ECEN474: (Analog) VLSI Circuit Design Fall 2011

Lecture 5: MOS Transistor Modeling

Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University

Announcements

- Lab 1 this week
- Reading for next time
 - Razavi's CMOS book chapter 16

Agenda

- Threshold voltage dependencies on W,L
- Temperature dependencies
- Process corners
- Technology characterization for design
 - Adapted from Prof. B. Murmann (Stanford) notes

V_{T} Dependency on W

- Gate-controlled depletion region extends in part outside the gate width
- V_T monotonically increases with decreasing channel width

$$V_T = V_{Twide} + \Delta V_T$$
$$\Delta V_T = \frac{q N_A W_T}{C_{ox}} \frac{\pi W_T}{2W}$$

V_{T} Dependency on L

- Source and drain assist in forming the depletion region under the gate
- With simple model, V_T monotonically decreases with decreasing channel length

$$V_T = V_{Tlong} + \Delta V_T$$
$$\Delta V_T = -\frac{qN_A W_T}{C_{ox}} \frac{r_j}{L} \left(\sqrt{1 + \frac{2W_T}{r_j}} - 1 \right)$$

Temperature Dependence

- Transistor mobility and threshold voltage are dependent on temperature
 - Mobility $\propto T^{-3/2}$ due to increased scattering
- $\mu = \mu_0 \left(\frac{300}{T}\right)^{3/2}$
- Threshold voltage decreases with temperature due to reduced bandgap energy $E_g = 1.16 - \frac{7.02 \times 10^{-4} T^2}{T+1108}$

Process Corners

- Substantial process variations can exist from wafer to wafer and lot to lot
- Device characteristics are guaranteed to lie in a performance envelope
- To guarantee circuit yield, designers simulate over the "corners" of this envelope
- Example: Slow Corner
 - Thicker oxide (high V_T , low C_{ox}), low μ , high R_{\Box}

Inverter Delay Variation with Process & Temperature

 CMOS inverter delay varies close to ±40% over process and temperature

How to Design with Modern Sub-Micron (Nanometer) Transistors?

- Hand calculations with square-law model can deviate significantly from actual device performance
 - However, advanced model equations are too tedious for design
- Tempts designers to dive straight to simulation with little understanding on circuit performance trade-offs
 - "Spice Monkey" approach
- How can we accurately design when hand analysis models are way off?
- Employ a design methodology which leverages characterization data from BSIM simulations

The Problem

[Murmann]

The Solution

[Murmann]

Device Figures of Merit

- Transconductance efficiency
 - Want maximum g_m for minimum current
- Transit frequency, f_T
 - Want maximum g_m for minimum C_{aq}
 - C_{gg} = total gate cap = C_{gs} + C_{gd} + C_{gb}
- Intrinsic gain
 - Want maximum $g_m/g_{ds}=g_m r_o$

 $V_{OV} = V_{GS} - V_T$

Square-Law

 $=\frac{2}{V_{ov}}$

 g_m

 I_D

$$\frac{g_m}{g_{ds}} \cong \frac{2}{\lambda V_{OV}}$$

Technology Characterization for Design

- Generate data for the following over a reasonable range of $g_{\rm m}/I_{\rm D}$ and channel lengths
 - Transit frequency (f_T)
 - Intrinsic gain (g_m/g_{ds})
 - Current density (I_D/W)
- Also useful is extrinsic capacitor ratios
 - C_{gd}/C_{gg} and C_{dd}/C_{gg}
- Parameters are (to first order) independent of transistor width, which enables "normalized design"
- Do design hand calculations using the generated technology data
- Still need to understand how the circuit operates for an efficient design!!!

Our 0.6um Technology Simulation Data

NMOS W=2.4um

Our 0.6um Technology Simulation Data

NMOS W=2.4um

Next Time

• Layout Techniques