ECEN474: (Analog) VLSI Circuit Design Fall 2011

Lecture 7: Table-Based (g_m/I_D) Design

Sebastian Hoyos Analog & Mixed-Signal Center Texas A&M University

Announcements

- Reading
 - Will post g_m/I_D paper
 - Material is only supplementary reference
- HW2 due Monday 9:10AM
- Exam 1 Friday Sept. 30

Agenda

- Technology characterization for design
- Table-based (g_m/I_D) design example
- Adapted from Prof. B. Murmann (Stanford) notes

How to Design with Modern Sub-Micron (Nanometer) Transistors?

- Hand calculations with square-law model can deviate significantly from actual device performance
 - However, advanced model equations are too tedious for design
- Tempts designers to dive straight to simulation with little understanding on circuit performance trade-offs
 - "Spice Monkey" approach
- How can we accurately design when hand analysis models are way off?
- Employ a design methodology which leverages characterization data from BSIM simulations

The Problem

[Murmann]

The Solution

[Murmann]

Technology Characterization for Design

- Generate data for the following over a reasonable range of $g_{\rm m}/I_{\rm D}$ and channel lengths
 - Transit frequency (f_T)
 - Intrinsic gain (g_m/g_{ds})
 - Current density (I_D/W)
- Also useful is extrinsic capacitor ratios
 - C_{gd}/C_{gg} and C_{dd}/C_{gg}
- Parameters are (to first order) independent of transistor width, which enables "normalized design"
- Do design hand calculations using the generated technology data
- Still need to understand how the circuit operates for an efficient design!!!

Gm/Id

Gain

 f_{T}

ID/W

CS Amplifier Design Example

- Specifications
 - 0.6µm technology
 - $|A_v| \ge 4V/V$
 - $f_u \ge 100MHz$
 - $C_L = 5pF$
 - Vdd = 3V

CS Amplifier Small-Signal Model (No R_s)

13

Design Procedure

- 1. Determine g_m from design specifications
 - a. ω_u in this example
- 2. Pick transistor L
 - a. Short channel \rightarrow high f_T (high bandwidth)
 - **b**. Long channel \rightarrow high r_o (high gain)
- 3. Pick g_m/I_D (or f_T)
 - a. Large $g_m/I_D \rightarrow low$ power, large signal swing (low V_{ov})
 - b. Small $g_m/I_D \rightarrow high f_T$ (high speed)
 - c. May also be set by common-mode considerations
- 4. Determine I_D/W from I_D/W vs g_m/I_D chart
- 5. Determine W from I_D/W
- Other approaches exist

1. Determine g_m (& R_L)

• From ω_u and DC gain specification

$$\omega_u = A_v \omega_p \approx \frac{g_m}{C_L}$$
$$g_m = \omega_u C_L = 2\pi (100 MHz) (5 pF) = 3.14 mA/V$$

Note, this may be slightly low due to neglecting $C_{\rm gd}$ and $C_{\rm db}$

$$A_{v} = -g_{m}R_{\parallel} \approx -g_{m}R_{L}$$
$$R_{L} = \frac{A_{v}}{g_{m}}$$

Adding 20% margin to compensate for r_0 effects

$$R_{L} = \frac{A_{v}}{g_{m}} = \frac{4.8}{3.14mA/V} = 1.5k\Omega$$

2. Pick Transistor L

- Since amplifier $A_{v}{\geq}4,$ min channel length (L=0.6µm) will work with $g_{m}/I_{D}{\sim}{>}2$
 - Min channel length provides highest f_T at this g_m/I_D setting

3. Pick g_m/I_D (or f_T)

 Setting I_D for V_O=1.5V for large output swing range _{3V}

$$\frac{g_m}{I_D} = \frac{3.14 mA/V}{1mA} = 3.14 V^{-1}$$

Verify Transistor Gain & f_T at g_m/I_D Setting

- Transistor gain=30.6 >> amplifier $A_v \ge 4$
- Transistor $f_T = 6.7 \text{GHz} >> \text{amplifier } f_u = 100 \text{MHz}$
- g_m/I_D setting is acceptable

4. Determine Current Density (I_D/W)

g_m/I_D=3.14V⁻¹ maps to a current density of 20.2μA/μm

- Verify current density is achievable at a reasonable V_{GS}
- V_{GS} =1.15V is reasonable with Vdd=3V & V_{DS} =1.5V

5. Determine Transistor W from I_D/W

• From Step 3, we determined that $I_D = 1mA$

$$W = \frac{I_D}{(I_D/W)} = \frac{1mA}{20.2\,\mu A/\,\mu m} = 49.5\,\mu m$$

- For layout considerations and to comply with the technology design rules
 - Adjust 49.5μm to 49.2μm and realize with 8 fingers of 6.15μm
 - This should match our predictions well, as the charts are extracted with a $6\mu m$ device
 - Although it shouldn't be too sensitive to exact finger width

Simulation Circuit

Operating Point Information

				Design Value		
N0:betaeff	9.97E-03	NO:csg	<u>-3.68E</u> -14	0	N0:qb	-5.03E-14
N0:cbb	2.48E-14	N0:css	4.32E-14		N0:qbd	-9.46E-14
N0:cbd	-1.28E-17	N0:cssbi	3.07E-14		N0:qbi	-5.03E-14
N0:cbdbi	5.56E-14	N0:gbd	0		N0:qbs	0
N0:cbg	-8.56E-15	N0:gbs	1.03E-10		N0:qd	-3.72E-15
N0:cbs	-1.63E-14	N0:gds	1.02E-04		N0:qdi	-8.10E-15
N0:cbsbi	-1.63E-14	N0:gm	3.13E-03	3.14mA/V	N0:qg	8.07E-14
N0:cdb	<u>-4.26E-15</u>	N0:gmbs	7.64E-04	2 1 11 1-1	N0:qgi	7.06E-14
N0:cdd	1.25E-14	N0:gmoverid	3.131	3.14V '	N0:qinv	4.20E-03
N0:cddbi	-5.56E-14	N0:11	9.99E-04		N0:qsi	-1.21E-14
N0:cdg	-2.87E-14	NU:13	-9.99E-04		N0:qsrco	-2.66E-14
N0:cds	2.05E-14	NU:14	-8.00E-14		N0:region	2
N0:cgb	-1.42E-14	NO:ibs	-8.00L-14 0		N0:reversed	0
N0:cgbovl	0	N0:ibulk	-8 00F-14		N0:ron	1.50E+03
N0:cgd	-1.25E-14	N0:id	9.99E-04	1mA	N0:type	0
N0:cgdbi	5.07E-17	N0:ids	9.99E-04	ША	N0:vbs	0
N0:cgdovl	1.26E-14	N0:igb	0		N0:vdb	1.502
N0:cgg	7.41E-14	N0:igcd	0		N0:vds	1.502
N0:cgghi	4.90E-14	N0:igcs	0		N0:vdsat	3.91F-01
N0:cgs	-4.74E-14	N0:igd	0		N0:vfbeff	-9.65F-01
N0:cgsbi	-3.49E-14	N0:igidl	0		NOvgh	1 153
N0:cgsovl	1.26E-14	NO:igisl	0		N0.vgd	-3 49F-01
N0:cjd	5.56E-14	NO:igs	0		NO.vgs	1 153
NO:cjs	<u>A</u>	NO:is	-9.99E-04		NO:vgsteff	5 00F-01
N0:csb	-6.39E-15	N0:isub	0		NOwth	6 53E-01
N0:csd	-2.60E-17	N0:pwr	1.50E-03			0.551-01

Total Cgate = Cgg = 74.1 fF

Total Cdrain = Cdd + Cjd = 12.5fF + 55.6fF = 68.1fF

Total Csource = Css + Cjs = 43.2fF + 0fF = 43.2fF

AC Response

- Design is very close to specs
- Discrepancies come from neglecting r_o and C_{drain}
- With design table information we can include estimates of these in our original procedure for more accurate results

Next Time

Current Mirrors