ECEN474: (Analog) VLSI Circuit Design Fall 2011

Lecture 6: Layout Techniques

Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University

Announcements

- Lab 2 next week
 - Has a prelab
 - Upgrading Cadence version
- Reading
 - Razavi's CMOS chapter 17 & 18
- HW1 was assigned today and is due in a week

Agenda

- MOS Fabrication Sequence
- CMOS Design Rules
- Layout Techniques
- Layout Examples

Fundamentals on Layout Techniques: N-Well CMOS Technologies

4

MOS Fabrication Sequence

MOS Fabrication Sequence

MOS Fabrication Sequence

Contact and Metal Fabrication

[Razavi]

Transistor Geometries

- λ-based design rules allow a process and feature sizeindependent way of setting mask dimensions to scale
 - Due to complexity of modern processing, not used often today

- Minimum drawing feature = λ
 - Assume w.c. mask alignment $< 0.75\lambda$
 - Relative misalignment between 2 masks is <1.5λ

$$AGate = W * L$$
$$AD, AS = W * X$$

PS, PS = W + 2X (3 sides)

- X depends on contact size
 - 5λ in this example

BASIC SCNA CMOS LAYERS

Effect of misalignment without overhang

13

1	NWELL		
2	ACTIVE		
3	POLY		
4	SELECT		
5	POLY CONTACT		
6	ACTIVE CONTACT		
7	METAL1		
8	VIA		
9	METAL2		
10	PAD		
11	POLY2		

Mask Layer

ECEN-474-2009

Mask Number

Design Rule Layers

Jose Silva-Martinez

Difference between the drawn and physical values for channel length and the channel width

ECEN-474-2009

Structure of a n-channel MOSFET

Jose Silva-Martinez

Perspective view of an n-channel MOSFET

- Minimum transistor width is set by minimum diffusion width
 - 2 or 3λ (check with TA)
- Often, we use a use a slightly larger "minimum" that is equal to the contact height (4λ in this example)

Stick diagrams for the CMOS Inverter

ECEN-474-2009

Jose Silva-Martinez

Basic Inverter Layout

Alternate Inverter Layout

ECEN-474-2009

Jose Silva-Martinez

Wide Analog Transistor: Analog techniques

- Unacceptable drain and source resistance
- Stray resistances in transistor structure
- Contacts short the distributed resistance of diffused areas

Jose Silva-Martinez

Transistor orientation

• Orientation is important in analog circuits for matching purposes

Stacked Transistors

- Wide transistors need to be split
- Parallel connection of *n* elements (n = 4 for this example)
- Contact space is shared among transistors
- Parasitic capacitances are reduced (important for high speed)

Note that parasitic capacitors are lesser at the drain

Matched Transistors

- Simple layouts are prone to process variations, e.g. V_T, KP, C_{ox}
- Matched transistors require elaborated layout techniques

Interdigitized Layout

- Averages the process variations among transistors
- Common terminal is like a serpentine

- Process variations are averaged among transistors
 - KPs for M1: KP1+KP4+KP5+KP8 M2: KP2+KP3+KP6+KP7
- Technique maybe good for matching dc conditions
- Uneven total drain area between M1 and M2. This is undesirable for ac conditions: capacitors and other parameters may not be equal
- A more robust approach is needed (Use dummies if needed !!)

ECEN-474-2009 Jose Silva-Martinez A method of achieving good matching is shown in the following figure :

- Each transistor is split in four equal parts interleaved in two by two's. So that for one pair of pieces of the same transistor we have currents flowing in opposite direction.
- Transistors have the same source and drain area and perimeters, but this topology is more susceptible to gradients (not common centroid)

Common Centroid Layouts Usually routing is more complex

CENTROID (complex layout)

M1: 8 transistors (0,3) (0,1) (1,2) (1,0) (2,3) (2,1) (3,2) (3,0)

ECEN-474-2009

Common Centroid Layouts

- Split into parallel connections of even parts
- Half of them will have the drain at the right side and half at the left
- Be careful how you route the common terminal
- •Cross talk (effect of distributed capacitors → RF applications)!

•Many contacts placed close to one another reduces series resistance and make the surface of metal connection smoother than when we use only one contact; this prevents microcraks in metal;

 Splitting the transistor in a number of equal part connected in parallel reduces the area of each transistor and so reduces further the parasitic capacitances, but accuracy might be degraded!

ECEN-474-2009

Jose Silva-Martinez

Diffusion resistors

p -substrate

Diffused resistance

Diffused resistance

well resistance

Pinched n-well resistance

L

Integrated Resistors

- Highly resistive layers (p⁺, n⁺, well or polysilicon)
- R defines the resistance of a square of the layer
- Accuracy less than 30%

TYPICAL INTEGRATED RESISTORS

$$R = 2R_{cont} + \frac{L}{W}R_{\Box}$$

Type of layer	Sheet Resistance W/0	Accuracy %	Temperature Coefficient ppm/ºC	Voltage Coefficient ppm/V
n + diff	30 - 50	20 - 40	200 - 1K	50 - 300
p + diff	50 -150	20 - 40	200 - 1K	50 - 300
n - well	2K - 4K	15 - 30	5K	10K
p - well	3K - 6K	15 - 30	5K	10K
pinched n - well	6K - 10K	25 - 40	10K	20K
pinched p - well	9K - 13K	25 - 40	10K	20K
first poly	20 - 40	25 - 40	500 - 1500	20 - 200
second poly	15 - 40	25 - 40	500 - 1500	20 - 200

Special poly sheet resistance for some analog processes might be as high as 1.2 K Ω /

Large Resistors

In order to implement large resistors :

- Use of long strips (large L/W)
- Use of layers with high sheet resistance (bad performances)

Layout : rectangular "serpentine"

$$\mathbf{R} = \frac{\mathbf{L}}{\mathbf{W}} \mathbf{R}_{\Box} = \frac{\mathbf{L}}{\mathbf{W}} \cdot \frac{\mathbf{\rho}}{\mathbf{x}_{j}}$$

Well-Diffusion Resistor

- Example shows two long resistors for $K\Omega$ range
- Alternatively, "serpentine" shapes can be used
- Noise problems from the body
 - Substrate bias surrounding the well
 - Substrate bias between the parallel strips

ECEN-474-2009

Jose Silva-Martinez

Factors affecting accuracy :

Plastic packages cause a large pressure on the die (= 800 Atm.). It determines a variation of the resistivity.

For <100> material the variation is unisotropic, so the minimum is obtained if the resistance have a 45° orientation. compensated

Etching

Wet etching : isotropic (undercut effect) HF for SiO₂ ; H₃PO₄ for Al Δx for polysilicon may be 0.2 – 0.4 µm with standard deviation 0.04 – 0.08 µm. Reactive ion etching (R.I.E.)(plasma etching associated to "bombardment") : unisotropic. Δx for polysilicon is 0.05 µm with standard deviation 0.01 µm

MASK

Boundary :

The etching depends on the boundary conditions

• Use dummy strips

Side diffusion effect : Contribution of endings

Side Diffusion "widens" R

Impact of R_{cont} depends on relative geometry

Interdigitized structure :

ECEN-474-2009

Jose Silva-Martinez

Poly Resistors

b First polysilicon resistance with a

Second polysilicon resistance

Second polysilicon resistance with a well shielding

Typical Resistance Process Data 0.8 µm process

	Sheet Resistance (Ω/\Box)	Width Variation (µm)	Contact Resistance		
		(measured-drawn)	(Ω)		
N+Actv	52.2	-0.66	66.8		
P+Actv	75.6	-0.73	37.5		
Poly	36.3	-0.10	30.6		
Poly 2	25.5	0.31	20.7		
Mtl 1	0.05	0.56	0.05		
Mtl 2	0.03	-0.06			
N-Well	1513				

Gate oxide thickness 316 angstroms

TYPES OF INTEGRATED CAPACITORS

Electrodes : metal; polysilicon; diffusion Insulator : silicon oxide; polysilicon oxide; CVD oxide

$$C = \frac{\varepsilon_{ox}}{t_{ox}} WL$$

$$\left(\frac{\Delta C}{C}\right)^2 = \left(\frac{\Delta \varepsilon_r}{\varepsilon_r}\right)^2 + \left(\frac{\Delta t_{ox}}{t_{ox}}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta W}{W}\right)^2$$

Jose Silva-Martinez

Factor affecting accuracy

- Oxide damage
- Impurities
- Bias condition
- Bias history (for CVD)
- Stress
- Temperature
 - Etching

• Alignment

$$\left(\frac{\Delta C}{C}\right)^2 = \left(\frac{\Delta \varepsilon_r}{\varepsilon_r}\right)^2 + \left(\frac{\Delta t_{ox}}{t_{ox}}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta W}{W}\right)^2$$

$$\frac{\Delta C}{C} \approx 1 - 0.1\%$$

$$\left(\frac{\Delta \epsilon_{\rm ox}}{\epsilon_{\rm ox}}\right)$$

• Grow rate

• Poly grain size

$$\left(\frac{\Delta t_{ox}}{t_{ox}}\right)$$

Accuracy of integrated capacitors

Perimeter effects led the total capacitance:

$$C = C_A A$$

$$A = (x - 2\Delta x)(y - 2\Delta y)$$

$$= (xy - 2x\Delta y - 2y\Delta x - 4\Delta x \Delta y)$$
Assuming that $\Delta x = \Delta y = \Delta e$

$$A = (xy - 2\Delta e(x + y) - 4\Delta^2 e)$$

$$A \approx xy - 2\Delta e(x + y)$$

$$\therefore C_e = -2\Delta e(x + y)$$

The relative error is

$$\varepsilon = C_e/C$$

= -2\Delta e(x + y) / xy

Then maximize the area and minimize the perimeter → use squares!!!

 C_A = capacitance per unit area

Jose Silva-Martinez

Common Centroid Capacitor Layout

- •Unit capacitors are connected in parallel to form a larger capacitance
- Typically the ratio among capacitors is what matters
- The error in one capacitor is proportional to perimeter-area ratio
- •Use dummies for better matching (See Johns & Martin Book, page 112)

Common centroid structures

Jose Silva-Martinez

"Floating" Capacitors

Be aware of parasitic capacitors

Polysilicon-Polysilicon: Bottom plate capacitance is comparable (10-30 %) with the poly-poly capacitance

→ Metal1-Metal2: More clean, but the capacitance per micrometer square is smaller. Good option for very high frequency applications (C~ 0.1-0.3 pF).

CP1, CP2" are very small (1-5 % of C1) CP2' is around 10-50 % of C1

CP2 is very small (1-5 % of C1)

Typical Capacitance Process Data (See MOSIS webside for the AMI 0.6 CMOS process)

Capacitance	N+Actv	P+Actv	Poly	Poly 2	Mtl 1	Mtl 2	UNITS
Area	292	290	35		20	13	aF/µm ²
(substrate)							
Area			1091	684	49	26	aF/µm ²
(N+active)							
Area			1072	677			aF/µm ²
(P+active)							
Area (poly)				599	45	23	aF/µm ²
Area (poly2)			900		45		aF/µm ²
Area (metal1)						42	aF/µm ²
Fringe	80	170			36	25	aF/µm
(substrate)							
Fringe (poly)					59	39	aF/µm

a=10⁻¹⁸, f=10⁻¹⁵, p=10⁻¹², n=10⁻⁹ μ =10⁻⁶, m=10⁻³

Stacked Layout for Analog Cells

- Stack of elements with the same width
- Transistors with even number of parts have the source (drain) on both sides of the stack
- Transistors with odd number of parts have the source on one end and the drain on the other. If matching is critical use dummies
- If different transistors share a same node they can be combined in the same stack to share the area of the same node (less parasitics)
- Use superimposed or side by side stacks to integrate the cell

LATCH-UP ISSUES: Guard rings

- Use transistors with the same orientation
- Minimize S/D contact area by stacking transistors (to reduce parasitic capacitance to substrate)
- Respect symmetries
- Use low resistive paths when current needs to be carried (to avoid parasitic voltage drops)
- Shield critical nodes (to avoid undesired noise injection)
- Include guard rings everywhere; e.g. Substrate/well should not have regions larger than 50 um without guard protections (latchup issues)

ECEN-474-2009

•M1 and M2 must match. Layout is interdigitized

•M3 and M4 must match. M6 must be wider by 4*M3

•M7 must be 2*M5

Layout is an interconnection of 3 stacks; 2 for NMOS and 1 for PMOSCapacitor made by poly-poly

Not the best floorplan M3 M6 M6 M6 M6 M4 M3 M4 M6 C **M**1 M2 **M**1 M2 **M**1 M2 M2 M1 **M8** M5 M7 M7 M7 M7 M5 **M**8 M5 M7

Pay attention to your floor plan! It is critical for minimizing iterations: Identify the critical elements

Jose Silva-Martinez

Layout (of something we should not do) example (cap related)

Following slides were provided by some of Dr. Silva's graduate students.

Special thanks to Fabian Silva-Rivas, Venkata Gadde, Marvin Onabajo, Cho-Ying Lu, Raghavendra Kulkarni and Jusung Kim

Figure: Layout of a single stage fully differential amplifier and its CMFB circuit. 1. I/p NMOS diff pair 2. PMOS (Interdigitated) 3. Resistors for V_{CM} 4.Capacitors (Common centroid)

Figure: Layout of a second order Active RC low-pass Filter (Bi-quad)

- 3-bit quantizer in Jazz 0.18µm CMOS technology
- S/H: sample-and-hold circuit that is used to sample the continuous-input signal
- Core: contains matched differential pairs and resistors to create accurate reference levels for the analog-todigital conversion
- Latches: store the output bits; provide interface to digital circuitry with rail-to-rail voltage levels

- High-speed D-Flip-Flop in Jazz 0.18µm CMOS technology
- Resolves a small differential input with $10mV < V_{p-p} < 150mV$ in less than 360ps
- Provides digital output (differential, rail-to-rail) clocked at 400MHz
- The sensitive input stage (1st differential pair) has a separate "analog" supply line to isolate it from the noise on the supply line caused by switching of digital circuitry

Design example (industrial quality): Simplest OTA

Overall amplifier: Have a look on the guard rings and additional well!

BIAS: you may be able to see the dumies, symmetry and S/D connections

Differential pair 61

Details on the P-type current mirrors

Jose S

Jose Silva-Martinez

Q-value of Spiral Inductors in CMOS Process

Most of the following slides were taken from

Seminar by: Park, Sang Wook

TAMU, 2003

What is Q?

 $Q \equiv \omega \frac{\text{energy stored}}{\text{average power dissipated}}$

Integrated Spiral Inductor "Pi" Model

ECEN-474-2009

De-Embedding

ECEN-474-2009

Equivalent Circuit & Calculation

Equivalent Circuit

Parameter Calculation

Layout & Structure

Layout Split 1

Jose Silva-Martinez

• Radius : 60 > 30

Layout Split 2

PGS (Patterned Ground Shield) material

Layout Split 3

Jose Silva-Martinez

poly PGS(wide)

• GS : Poly PGS > Poly(nonsal) SGS > Poly(nonsal) PGS > none

ECEN-474-2009

Layout Split 4

Jose Silva-Martinez

Μ6

M 5/6

M 4/5/6

M 3/4/5/6

• Stack : M6 > M5/6 > M4/5/6 > M3/4/5/6

Jose Silva-Martinez

Chip was fabricated in 0.35um CMOS through MOSIS.

Total area 2mm×2mm.

It includes the monolithic PLL, standalone prescaler, loop filter and VCO, etc.

The chip was packaged in 48pin TPFQ.

Best student paper award: Radio Frequency Intl Conference 2003

IEEE-JSSC-June 2003

Keliu Shu¹, Edgar Sánchez-Sinencio¹, Jose Silva-Martinez¹, and Sherif H. K. Embabi² ¹Texas A&M University ²7Texas Instruments

Next Time

Table-Based (g_m/I_D) Design Examples