ECEN474: (Analog) VLSI Circuit Design Fall 2011

Lecture 7: Table-Based $\left(g_{m} / I_{D}\right)$ Design

Sebastian Hoyos
Analog \& Mixed-Signal Center
Texas A\&M University

Announcements

- Reading
- Will post g_{m} / I_{D} paper
- Material is only supplementary reference
- HW2 due Monday 9:10AM
- Exam 1 Friday Sept. 30

Agenda

- Technology characterization for design
- Table-based $\left(g_{m} / I_{D}\right)$ design example
- Adapted from Prof. B. Murmann (Stanford) notes

How to Design with Modern Sub-Micron (Nanometer) Transistors?

- Hand calculations with square-law model can deviate significantly from actual device performance
- However, advanced model equations are too tedious for design
- Tempts designers to dive straight to simulation with little understanding on circuit performance trade-offs
- "Spice Monkey" approach
- How can we accurately design when hand analysis models are way off?
- Employ a design methodology which leverages characterization data from BSI M simulations

The Problem

[Murmann]

The Solution

[Murmann]

Technology Characterization for Design

- Generate data for the following over a reasonable range of g_{m} / I_{D} and channel lengths
- Transit frequency (f_{T})
- Intrinsic gain ($g_{m} / g_{d s}$)
- Current density (I/W)
- Also useful is extrinsic capacitor ratios
- $\mathrm{C}_{\mathrm{gd}} / \mathrm{C}_{\mathrm{gg}}$ and $\mathrm{C}_{\mathrm{dd}} / \mathrm{C}_{\mathrm{gg}}$
- Parameters are (to first order) independent of transistor width, which enables "normalized design"
- Do design hand calculations using the generated technology data
- Still need to understand how the circuit operates for an efficient design!!!

Gm/Id

Gain

ID/W

CS Amplifier Design Example

- Specifications
- 0.6 $\mu \mathrm{m}$ technology
- $\left|A_{\mathrm{v}}\right| \geq 4 \mathrm{~V} / \mathrm{V}$
- $f_{u} \geq 100 \mathrm{MHz}$
- $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
- $\mathrm{Vdd}=3 \mathrm{~V}$

CS Amplifier Small-Signal Model (No R R_{s})

$$
\left.\omega_{z}=\frac{g_{m}}{C_{g d}} \quad \text { (located at very high frequency, }>\omega_{\mathrm{T}}\right)
$$

$$
\begin{gathered}
\omega_{p}=-\frac{1}{R_{\|}\left(C_{L}+C_{g d}+C_{d b}\right)} \approx-\frac{1}{R_{L} C_{L}} \\
A_{v}=-g_{m} R_{\| \|} \approx-g_{m} R_{L} \\
\omega_{u}=A_{v} \omega_{p} \approx \frac{g_{m}}{C_{L}}
\end{gathered}
$$

Design Procedure

1. Determine g_{m} from design specifications
a. $\quad \omega_{\mathrm{u}}$ in this example
2. Pick transistor L
a. Short channel \rightarrow high f_{T} (high bandwidth)
b. Long channel \rightarrow high r_{o} (high gain)
3. Pick $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}\left(\operatorname{or~}_{\mathrm{T}}\right)$
a. Large $g_{m} / \mathrm{I}_{\mathrm{D}} \rightarrow$ low power, large signal swing (low $\mathrm{V}_{\text {ov }}$)
b. Small $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}} \rightarrow$ high f_{T} (high speed)
c. May also be set by common-mode considerations
4. Determine I_{D} / W from I_{D} / W vs g_{m} / I_{D} chart
5. Determine W from I_{D} / W

- Other approaches exist

1. Determine $g_{m}\left(\& R_{L}\right)$

- From ω_{u} and DC gain specification

$$
\begin{gathered}
\omega_{u}=A_{v} \omega_{p} \approx \frac{g_{m}}{C_{L}} \\
g_{m}=\omega_{u} C_{L}=2 \pi(100 \mathrm{MHz})(5 p F)=3.14 \mathrm{~mA} / V
\end{gathered}
$$

Note, this may be slightly low due to neglecting C_{gd} and C_{db}

$$
\begin{gathered}
A_{v}=-g_{m} R_{\|} \approx-g_{m} R_{L} \\
R_{L}=\frac{A_{v}}{g_{m}}
\end{gathered}
$$

Adding 20\% margin to compensate for $\mathbf{r}_{\mathbf{0}}$ effects

$$
R_{L}=\frac{A_{v}}{g_{m}}=\frac{4.8}{3.14 m A / V}=1.5 \mathrm{k} \Omega
$$

2. Pick Transistor L

- Need to look at gain and f_{T} plots

- Since amplifier $\mathrm{A}_{\checkmark} \geq 4$, min channel length ($\mathrm{L}=0.6 \mu \mathrm{~m}$) will work with $g_{m} / I_{D} \sim>2$
- Min channel length provides highest f_{T} at this g_{m} / l_{D} setting

3. Pick $g_{m} / I_{D}\left(\right.$ or $\left.f_{T}\right)$

- Setting I_{D} for $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$ for large output swing range

Verify Transistor Gain \& f_{T} at $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$ Setting

- Transistor gain $=30.6 \gg$ amplifier $A_{v} \geq 4$
- Transistor $f_{T}=6.7 \mathrm{GHz} \gg$ amplifier $f_{u}=100 \mathrm{MHz}$
- g_{m} / I_{D} setting is acceptable

4. Determine Current Density (I_{D} / W)

- $g_{m} / I_{D}=3.14 V^{-1}$ maps to a current density of $20.2 \mu \mathrm{~A} / \mu \mathrm{m}$

- Verify current density is achievable at a reasonable V_{GS}
- $\mathrm{V}_{\mathrm{GS}}=1.15 \mathrm{~V}$ is reasonable with $\mathrm{Vdd}=3 \mathrm{~V}$ \& $\mathrm{V}_{\mathrm{DS}}=1.5 \mathrm{~V}$

5. Determine Transistor W from $\mathrm{I}_{\mathrm{D}} / \mathrm{W}$

- From Step 3, we determined that $I_{D}=1 m A$

$$
W=\frac{I_{D}}{\left(I_{D} / W\right)}=\frac{1 \mathrm{~mA}}{20.2 \mu \mathrm{~A} / \mu \mathrm{m}}=49.5 \mu \mathrm{~m}
$$

- For layout considerations and to comply with the technology design rules
- Adjust $49.5 \mu \mathrm{~m}$ to $49.2 \mu \mathrm{~m}$ and realize with 8 fingers of $6.15 \mu \mathrm{~m}$
- This should match our predictions well, as the charts are extracted with a $6 \mu \mathrm{~m}$ device
- Although it shouldn't be too sensitive to exact finger width

Simulation Circuit

Operating Point Information

NO:betaeff	9.97E-03
No:cbb	$2.48 \mathrm{E}-14$
No:cbd	-1.28E-17
NO:cbdbi	5.56E-14
N0:cbg	-8.56E-15
NO:cbs	-1.63E-14
NO:cbsbi	-1.63E-14
NO:cdb	-4.26E-15
NO:cdd	1.25E-14
NO:cddbi	-5.56E-14
NO:cdg	-2.87E-14
NO:cds	2.05E-14
N0:cgb	-1.42E-14
No:cgbovl	0
NO:cgd	-1.25E-14
NO:cgabi	$5.07 \mathrm{E}-17$
NO:cgdovl	1.26E-14
NO:cgg	7.41E-14
NO:cgghi	$4.90 \mathrm{E}-14$
NO:cgs	-4.74E-14
NO:cgsbi	-3.49E-14
NO:cgsovl	1.26E-14
No:cjd	$5.56 \mathrm{E}-14$
NO:cjs	0
N0:csb	-6.39E-15
NO:csd	-2.60E-17

No:csg	-368E-14		NO:qb	-5.03E-14
NO:css	$4.32 \mathrm{E}-14$		NO:qbd	-9.46E-14
NO:cssbi	$3.07 \mathrm{E}-14$		NO:qbi	-5.03E-14
N0:gbd	0		NO:qbs	0
NO:gbs	1.03E-10		No:qd	-3.72E-15
NO:gds	$102 \mathrm{E}-04$		No:qdi	-8.10E-15
NO:gm	$3.13 \mathrm{E}-03$	$3.14 \mathrm{~mA} / \mathrm{V}$	NO:qg	8.07E-14
NO:gmbs	$7.64 \mathrm{E}-04$		NO:qgi	$7.06 \mathrm{E}-14$
N0:gmoverid	$\frac{3.131}{9.995-04}$	$3.14 \mathrm{~V}^{1}$	N0:qinv	$4.20 \mathrm{E}-03$
NO:11	$9.99 \mathrm{E}-04$ -9.99 E		No:qsi	-1.21E-14
NO:14	-9.99E-04		NO:qsrco	-2.66E-14
NO:ibd	-8.00E-14		NO:region	2
NO:ibs	0		NO:reversed	0
No:ibulk	-800E-14		NO:ron	1.50E+03
NO:id	$9.99 \mathrm{E}-04$	1 mA	N0:type	0
No:ids	9.99E-04		NO:vbs	0
NO:igb	0		NO:vdb	1.502
NO:igcd	0		NO:vds	1.502
NO:igcs	0		NO:vdsat	3.91E-01
NO:igd	0		NO:vfbeff	-9.65E-01
NO:igid	0		NO:vgb	1.153
NO:igisl	0		NO:vgd	-3.49E-01
No:igs	0		NO:vgs	
NO:is	-9.99E-04		NO:vgs	1.153
NO:isub	0		NO:vgsteff	$5.00 \mathrm{E}-01$
NO:pwr	$1.50 \mathrm{E}-03$		NO:vth	$6.53 \mathrm{E}-01$

Total Cgate $=\mathrm{Cgg}=74.1 \mathrm{fF}$
Total Cdrain $=$ Cdd + Cjd $=12.5 \mathrm{fF}+55.6 \mathrm{fF}=68.1 \mathrm{fF}$
Total Csource $=$ Css + Cjs $=43.2 \mathrm{fF}+$ OfF $=43.2 \mathrm{fF}$

AC Response

- Design is very close to specs
- Discrepancies come from neglecting r_{o} and $C_{d r a i n}$
- With design table information we can include estimates of these in our original procedure for more accurate results

Next Time

- Current Mirrors

