each
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hour. The probability at the end of the nth interval is given by

nm-1
pa(md) = p§{(n—ymd}+ N8 X S4()
i=(n-1)m
where m is the number of subintervals in each time interval and § is the length
of each subinterval, the length of each interval therefore being m8. The closed
form expression for the survivor function of the lognormal distribution does not
exist and Simpson’s Rule can be applied to calculate this by integrating the
probability density function. The following equation can be used to calculate
S4(i6) succesively

1-1 i
S4(8) = S{(i*l)é}*glf ,-;o [f[(i~1)5 +’l£]
. o 18 . N
+4f{(z—1)5+(]+5)7}+f[(1—1)5 +(]+1)l—]]

where / is the number of divisions in each subinterval for calculation of the
survivor function by Simpson’s Rule. This method was developed for computer
application without requiring excessive storage. Down state probabilities are
evaluated up to 24 hours with a one hour interval. They are listed in Table 6.2
together with those obtained by the device of stages. It can be seen that the
results of the two approximate methods are quite close to each other.

Application to The Transformer Bank Problem

Reliability Modelling for Three Single Phase Transformers With One Spare,
General distributions for Repair and Change Out, Restricted Repair, Using
Stages in Parallel.

The expressions for this model assuming general distributions have already
been developed. However, to illustrate the modelling approach when the
stages are in parallel, the state transition diagram is developed in Fig. 6.15.
Since the change out operation is restricted to a single stage, from the point of
view of steady state analysis, the change out rate can be simply represented by
an average value .

The probability density function for the repair time is

Wiy e+ wypu, e7HF with mean = wi/ur + wa /ity (6.86)

The state transition diagram in Fig. 6.15 can be clarified by referring to the
discussion related to Fig. 6.7. The first letter of the state numbers represents



201

E
1 <
o = >
g = hot g 9 cm 3 \im/ 5 5
S 8 g = S 32888325
5 g + . 3290 g&L
~ S8 ) g Lo g >
2 § = 3 ® S 33T EXE
5 E g 2 ISl
= ST N ~ oo S ESR
3 B S S H 58 R
N ° E Ii 5 S cETE<EST
1) @ s O = ST S 5400w
= H Ec Gt N B 2 NEZTEE o2
1 = h=) £ w@ [N 3 . O =
3 | o', < < 1) E @ S o~ a s
= | & 52 § EF%gSgb
& - g8 hiio] Mﬂ ) S 35 28D 2 =
s _ 3¢ 273 g . BESSEZEE
= H Z 2 o & + b Y=g g5 8E8¢8
& | iz g g T 3ls SSCESSEE 28
] c 4 — foegpy P el =]
¥ BRI 3% + sl — $SessTE2tE
= — ! &g o & | = i e o S @885 §E
3 " ge =4 == s < FEPs5BT S8
3 5 [« f3 g o | of SSEEEESEES
L1 58 g S + < < 35 sicsgsca g8 s
D ' 2 = I =] - = z e 00 g = Q
5 P\ - — mma o3 2 — < Q Wlmonsnegec
= S Eog o T 5h - < S S Ewog w3
= ~ sk S Il S + © X PE I w SIS =
= — ) ZEL o - a RN gSZEcsesgda g
S | c33 a1 b5 N g = _Z 2 mep,m.nlamacachMm
& R sS4 = & = S+ 3 S HEBERET R
Zoo Bal s 5 ® 3= 0 |+ S TE 285z .
555 g5 I~ = len 3 28535 8E22 8¢
5 G aVv I L 2 + N % M ey o =] 2 g 1m M
2ef 58 g o B Q ~ =25T°2g L2282 5
5 &= 2B @ | I U - N2 s EEBQE
%02 @w ¢ 8 ] ~ 2 3 v RESF 2SS TG
LT s 29 5 Iy + —= 222552258 2
£T8 WTm S M WLM\A a 27WE h.ﬂmme mwe:wt,
0 mﬂ.d ot - I S &IN NEEEEgE°8 8
2 S 2 2 = :
b e€E § I I I I 38 82,828%2
@ g 5z = - @ S8 2w a0l
= mE8 5 B E a AI =B ERESE
oo 2 @ 2 yPEo02 g8l
PR o 3 o sEFEs8 35 @% 3
L - ST gszEess
s % 5 b E = R IS 8 &3
0T X 856'6 ¢ 0O X 8L96 ¢ 0 X 1886 .01 XS80'T 01 XLLOT 01 XS80T 0T XLILT 01X ST T 0T XPLT'T 4
0T X 8LL6 ¢ 0T X986 01 X096 -0T XL90:T 0T X8SO-T 01 XL90T 0T X6¥TT 01X 911 -0T XSST'1 €T
c.0T X 9856 ¢ 0T X 9876 ¢ 01 X 85%6 0T X8¥0T 0T X 8€0-T .01 X L¥0-1 0T X 6TT-T .01 X 9TIT 01 X pETT (44
e-01 X whm.m e-0T X TLO6 ¢-0T X €576 201 X 9TO'T 0T X L10'T 0T X STOT 01 X90T'T 0T X¥0T'T 0 X TTT-T 1T
0T X SST-6 ¢ 0T X S¥8'8 0T X +80'6 -0 X 8001 .01 X €66'6 -01 X 100'T .01 X 0801 .. 0L X 8LO'T .-0T X S80°1 0T
¢-0T X 976'8 ¢.0T X $09'8 ¢-0T X 0088 ¢.0T X 9LL6 ¢.01 X ¥L96 ¢-01 X 9pL'6 0T XTSO'T 201 X0S0-T --0F X 90T 61
e 0T X LS9'8 .07 X 81€8 ¢ 0T X ISS'8 ¢ 0T X 866 ¢ 01 X86€6 -0 X P96 0T XTCOT 0T X610°T 01X S0 1 8T
e-0T X 08€'8 ¢ 0T X LLO'8 ¢-01 X 8T8 ¢ 0L X €616 ¢ 0T X 6606 ¢-0I X091:6 ¢ 01 X €986 01 X786 01X 1066 L1
c.0T X 880'8 ¢ 0T X 68LL 01 X 0008 ¢ 0T XT988 ¢ 0T X 9LL'S ¢ O X0€88 ¢ 0T X886 07X LLY6 01 XTTS6 91
e 0T X S9LL ¢ 0T XE8PL 0T X969L ¢ 0T XE0S8 ¢ 0T XLTH8 Ol XELY'8 01 X0L06 O X 8906 01 X 6016 S1
0T X $TL .01 X 65T-L ¢ 0T X OLEL ¢ O X PIT'8 ¢ 0l X 0508 ¢ 0T XT60:8 ¢ 0T X1208 ¢ 0T X 9798 ¢-0T X 1898 v1
e 0T X 6S0°L ¢ 0T X ST89. ¢ 0T XTTOL ¢ 0T X¥69L ¢ 0T X ¥p9L 01 X 089L ¢ 0T X LET'Y ¢ OT X EVI-8 01 X 8L1-8 €1
0T X 6999 ¢ 01 X 6¥9 ¢-0T X 6¥9'9 ¢ O X €EVT-L ¢ 0T X 80TL ¢-OT X 88CTL ¢-0T X0T9L ¢ 0T X8T9L 0T X000L 71
0T X #ST9 ¢.0T X 190°9 ¢-0T X 0ST9 ¢ 0T X 19L:9 ¢ 0T X 0L'9 ¢ OT X S9L'9 O XTLOL - OT X180-L e-0T X 0TT-L 11
0T X TI8S ¢ 01 X 059§ ¢ 0T X €285 0T X 6479 0T X 0bT-9 -0l X 89T-9 ¢ 0T X 9649 ¢ 01 X S659 ¢-01 X 0969 01
0T X THE'S ¢-0T X TTT'S 0T X LIES  ¢-0T X 80L'S ¢ 0T X 60L'S ¢ 01 X STL'S .01 X 6685 ¢ 0T X €86'S .01 X 8T6S 6
0T X O¥8'b  ¢:01 X 8bL¥ ¢ 0T X 088:% ¢ 0T X 6€T°S ¢ 0T X LPTS -0l X 091-S ¢ 0l X 8LT-S 01 X 08-S ¢-01 X 008S 8
0T X TTEY ¢ 0T X SSTH 01 X TIEY ¢ 01 X S¥S¥ ¢ O X LSSP & 01 X LISt 01X 9E9Y ¢ 01 XO0p9b 01X 0S9v L
60T X 0LLE ¢ 0T XTELE 01 X TI8€ 01 X0£6€ ¢ 01 X €6€ .01 X 0S6:€ -0 X 986€ .0 X8B6E .01 X 000-€ 9
0T X T6T-€ 60T X 8LT€ ¢.0T X 08T-€  ¢-0T X L6T€ ¢ 0T X 80€€ ¢ 0T XTICE 0T X 8TEE 0T X 8EEE ¢-0T X 008:€ S
¢0T X 0687 0T X T65T ¢-01X079T ¢ 0T XT159C 0L X 859T .01 X000T 0T X999T 01 X989-C ¢-0T X 800-C 14
¢-0T X996 T ¢ 0T X ¥L6] ¢-0T X S86T ¢ 0T XS66T ¢ 01 X8661 Ui X000T 0T X000T. 01 X000T ¢-0T X 000-C €
0T X €TET 0T X 0EE-T ¢ OT X TEET ¢ OT XTEET ¢-OF X $EET ¢ O X €EET 0T XPEET ¢ 01 X $EET 0L X gee 1 T
o0 X $$9:9 ,_0T X 0899 , 0T X 9999 0T X0L99 0T X #L99 , 0T X£999 01 X L9999 0T X L1999 + 0T X 1999 1
©) Q) ® ) (@ (2) ) (@) (®) (swnoxy)
$4M0Y (7 = UoLDIAsP "PIS $4n0Y pop] = UOLIDIASD "PIS sinoy (1 = uoymasp ‘p1§  ouilf

200

SINOY OS] = dwi, d[) UBSJY 9YJ, 'SINOY (7 = OWILL, UMO( UBSJY SYL, * [o[fesed ut sefels salias
om3, syewrxordde oy (0) sode)s [oyrered 0M) UIIm SOLIAS UT sage)s SILIas, syewnrxoxdde oy (q) uoissaidxs ajewrxordde ayf, (¥)

Suisn Aq pajonops 23p3s umop ayj Jo saiiquqosd oyf10ads awill  T'9 °Iqel,



202 System Reliability Modelling and Evaluation

Fig. 6.16 The state transition diagram for three single phase transformers
with a single spare assuming unrestricted repair and a general
Erlangian distribution for the repair and reinstallation period.

The repair and the change out rates associated with each stage are assumed as
p and B respectively such that p = a.u and 8= a.y. The first letter of the state
number in Fig. 6.16 indicates the system state as shown in Fig. 6.1 and the
remaining letters denote the stages of the operations being carried out. For
example, 22 means that the system is in state 2 (the transformer bank is up and
no spare) and the repair is in the second stage. Similarly, 412 indicates state 4
(transformer bank failed and no spare) and the repair on one of the
transformers is in the first stage and the other transformer in the second stage.
As another example, 323 denotes state 3 (transformer bank down and one
spare) and the repair is in the second stage whereas the change out operation is
in stage 3. The relationship between the state and stage availabilities is

a a a
Py =P1, P2 =) Pa Ps = Z Z P3ij
i=1 i=1 j=1

]

EN

|
e

a a
Z Daijs Ps = z Dsi
i=1 i=1
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The steady state equations for Fig. 6.16 can be written in the form
AP =B (6.87)
where

A column vector with all zeros

P = the vector of steady state probabilities
and

A = the transpose of the transition rate matrix

Any (2 — 1) equations out of ¢ in (6.87) can be solved with the normalizing
equation

to give the steady state probabilities.

Numerical Results

These studies were conducted to determine the effect of the distribution form
on the steady state probabilities. The exponential distribution was assumed for
the up time and the repair and change out periods were assumed to have the
Special Erlangian distribution of Equation (6.68) with the same shape
parameter ‘@’.

Restricted Repair .

The failure rate was taken as 0-008 failures per year and the effect of
variation of ‘2’ on the probability of being in the down state was determined
under different values for the mean repair and change out times using Equation
(6.30). The results are shown in Tables 6.3 and 6.4. It should be noted that
the mean values are held constant so that the difference in values is entirely due
to the change in the shape of the distribution. The values with & = 1.correspond
to the exponential distribution and the limiting values (LV) refer to the
constant repair and reinstallation times i.e. when @ —>  with the mean values
kept constant. v

Table 6.3 shows the actual values of the steady state unavailability and Table
6.4 shows the percentage variation from the exponential when the value of ‘a’
is increased. It can be seen that the value of ‘4’ has a considerable effect on the
unavailability of the transformer bank. The variation from the exponential
depends both upon the mean repair time (MRT) and the mean change out time
(MIT). For a given mean change out time, the greater the mean repair time the
more pronounced is the variation from the exponential and for a given mean
repair time, the greater the mean change out time the less pronounced the
variation.
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Table 6.3  The effect of a on the unavailability of the transformer bank

a M.R.T. =182.5 Days M.R.T. =20 Days
MIT. =05 MIT. =35 MIT =05 MIT. =35
(Days) (Days) (Days) (Days)
1 0-175139 X 107 0-372291 X 10 0-346026 X 10™* 0231810 X 1073
2 0-140000 x 1072 0-337166 x 10~® 0341714 x 10 0231379 X 1072
3 0-128224 X 10 0-325395X 102 0-340276 X 10™* . 0231236 X 10~2
4 0-122325 x 1072 0-319498 X 1072 0-339557 x-107* 0231164 X 1072
5 0-118781 X 107 0-315956 X 107 0339126 X 10™*  0-231121 x 1073
LV  0-104546 X 107  0-301726 X 10 0-337212X 10  0-230929 X 107

" Table 64 The percent variation from the values of exponential

a MR.T. = 182-5 Days M.R.T. =20 Days
MIT. =05 MIT. =35 MIT. =05 MIT. =35
(Days) (Days) (Days) (Days)

1 0-00 0-00 0-00 0-00

2 20:06 943 125 018

3 2679 12:60 1-66 025

4 3016 14-18 1-87 0-28

5 32-18 15-13 199 0-30

v 4031 1895 2-55 0-38

Unrestricted Repair

A similar study was conducted for unrestricted repair using the computer
program which generates the transition rate matrix for different values of ‘@’
and evaluates the various steady state probabilities. The variation of the
unavailability with the increase in ‘@’ is shown in Table 6.5A and similar
variations in the states constituting the failure state, i.e. P3P, and pgare
shown in Tables 6.5B — D. The probability density functions for both repair
and change out are assumed to be Special Erlangian.

The exponential distribution, as in the case of restricted repair, does
overestimate the unavailability but the variation is insignificant. The individual
components of the failure state show an interesting behaviour; p, shows an
increase with increasing ‘e’ whereas p, decreases. The only component which
shows a large variation is p 5 however, its magnitude is relatively quite small.
The large variation in the value of p ¢ is explained by the fact that an increase
in ‘@’ is accompanied by a rapid decrease of dispersion of the repair and change
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out times which results in a lower probability of being repaired while the change
out is in progress. The overall variation in the unavailability is, however, quite
small.

Two Three Phase Transformers in Parallel, Special Erlangian Distribution for
Repair and Change Qut Periods .

The combination of stages to approximate the probability density function
depends upon the available information. However, a model has been developed

Table 6.5  The variation in the probability of the failure state and its
constituent states

a MR.T. =182-5 Days M.R.T. =20 Days
MIT. =05 MIT. =35 MIT. =035 MIT. =35
(Days) (Days) (Days) (Days)
A. Variation in Unavailability
1 0-103818 x 1073 0-299854 x 1072 0-337181 x 10™ 0-230819 x 103
2 0-103769 X 1072 0-299513 x 1072 0-337126 X 107 0-230780 X 1072
3 0-103745 x 107 0299344 x 1072 0-337099 x 10°* 0-230760 X 102
4 0-103731 X 1072 0-299237 x 1072 0-337081 x 107* 0230748 X 1072
5 0-103720 x 1073 0299164 x 1072 0-337068 X 107 0-230739 X 1072
B. Variation in p,
1 0-327835 x 107 0-225739 x 1073 0-320738 x 107 0-195816 X 1073
2 0-328720 X 107* 0-229870 X 1072 0-328363 x 107* 0220615 X 1072
3 0-328726 X 10™* 0-230027 X 1067 0-328726 x 107* 0226905 x 102
4 0-328726 x 107 0-230037 X 107 0-328748 x 107* 0-228900 x 1072
5 0-328726 X 107 0230039 x 10°° 0-328749 x 107* 0229609 x 1072
C. Variation in p,
1 0-709445 X 107 0-697866 X 107* 0-842477 x 107° 0-734782 X 107¢
2 0-708962 X 107 0-694447 X 107* 0-836972 X 107¢ 0-695249 X 107°
3 0-708722 x 107* 0692747 x 107 0-834234 x 10°° 0-674866-x 10°¢
4 0-708574 X 107 0691686 x 107 0-832526 x 107 0662111 X 107¢
5 0-708467 X 107* 0-690945 x 10™* 0-831331 x 107¢ 0653233 X 107¢
D. Variation in p,
1 0-898177 X 1077 0-432924 X 107° 0-801844 x 10°¢ 0-342618 x 107
2 0-128310 X 10°® 0-197985 x 10°¢ 0-393765 X 1077 0-846884 X 10°*
3 0-713079 X 10~° 0415356 X 1077 0301219 x 10°® 0-318000 x 10~°
4 0665219 X 107° 0-323045 x 1077 0-808461 X 10~° 0-118599 X 10°*
S 0638378 X 10™° 0-305947 X 1077 0-636642 X 10~ 0-477498 x 10-°

in Fig. 6.17, assuming the Special Erlangian distribution for repair and change
out because by suitably varying the parameter ‘@’ the behaviour of a large number
of probability density functions less dispersed than the exponential can be
approximated. The same symbols and notation as in Fig. 6:16 has been used.

The transition diagram shown is for three stages. A computer program can be
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easily written to generate the transition rate matrix for any value of ‘’. The
numerical values for time dependent or steady state probabilities can then be
obtained.

pas

Fig. 6.17 The state transition diagram for two-three phase half capacity
transformers in parallel assuming the special Erlangian
distribution for repair and change out times.

The Special Case of Independent Components

If a system is composed of independent binary components, the associated
stochastic process is a superposition of independent alternating renewal
processes. It was proved in Chapter 3 for an equilibrium alternating renewal
process that irrespective of the probability density function of the up and down
time durations, the frequency of encountering the up and down states is given by

1

fu:fd:m

It is also known that for an equilibrium alternating renewal process, the
probabilities of being in the up and down state respectively are given by

Tu
Pu =
T,+T,
and " ¢
Tq
Pa =7 3T,

The transition rates from up to down, A, and down to up, u, are therefore,
given by

1 1
A :fd/Pu:_T—u and  p =fu/Pd=T—
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It is therefore clear that under steady state conditions, the interstate transition
rates of an alternating renewal process can be represented by the reciprocals of
the respective mean state durations. Since the different alternating renewal
processes are independent, the steady state probabilities and frequencies. will be
uneffected by the forms of the probability density functions of the state
durations provided the transition rates are represented by the mean component
state durations.

Reliability Modelling Using Complex Transition Rates

It has been noted that when complex transition rates are allowed, any
distribution having a rational Laplace transform can, in principle, be treated
using the state device. The use of complex transition rates is illustrated for a
component whose up time is exponentially distributed with rate parameter
N and down time has the density function

@ +0%)
J )

f(x) D e~ (1 — Cos br) (6.88)

The Laplace transform is

a a*+ b?
a+s(a+s)*+bp?

O]

a a+ib a—ib

a+s(a+1b)+s(a—zb)+s

This expression is the product of the Laplace of three functions as shown below

Laplace function
j_ a e—at
a+ts
P @iy

Equation (6.88), therefore, is the probability density function of the random
variable which is the sum of three random variables having exponential
distributions. The state transition diagram of this component is, therefore, as
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Substituting (6.95) into (6.89)
(s +Npo(s) = 1+ (@—ib)ps(s)
(a —ib)(a + ibyan

= 1+
(s+a—ib)s+a+ib)(s+ i
@ +b¥an
+A) - =1
CFN T TG a1 58 PO
T time istriuion and 2 down e dstbution guen by Therefore
Equation (6.88) (s +a)(s+ a)’* +b*)
Po(s) = s{[(s +a)* + b*][s +a + \] +aNs + 22)}
2 2
shown in Fig. 6.18. The state differential equations can be written as below pi(s) = (G +a7 +);(2(]s [_Hi) -:_b)\]) FanGs + 2a))
s{l(s+a s+a an(s + 24
po(t) = —Npo(?) + (a —ib)p3(2) © = aNs +a—ib)
i) = —ap () + \po(®) P s{l(s +@)* +b*][s +a + A +aAs + 2a)}
Ph(0) = — (@ + D)p2 (1) + ap1 (1) i) = aNa + ib)
. ] ) 2 4+ p[s+a+ A] +ar(s +

PA() = — @~ bYps(t) + @+ ib)p (1) il + o + Bs+at Al o+ 20)
) ‘ PoN(s) = Pils) + pa(s) + pals)

Assuming po(0) = 1, the Laplace transforms of the above equations are NG @ + b*) +aN(s +a— ib) + a\(a + ib)
po(s) =1 = —Apo(s) + (@ —ib)ps(s) (6.89) s
P16 = —aps () + Apo(s) (6.90) o Me*ap b +aNst20)

‘ ) s{[(s + @)* + p?][s +a + A] +aN(s + 2a)}

5p2(s) = —(a+ib)py(s) +ap,(s) - (691)
3(5) = — @ iYps(s) + (@ + DY (s) (6.92) It can be seen that p,(s) and ps(s) when inverted will yield complex probabilities

but ppn(¢) will be real.

From Equations (6.90)-(6.92) Steady State

A
= —— t) = § S
P1($) = = po(s) (6.93) Pon(0) = sPoN(s)
__a @b+ 222
Pa) = T @+ )@+ + 245
Aa? + b% + 247
- BT T NG+ b7+ 260 Fa@ + 5)
(s +a)s +a+ib) ’
A
a+ib ax TS
S =
P = )6 r s ratin)”® ' (6.95) b2 1 342
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X

= _—_7\+u
a(a® + b?)
where 4 = —b(z-l—ﬁ

1
It can be proved that u = —
Ty

where T = The mean down time.
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