ECEN474: (Analog) VLSI Circuit Design Fall 2011

Lecture 6: Layout Techniques

Sebastian Hoyos
Analog \& Mixed-Signal Center
Texas A\&M University

Announcements

- Lab 2 next week
- Has a prelab
- Upgrading Cadence version
- Reading
- Razavi's CMOS chapter 17 \& 18
- HW1 was assigned today and is due in a week

Agenda

- MOS Fabrication Sequence
- CMOS Design Rules
- Layout Techniques
- Layout Examples

Fundamentals on Layout Techniques: N -Well CMOS Technologies

MOS Fabrication Sequence

MOS Fabrication Sequence

MOS Fabrication Sequence

[Razavi]

p-substrate

(a)

(b)

Contact and Metal Fabrication

[Razavi]

(a)

Metal 1

(b)

(c)

Transistor Geometries

- λ-based design rules allow a process and feature sizeindependent way of setting mask dimensions to scale
- Due to complexity of modern processing, not used often today
- Minimum drawing feature $=\lambda$

- Assume w.c. mask alignment $<0.75 \lambda$
- Relative misalignment between 2 masks is $<1.5 \lambda$

$$
\begin{aligned}
& \text { AGate }=W^{*} L \\
& A D, A S=W^{*} X \\
& P S, P S=W+2 X \text { (3 sides) }
\end{aligned}
$$

- X depends on contact size
- 5λ in this example

BASIC SCNA CMOS LAYERS

II

(a) Mask definition

(b) After annealing

Patterning sequence for a doped $\mathrm{n}+$ line.

(a) Contact size

Minimum width and spacing

(b) Side view

Geometry of a contact cut

(a) Masking Design

(b) Registration tolerance

Depletion regions due to parallel n+ lines

Contact spacing rule

(a) Correct mask sizing

(b) Incorrect mask sizing

Formation of $n+$ regions in an n-channel MOSFET

Gate overhang in MOSFET layout

(a) No overhang
(b) With misalignment

Gate spacing form an n+ edge

(a) Resist pattern
(b) Isotropic etch
(c) anisotropic etch

Effect of misalignment without overhang

Mask Number	Mask Layer
1	NWELL
2	ACTIVE
3	POLY
4	PELECT
5	MCTIVE CONTACT
6	MIA
7	PADTAL1 CONTACT
8	POLY2
9	
10	

Difference between the drawn and physical values for channel length and the channel width

Design Rule Layers

Bulk
Structure of a n-channel MOSFET

Example of Layout Rules

Perspective view of an n-channel MOSFET

- Minimum transistor width is set by minimum diffusion width
- 2 or 3λ (check with TA)
- Often, we use a use a slightly larger "minimum" that is equal to the contact height (4λ in this example)

Tfivethann

Bulk

Bulk
(a) Cross section

(b) Circuit symbol

Stick Diagrams

Stick diagrams for the CMOS Inverter

The CMOS Inverter

Basic Inverter Layout

Alternate Inverter Layout

Standard Cells: VDD, VSS and output run in Parallel

Wide Analog Transistor: Analog techniques

- Unacceptable drain and source resistance
- Stray resistances in transistor structure
- Contacts short the distributed resistance of diffused areas

Most of the current will be shrunk to this side
Current is spread

Transistor orientation

- Orientation is important in analog circuits for matching purposes

Stacked Transistors

- Wide transistors need to be split
- Parallel connection of n elements ($n=4$ for this example)
- Contact space is shared among transistors
- Parasitic capacitances are reduced (important for high speed)

Note that parasitic capacitors are lesser at the drain

Matched Transistors

- Simple layouts are prone to process variations, e.g. $\mathrm{V}_{\mathrm{T}}, \mathrm{KP}, \mathrm{C}_{\mathrm{ox}}$
- Matched transistors require elaborated layout techniques

Differential pair requiring "matched transistors"

Interdigitized Layout

- Averages the process variations among transistors
- Common terminal is like a serpentine

Differential Pair Interdigitized Layout

\$
02

Why Interdigitized?

- Process variations are averaged among transistors
KPs for M1: KP1+KP4+KP5+KP8 M2: KP2+KP3+KP6+KP7
- Technique maybe good for matching dc conditions
- Uneven total drain area between M1 and M2. This is undesirable for ac conditions: capacitors and other parameters may not be equal
- A more robust approach is needed (Use dummies if needed !!)

A method of achieving good matching is shown in the following figure :

- Each transistor is split in four equal parts interleaved in two by two's.

So that for one pair of pieces of the same transistor we have currents flowing in opposite direction.

- Transistors have the same source and drain area and perimeters, but this topology is more susceptible to gradients (not common centroid)

Common Centroid Layouts

Usually routing is more complex

CENTROID

(complex layout)

M1: 8 transistors
$(0,3)(0,1)$
$(1,2)(1,0)$
$(2,3)(2,1)$
$(3,2)(3,0)$

M2: 8 transistors
$(0,2)(0,0)$
$(1,3)(1,1$
$(2,2)(2,0)$
$(3,3)(3,1)$

Common Centroid Layouts

- Split into parallel connections of even parts
- Half of them will have the drain at the right side and half at the left
- Be careful how you route the common terminal
\bullet Cross talk (effect of distributed capacitors \rightarrow RF applications)!

-Many contacts placed close to one another reduces series resistance and make the surface of metal connection smoother than when we use only one contact; this prevents microcraks in metal;
- Splitting the transistor in a number of equal part connected in parallel reduces the area of each transistor and so reduces further the parasitic capacitances, but accuracy might be degraded!

Diffusion resistors

Diffused resistance

Diffused resistance

well resistance

Pinched n-well resistance

Integrated Resistors

- Highly resistive layers ($\mathrm{p}^{+}, \mathrm{n}^{+}$, well or polysilicon)
- R defines the resistance of a square of the layer
- Accuracy less than 30\%

Resistivity (volumetric measure of material's resistive characteristic)

Sheet resistance (measure of the resistance of a

$$
\mathrm{R}=\rho / \mathrm{t}(\Omega /)
$$

uniform film with arbitrary
thickness t

TYPICAL INTEGRATED RESISTORS

$\mathrm{R}=2 \mathrm{R}_{\text {cont }}+\frac{\mathrm{L}}{\mathrm{W}} \mathrm{R}_{\square}$

Type of layer	Sheet Resistance $\mathbf{W} / \mathbf{0}$	Accuracy $\mathbf{\%}$	Temperature Coefficient $\mathbf{p p m} /{ }^{\circ} \mathbf{C}$	Voltage Coefficient $\mathbf{p p m} / \mathbf{V}$
$\mathrm{n}+$ diff	$30-50$	$20-40$	$200-1 \mathrm{~K}$	$50-300$
$\mathrm{p}+$ diff	$50-150$	$20-40$	$200-1 \mathrm{~K}$	$50-300$
$\mathrm{n}-$ well	$2 \mathrm{~K}-4 \mathrm{~K}$	$15-30$	5 K	10 K
p - well	$3 \mathrm{~K}-6 \mathrm{~K}$	$15-30$	5 K	10 K
pinched n- well	$6 \mathrm{~K}-10 \mathrm{~K}$	$25-40$	10 K	20 K
pinched p - well	$9 \mathrm{~K}-13 \mathrm{~K}$	$25-40$	10 K	20 K
first poly	$20-40$	$25-40$	$500-1500$	$20-200$
second poly	$15-40$	$25-40$	$500-1500$	$20-200$

Special poly sheet resistance for some analog processes might be as high as $1.2 \mathrm{~K} \Omega /$

Large Resistors

In order to implement large resistors :

- Use of long strips (large L/W)
- Use of layers with high sheet resistance (bad performances)

Layout: rectangular "serpentine"

Well-Diffusion Resistor

- Example shows two long resistors for $\mathrm{K} \Omega$ range
- Alternatively, "serpentine" shapes can be used
- Noise problems from the body
- Substrate bias surrounding the well
- Substrate bias between the parallel strips

Factors affecting accuracy :

Plastic packages cause a large pressure on the die (= 800 Atm.). It determines a variation of the resistivity.

For $<100>$ material the variation is unisotropic, so the minimum is obtained if the resistance have a 45° orientation.

Etching

Wet etching: isotropic (undercut effect)
HF for $\mathrm{SiO}_{2} ; \mathrm{H}_{3} \mathrm{PO}_{4}$ for Al
Δx for polysilicon may be $0.2-0.4 \mu \mathrm{~m}$ with

standard deviation $0.04-0.08 \mu \mathrm{~m}$.
Reactive ion etching (R.I.E.)(plasma etching associated to "bombardment") : unisotropic.
Δx for polysilicon is $0.05 \mu \mathrm{~m}$ with standard deviation $0.01 \mu \mathrm{~m}$

Boundary :

The etching depends on the boundary conditions

- Use dummy strips

Side diffusion effect : Contribution of endings

Side Diffusion "widens" R

Impact of $\mathbf{R}_{\text {cont }}$ depends on relative geometry

Interdigitized structure :

Poly Resistors

n-substate

„) First polysilicon resistance
„First polysilicon resistance with a well shielding

Second polysilicon resistance

Second polysilicon resistance with a well shielding

Typical Resistance Process Data $0.8 \mu \mathrm{~m}$ process

	Sheet Resistance $(\boldsymbol{\Omega} / \square)$	Width Variation $(\mu \mathbf{m})$ $($ measured-drawn $)$	Contact Resistance $(\boldsymbol{\Omega})$
$\mathbf{N + A c t v}$	52.2	-0.66	66.8
P+Actv	75.6	-0.73	37.5
Poly	36.3	-0.10	30.6
Poly 2	25.5	0.31	20.7
Mtl 1	0.05	0.56	0.05
Mtl 2	0.03	-0.06	
N-Well	1513		

Gate oxide thickness 316 angstroms

TYPES OF INTEGRATED CAPACITORS

Electrodes : metal; polysilicon; diffusion
Insulator : silicon oxide; polysilicon oxide; CVD oxide $\quad \mathrm{C}=\frac{\varepsilon_{\mathrm{OX}}}{\mathrm{t}_{\mathrm{OX}}} \mathrm{WL}$

TOP VIEW

$$
\left(\frac{\Delta \mathrm{C}}{\mathrm{C}}\right)^{2}=\left(\frac{\Delta \varepsilon_{\mathrm{r}}}{\varepsilon_{\mathrm{r}}}\right)^{2}+\left(\frac{\Delta \mathrm{t}_{\mathrm{ox}}}{\mathrm{t}_{\mathrm{ox}}}\right)^{2}+\left(\frac{\Delta \mathrm{L}}{\mathrm{~L}}\right)^{2}+\left(\frac{\Delta \mathrm{W}}{\mathrm{~W}}\right)^{2}
$$

Factor affecting accuracy

- Oxide damage
- Impurities
- Bias condition
- Bias history (for CVD) $\left.\varepsilon_{0 X}\right)$
- Grow rate
- Poly grain size $\left(\frac{t_{0 x}}{}\right)$
- Stress
- Temperature
- Etching $\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right) ;\left(\frac{\Delta \mathrm{W}}{\mathrm{W}}\right)$

$$
\left(\frac{\Delta \mathrm{C}}{\mathrm{C}}\right)^{2}=\left(\frac{\Delta \varepsilon_{\mathrm{r}}}{\varepsilon_{\mathrm{r}}}\right)^{2}+\left(\frac{\Delta \mathrm{t}_{\mathrm{ox}}}{\mathrm{t}_{\mathrm{ox}}}\right)^{2}+\left(\frac{\Delta \mathrm{L}}{\mathrm{~L}}\right)^{2}+\left(\frac{\Delta \mathrm{W}}{\mathrm{~W}}\right)^{2}
$$

$$
\frac{\Delta \mathrm{C}}{\mathrm{C}} \approx 1-0.1 \%
$$

Poly1 - Poly2 Capacitor

shielding well
(well biasing not visible)

Poly 1 - Polye Capacitor
© HP .
Poly 2
Poly 1

- Area is determined by poly2
- Problems
- undercut effects
- nonuniform dielectric thickness
- matching among capacitors
- Minimize the rings (inductors)

Accuracy of integrated capacitors

Perimeter effects led the total capacitance:

$$
\begin{aligned}
C & =C_{A} A \\
A & =(x-2 \Delta x)(y-2 \Delta y) \\
& =(x y-2 x \Delta y-2 y \Delta x-4 \Delta x \Delta y)
\end{aligned}
$$

Assuming that $\Delta x=\Delta y=\Delta e$

$$
\begin{aligned}
& A=\left(x y-2 \Delta e(x+y)-4 \Delta^{2} e\right) \\
& A \approx x y-2 \Delta e(x+y) \\
& \therefore C_{e}=-2 \Delta e(x+y)
\end{aligned}
$$

The relative error is

$$
\begin{aligned}
\varepsilon & =C_{e} / C \\
& =-2 \Delta e(x+y) / x y
\end{aligned}
$$

$\mathrm{C}_{\mathrm{A}}=$ capacitance per unit area

Then maximize the area and minimize the perimeter \rightarrow use squares!!!

Common Centroid Capacitor Layout

- Unit capacitors are connected in parallel to form a larger capacitance
- Typically the ratio among capacitors is what matters
- The error in one capacitor is proportional to perimeter-area ratio
- Use dummies for better matching (See Johns \& Martin Book, page 112)

"Floating" Capacitors

Be aware of parasitic capacitors

Polysilicon-Polysilicon: Bottom plate capacitance is comparable (10-30 \%) with the poly-poly capacitance

CP1, CP2" are very small (1-5 \% of C1) CP2' is around $10-50 \%$ of C1

Metal1-Metal2: More clean, but the capacitance per micrometer square is smaller. Good option for very high frequency applications ($\mathrm{C} \sim 0.1$ 0.3 pF).

CP2 is very small (1-5 \% of C1)

Typical Capacitance Process Data (See MOSIS webside for the AMI 0.6 CMOS process)

Capacitance	N+Actv	P+Actv	Poly	Poly 2	Mtl 1	Mtl 2	UNITS
Area (substrate) Area (N+active)	292	290	35		20	13	$\mathrm{aF} / \mathrm{\mu m}^{2}$
Area (P+active)			1091	684	49	26	$\mathrm{aF} / \mathrm{\mu m}^{2}$
Area (poly) Area (poly2)			1072	677			$\mathrm{aF} / \mathrm{\mu m}^{2}$
Area (metal1)					599	45	23
Fringe (substrate)	80	170	$\mathrm{aF} / \mathrm{\mu m}^{2}$				
Fringe (poly)							

$$
\mathrm{a}=10^{-18}, \mathrm{f}=10^{-15}, \mathrm{p}=10^{-12}, \mathrm{n}^{-6}=10^{-9} \mu=10^{-6}, \mathrm{~m}=10^{-3}
$$

Stacked Layout for Analog Cells

- Stack of elements with the same width
* Transistors with even number of parts have the source (drain) on both sides of the stack
- Transistors with odd number of parts have the source on one end and the drain on the other. If matching is critical use dummies
- If different transistors share a same node they can be combined in the same stack to share the area of the same node (less parasitics)
* Use superimposed or side by side stacks to integrate the cell

POSITIVE FEEDBACK!

System may lock!

Reduce as much as possible RB and RBW: Place guard contacts everywhere

Be sure Base-Emitter voltages are such that the BJTs are off!
If possible, B and $B W$ must be connected to the most negative and positive voltages, respectively!

Analog Cell Layout

- Use transistors with the same orientation
- Minimize S/D contact area by stacking transistors (to reduce parasitic capacitance to substrate)
- Respect symmetries
- Use low resistive paths when current needs to be carried (to avoid parasitic voltage drops)
- Shield critical nodes (to avoid undesired noise injection)
- Include guard rings everywhere; e.g. Substrate/well should not have regions larger than 50 um without guard protections (latchup issues)
- M1 and M2 must match. Layout is interdigitized
-M3 and M4 must match. M6 must be wider by 4*M3
-M7 must be 2*M5
-Layout is an interconnection of 3 stacks; 2 for NMOS and 1 for PMOS
-Capacitor made by poly-poly
Not the best floorplan

Pay attention to your floor plan! It is critical for minimizing iterations: Identify the critical elements

Layout (of something we should not do) example (cap related)

Following slides were provided by some of Dr. Silva's graduate students.

Special thanks to Fabian Silva-Rivas, Venkata Gadde, Marvin Onabajo, Cho-Ying Lu, Raghavendra Kulkarni and Jusung Kim

Figure: Layout of a single stage fully differential amplifier and its CMFB circuit. 1. I/p NMOS diff pair 2. PMOS (Interdigitated) 3. Resistors for V_{CM} 4.Capacitors (Common centroid)

Figure: Layout of a second order Active RC low-pass Filter (Bi-quad)

- 3-bit quantizer in Jazz 0.18 $\mu \mathrm{m}$ CMOS technology
- S/H: sample-and-hold circuit that is used to sample the continuous-input signal
- Core: contains matched differential pairs and resistors to create accurate reference levels for the analog-todigital conversion
- Latches: store the output bits; provide interface to digital circuitry with rail-to-rail voltage levels

- High-speed D-Flip-Flop in Jazz 0.18 \boldsymbol{m} CMOS technology
- Resolves a small differential input with $10 \mathrm{mV}<\mathrm{V}_{\mathrm{p}-\mathrm{p}}<150 \mathrm{mV}$ in less than 360 ps
- Provides digital output (differential, rail-to-rail) clocked at 400 MHz
- The sensitive input stage ($1^{\text {st }}$ differential pair) has a separate "analog" supply line to isolate it from the noise on the supply line caused by switching of digital circuitry

Design example (industrial quality): Simplest OTA

$\downarrow \downarrow$

BIAS: you may be able to see the dummies, symmetry and S / D connections

From downstairs

Differential pair

62

Details on the P-type current mirrors

Q-value of Spiral Inductors in CMOS

Process
Most of the following slides were taken from
Seminar by: Park, Sang Wook

TAMU, 2003

What is Q ?

$$
Q \equiv \omega \frac{\text { energy stored }}{\text { average power dissipated }}
$$

Integrated Spiral Inductor "Pi" Model

Equivalent Circuit

Parameter Calculation

Layout \& Structure

Metal-6
(thickness $=2$ um)

Shape \& Radius

- Shape: Octagon > Square
- Radius : 60 > $\mathbf{3 0}$

PGS (Patterned Ground Shield) material

GS (Ground Shield) type

- GS : Poly PGS > Poly(nonsal) SGS > Poly(nonsal) PGS > none

Metal Stack

M 6

M 5/6

M 4/5/6

M 3/4/5/6
-Stack : M6 > M5/ 6 > M4/ 5/ 6 > M3/ 4/ 5/ 6

> Best student paper award: Radio Frequency Intl Conference 2003

IEEE-JSSC-June 2003

Chip was fabricated in 0.35 um CMOS through MOSIS.

Total area $2 \mathrm{~mm} \times 2 \mathrm{~mm}$.

It includes the monolithic PLL, standalone prescaler, loop filter and VCO, etc.

The chip was packaged in 48pin TPFQ.

Keliu Shu ${ }^{1}$, Edgar Sánchez-Sinencio ${ }^{1}$, Jose Silva-Martinez ${ }^{1}$, and Sherif H. K. Embabi ${ }^{2}$
${ }^{1}$ Texas A\&M University
${ }^{2} 7$ Texas Instruments

Next Time

- Table-Based ($\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$) Design Examples

