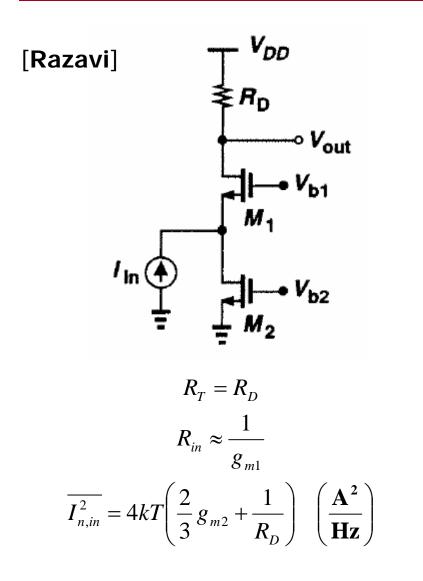
ECEN474: (Analog) VLSI Circuit Design Fall 2011

Lecture 27: Feedback TIAs

Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University

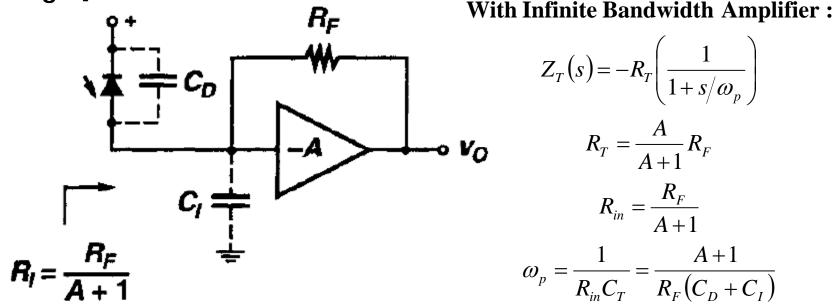
Common-Gate TIA



- Input resistance (input bandwidth) and transimpedance are decoupled
- Both the bias current source and RD contribute to the input noise current
- RD can be increased to reduce noise, but voltage headroom can limit this
- Common-gate TIAs are generally not for low-noise applications
- However, they are relatively simple to design with high stability

Feedback TIA w/ Ideal Amplifier

[Sackinger]



- Input bandwidth is extended by the factor A+1
- Transimpedance is approximately R_F
- Can make R_F large without worrying about voltage headroom considerations

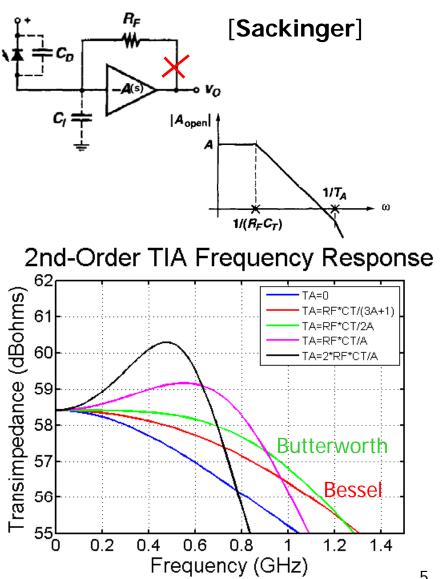
Feedback TIA w/ Finite Amplifier Bandwidth

With Finite Bandwidth Amplifier :

 $A(s) = \frac{A}{1 + \frac{s}{1 + \frac{s}{1 + sT_A}}} = \frac{A}{1 + sT_A}$ [Sackinger] R_F $Z_T(s) = -R_T\left(\frac{1}{1+s/(\omega_O)+s^2/\omega^2}\right)$ C_D $R_T = \frac{A}{A+1}R_F$ V_O -**A**(s) $\omega_o = \sqrt{\frac{A+1}{R_E C_T T_L}}$ $Q = \frac{\sqrt{(A+1)R_F C_T T_A}}{R_F C_T + T_A}$ $R_{in} = \frac{R_F}{A+1}$

Feedback TIA w/ Finite Amplifier Bandwidth

- Non-zero amplifier time constant can actually increase TIA bandwidth!!
- However, can result in peaking in frequency domain and overshoot/ringing in time domain
- Often either a Butterworth (Q=1/sqrt(2)) or Bessel response (Q=1/sqrt(3)) is used
 - Butterworth gives maximally flat frequency response
 - Bessel gives maximally flat groupdelay



Feedback TIA Transimpedance Limit

If we assume a Butterworth response for mazimally flat frequency response :

$$Q = \frac{1}{\sqrt{2}} \qquad \qquad \omega_A = \frac{1}{T_A} = \frac{2A}{R_F C_T}$$

For a Butterworth response :

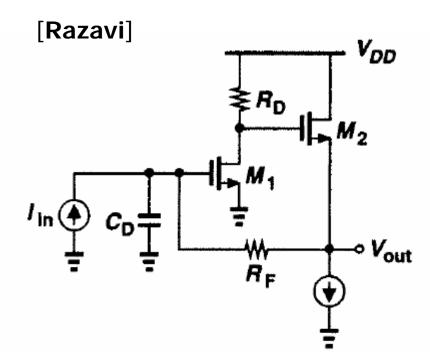
$$\omega_{3dB} = \omega_0 = \sqrt{\frac{(A+1)\omega_A}{R_F C_T}} = \frac{\sqrt{(A+1)2A}}{R_F C_T} \approx \sqrt{2} \text{ times larger than } T_A = 0 \text{ case of } \frac{A+1}{R_F C_T}$$

Plugging $R_T = \frac{A}{A+1}R_F$ into above expression yields the maximum possible R_T for a given bandwidth

$$\sqrt{\frac{(A+1)\omega_A}{\left(\frac{A+1}{A}\right)R_TC_T}} \ge \omega_{3dB}$$
Maximum $R_T \le \frac{A\omega_A}{C_T\omega_{3dB}^2}$

- Maximum R_T proportional to amp gain-bandwidth product
- If amp GBW is limited by technology f_T, then in order to increase bandwidth, R_T must decrease quadratically!

Feedback TIA



Assuming that the source follower has an ideal gain of 1

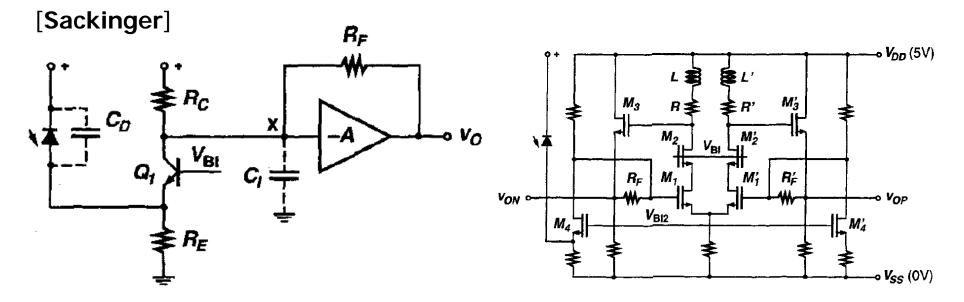
$$A = g_{m1}R_{D}$$

$$R_{T} = \frac{g_{m1}R_{D}}{1 + g_{m1}R_{D}}R_{F}$$

$$R_{in} = \frac{R_{F}}{1 + g_{m1}R_{D}}$$

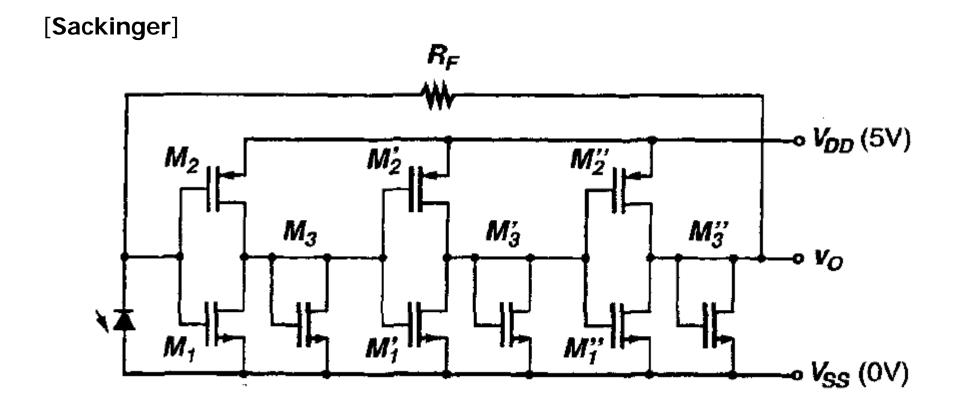
$$R_{out} = \frac{1}{g_{m2}(1 + g_{m1}R_{D})}$$

Common-Gate & Feedback TIA



- Common-gate input stage isolates CD from input amplifier capacitance, allowing for a stable response with a variety of different photodetectors
- Transimpedance is still approximately R_FA/(1+A)

CMOS Inverter-Based Feedback TIA



Next Time

- Bandgap References
- Distortion