ECEN474: (Analog) VLSI Circuit Design Fall 2011

Lecture 1: Introduction

Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University

Analog Circuit Sequence

Why is Analog Important?

- Naturally occurring signals are analog
- Analog circuits are required to amplify and condition the signal for further processing
- Performance of analog circuits often determine whether the chip works or not
- Examples
 - Sensors and actuators (imagers, MEMS)
 - RF transceivers
 - Microprocessor circuits (PLL, high-speed I/O, thermal sensor)

Integrated Circuits

[Bohr ISSCC 2009]

- 4-core Microprocessor (45nm CMOS)
 - Mostly Digital
 - Noteable analog blocks
 - PLL, I/O circuits, thermal sensor

[Sowlati ISSCC 2009]

- Cellular Transceiver (0.13µm CMOS)
 - Considerable analog & digital
- Instrumentation Amplifier (0.5µm CMOS)
 - Mostly Analog
 - Some Digital Control Logic

[Pertijs ISSCC 2009]

The Power of CMOS Scaling

- Scaling transistor dimensions allows for improved performance, reduced power, and reduced cost/transistor
- Assuming you can afford to build the fab
 - 32nm CMOS fab ~3-4 BILLION dollars

Course Topics

- CMOS technology
 - Active and passive devices
 - Layout techniques
- MOS circuit building blocks
 - Single-stage amplifiers, current mirrors, differential pairs
- Amplifiers and advanced circuit techiques

Course Goals

- Learn analog CMOS design approaches
 - Specification ⇒ Circuit Topology ⇒ Circuit Simulation ⇒ Layout ⇒ Fabrication
- Understand CMOS technology from a design perspective
 - Device modeling and layout techniques
- Use circuit building blocks to construct moderately complex analog circuits
 - Multi-stage amplifiers, filters, simple data converters, ...

Administrative

- Instructor:
 - Sebastian Hoyos
 - 315D WERC Bldg., 862-4253, hoyos@ece.tamu.edu
 - Office hours: MW 10:30am-12pm
- Lectures: MWF 9:10am-10am, ZACH 223B
- Class web page
 - http://www.ece.tamu.edu/~hoyos/ecen474.html

Class Material

- Textbook: *Design of Analog CMOS Integrated Circuits*, B. Razavi, McGraw-Hill, 2001
- References
 - Analysis and Design of Analog Integrated Circuits, P. Gray, R. Meyer, P. Hurst, and S. Lewis, John Wiley & Sons, 4th Edition, 2003.
 - Technical Papers
- Class notes
 - Posted on the web and will hand out hard copies in class

Grading

- Exams (60%)
 - Three midterm exams (20% each)
- Homework (10%)
 - Collaboration is allowed, but independent simulations and write-ups
 - Need to setup CADENCE simulation environment
 - Due at beginning of class
 - No late homework will be graded
- Laboratory (20%)
- Final Project (10%)
 - Groups of 1-2 students
 - Report and PowerPoint presentation required

Preliminary Schedule

Торіс	Week
I. Introduction and MOS models	- Week 1-4
II. CMOS Technologies and Layouts	
Review Session	Sep. 28
1 st Exam	Sep. 30
III. Current Mirrors and Differential Pairs	Week 5-9
IV. Voltage References and Differential Pairs	
V. OTA Design (Part 1)	
Review Session	Nov. 2
2 nd Exam	Nov. 4
VI. OTA Design (Part 2)	Week 10-14
VII. Miller OpAmp Design	
VIII. Advanced Topics	
Review Session	Nov. 30
3 rd Exam	Dec. 2
Project Report Due	Dec. 7
Project Presentation	Dec. 12

Dates may change with reasonable notice

Reading

Razavi's CMOS Book Chapter 1 and 2

CMOS Technology Overview

- MOS Transistors
- Interconnect
- Diodes
- Resistors
- Capacitors
- Inductors
- Bipolar Transistors

CMOS Technology

NMOS Transistor

PMOS Transistor

16

Today's CMOS Transistors

SiO₂ dielectric Polysilicon gate electrode Hafnium-based dielectric Metal gate electrode

SiGe

- Today's transistors have advanced device structures
- Most advanced transistors are moving from poly-gates back to metal-gates
 - Allows for High-K gate dielectric and reduced gate leakage current

[Bohr ISSCC 2009]

Interconnect (Wires)

Loose pitch + thick metal on upper layers

- High speed global wires
- · Low resistance power grid

Tight pitch on lower layers

 Maximum density for local interconnects

[Bohr ISSCC 2009]

Diodes

Typical values:

P+=1017-1019 acceptors /cm3

P=10¹⁵-10¹⁷ acceptors /cm³

N=10¹⁶-10¹⁸ donors/cm³

N⁺=10¹⁷-10¹⁹ donors/cm³

Metal \rightarrow 5x10²² electrons/cm³

Resistors

 Different resistor types have varying levels of accuracy and temperature and voltage sensitivities

Capacitors

Inductors

- Inductors are generally too big for widespread use in analog IC design
 - Can fit thousands of transistors in a typical inductor area (100μm x 100μm)
- Useful to extend amplifier bandwidth at zero power cost (but significant area cost)

Bipolar Transistors – Vertical PNP

Useful in a precise voltage reference circuit commonly implemented in ICs (Bandgap Reference)

Bipolar Transistors – Latchup

- Potential for parasitic BJTs (Vertical PNP and Lateral NPN) to form a positive feedback loop circuit
- If circuit is triggered, due to current injected into substrate, then a large current can be drawn through the circuit and cause damage
- Important to minimize substrate and well resistance with many contacts/guard rings

Next Time

- MOS Transistor Modeling
 - DC I-V Equations
 - Small-Signal Model