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Administrative

• Instructor:  S. Hoyos, 315D  WERC, hoyos@ece.tamu.edu.

• TA: Srikanth Pentakota #14, 114 WERC .

• Website: www.ee.tamu.edu/~hoyos.  All lecture notes
and handouts will be posted here.

• Time & Place:  TR 3:55 PM to 5:10 PM ENPH 213

• Office Hour:  TR 11:00 AM to 12:00PM.
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Prerequisites

• Signal processing background:
– Digital and Statistical Signal Processing

• Analog circuit design background:
– Analog Integrated-Circuit Design

• Digital circuit design background:
– Basic gate-level logic design knowledge is enough.
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Course Materials
• Textbook:  No textbook required.

• References reserved at the Library:

1. IEEE Transactions Journals and Conferences Papers
2. Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986

by Gregorian and Temes.

2. Principles of Data Conversion System Design, IEEE Press, 1995
by Razavi.

3. CMOS Integrated A/D and D/A Converters, Kluwer, 2003
by van de Plassche.

4. Delta-Sigma Data Converters: Theory, Design, and Simulation, Wiley, 1996
by Norsworthy, Schreier, and Temes.

5. Analysis and Design of Analog Integrated Circuits, 4th Ed., Wiley, 2001
by Gray, Hurst, Lewis, and Meyer.

• Readings:  Will be posted on the course website.
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CAD Tools

• Class accounts.

For questions, contact Manager:  Wayne Matous 25 ZEC

• CAD Tools required:

– MATLAB, Simulink
Mixed-domain behavioral modeling, analog/digital filter synthesis, and etc.

– Cadence: GUI suite for design entry, layout, waveform display, and etc.
• Spectre RF

SPICE-type analyses: .dc, .ac, .xf, .noise, .tran, and etc.
Additional capabilities: pss, pac, pxf, pnoise, pdisto to analyze large-signal
nonlinear circuits (e.g., switched-capacitor circuits, RF circuits).

• Eldo: For transient noise analysis.
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Grading

• Homeworks: 15% Biweekly

• Lab: 10%
• Project 1: 15%

• Midterm : 20% In class.

• Final Project: 20% Assigned after midterm.

• Proj. Presentation:    In class. 

• Final Exam: 20% University schedule

Grading Policy:  Discussion with classmates is encouraged 

but projects that are alike won’t receive credit.
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Course Outline
1. Transmitters (Nyquist rate DACs, Oversampled DACs, Mixers, Filtering)
2. Receivers (LNAs, Mixers, Antialiasing Filters, Nyquist rate ADCs, 
Oversampled ADCs)
3. Digitally Assisted Transceivers (Calibration Techniques)
4. Applications on Communication Standards (BlueTooth, GSM, EDGE, 
WIMAX, UWB)
5. Software Defined Radios
6. Cognitive Radios
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Methodology
• Every lecture will cover a group of papers plus some 
of the fundamental concepts needed to understand the 
contributions in the referred papers. 

• The papers will be selected from the latest contributions 
to the state of the art. One of the main goals will be to 
understand which issues are addressed and why the 
previous topologies or techniques failed to tackle that 
issue.

• The students will be encouraged to investigate new and 
improved techniques.
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Why Mixed-Signal Interface?

• Nature is analog, not digital.

• Mixed-Signal interface’s role is “translator”.
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Why CMOS?

Desired features:
Low cost 
Low power
High integration
Single chip radio

TI Bluetooth SoC 2005 ~ 
7 mm²

Just 20% of SoC is 
RF/analog. Rest is digital 
logic and memory.
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Digital Signal Processing
• Noise immunity, robustness.

• Unlimited precision or accuracy.

• Flexibility, programmability, and scalability.

• Electronic design automation (EDA) tools widely 

available and successful.

• Benefiting from Moore’s law – “The number of transistors 

on a chip doubles every 18 months,” IEDM, 1975.

– Cost/function drops 29% every year.

– That’s 30X in 10 years.
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2004 ITRS Silicon Technology 
Trend

Ref:  ITRS website http://public.itrs.net/
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Analog Signal Processing

• Sensitive to noise – SNR (signal-to-noise ratio).

• Subject to device nonlinearities – THD (total harmonic distortion).

• Sensitive to device mismatch and process variations.

• Difficult to design, simulate, layout, test, and debug.

• Inevitable, often limits the overall system performance.

• Scaling scenario:

– Enjoyed scaling until ~0.35-µm technology node.

– High-speed, low-resolution ADCs keep benefiting.

– High SNR design difficult to scale with low supplies (≤ 3.3V).
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Example1: Communication 
Transmitter

A. Jerng, and C. G. Sodini, “Wideband ΔΣ Digital-RF Modulator for High Data Rate Transmitters”.
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Example 2: Communication Receiver
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Example 3: Mixed-Signal Hearing Aid

Ref:  D. G. Gata, “A 1.1-V 270-μA
mixed-signal hearing aid chip,”
JSSC, pp. 1670-8, Dec. 2002.
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ΣΔ Modulator and Transmitter
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Conventional IQ Modulator

DAC, analog filter and analog mixer. DAC and analog filter more difficult 
to design as bandwidth and number of bits increase.

Problems: Timing errors, non-linear capacitances, IQ mismatches, DC 
offsets cause modulator image and LO leakage signals. 

Problem: Transmission of spurs outside signal band which are difficult to 
filter out at RF frequencies.  Clock images and quantization noise is 
upconverted. Need better filtering that just sinc of zero-order-hold. 
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ΣΔ Digital-RF Modulator

Oversampling IQ ΣΔ Modulators.

DRFC is Digital RF converter which combines the functionality of the 
DAC and mixer.  
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Quadrature Digital-RF Converter

3,2,1,
2
*

== nfnf clk
LO 3,2,1,

2
*

== nfnf clk
LO

3,2,1,
2
*

== nfnf clk
LO

In every cell a LO signal drives differential pairs with current sink. Modulated 
current is multiplied by digital bits. Common cascode devices isolate output 
from switches. 

to avoid aliasing of quantization noise.

to avoid leaking of shaped ΣΔ quantization noise.

1,2,3n,
2
fn*f clk

LO ==

1,2,3n,fn*f clkLO ==

A. Jerng, C.G. Sodini, “A wideband ΔΣ Digital-RF Modulator for High Data Rate Transmitters”
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Noise Shaping in ΣΔ DACs
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First Order Noise Shaper
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Second Order Noise Shaper
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Second Order MASH Error 
Feedback Topology
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Third Order Noise Shaper

Case 1: Output Bits larger than 1 Case 2: Just 1 output bit 
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Noise Shaping Improvements

Assume ideal digital filtering
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Co-Design ΣΔ NTF and BPF
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indQ ~ 10-25 depending on top metal 
resistance and distance to substrate.

OSR ~ 10-16, 2nd order and 1 bit 
SNR=40 dB. Higher order increases the 
SNR but also increases the slope of the 
out of band quantization noise which 
need to be filtered out by the BPF. Low 
order, multi-bit ΣΔ modulator is a better
option.

What is the problem with going 
multi-bit ?
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Quadrature Digital IF
ΣΔ modulator can be degraded by spurs coming from LO leakage 

and quadrature LO phase mismatches.

A potential solution is digitally up-convert the ΣΔ signal before the 
RF modulation. LO and image spurs from the digital-RF converter will 
be separated from the RF output by fIF and 2fIF.

Conventional IF 
upconversion of 
fIF=fclk/4 would be 
convenient because 
digital cosine and sines
only have values 1, -1, 
0. However there is 
aliasing of shaped 
quantization noise from 
fclk/2. 

Quadrature IF 
upconversion solves 
the problem.
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LO phase sensitivity of Quadrature
Digital IF

SNR vs. LO Phase Error for Quadrature Digital-IF.

SNR for a 2nd order, 3 bit ΣΔ modulator.
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Mismatches in the Digital-RF 
Converter

Small phase mismatches in the LO can be modeled as gain mismatches

The DAC has 3 bits which can be implemented with 7 unit elements cells. 
Mismatches between the cells will degrade performance as well.

)cos()sin()sin( ttt mismatchesmismatches ωφωφω +=+
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Mismatches in the Digital-RF 
Converter (Cont..)

A matching better that 1 % needed for SNDR > 50 dB.

For a 5 GHz LO, the timing spread needs to be better than 250 fs for a 1% 
mismatch.
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HW 1
1. Explain why and prove that a discrete signal is periodic with period FCLK. 

2. Prove that a real valued signal has an even spectrum. Explain the symmetry 
differences between discrete-time and continuous-time signals. 

3. Prove that multiplication of time domain signals produces convolution of the 
signals frequency domain. Prove the dual property as well. Explain the 
differences for this property between discrete-time and continuous-time 
signals.

4. Derive the noise shaping transfer function of the MASH DAC architecture. 
Find an expression for the dynamic range  improvement vs. OSR. Please 
provide a plot.
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Lab 1
1. Using simulink implement a 2nd order, 3 bit ΣΔ with IF digital modulation. 

Consider the following specifications:

fIF= fCLK/4

fLO=fRF± fIF=fRF ± fCLK/4 (use upper-sideband mixing)

fRF=5.25 GHz, fCLK=2.625 GHz, fLO=4.6 GHz.

Simulate the full system and get plots of the spectrum at baseband, IF 
and RF. Play special attention to the impact of the second harmonic of the 
LO to the overall noise contribution to the RF signal band. Use a 4th order 
Bessel filter at 5.25 GHz.

2. Repeat the simulations for the following choice of frequencies: fCLK=2.625 
GHz, fIF=600 MHz and fLO=4.65 GHz. Note that fLO is not longer a multiple 
fCLK, then some aliasing of quantization noise will appear in the RF signal band. 
The only attenuation is provided by the sinc response of the zero-order-hold. 

3. Repeat the simulations for finite rise and fall times (75 ps) of the clock 
signal. Please derive the new response of the zero-order-hold circuit. 
Characterize and simulate the improvement of the new filter response. What is 
the attenuation of the sinc response and the new response at 2fRF?
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Provide signal spectrum plots and SNDRs for the output of the ΣΔ
modulator and the RF output for the following cases:

fIN = fCLK/8. 
fIN = 1 MHz

For the SNDR calculation use the whole signal spectrum first and then assume
an ideal filter of fCLK/20 for the ΣΔ output and a filter of 500 MHz for the
RF output. Explain the differences in the results. Why for fIN = fCLK/8 there is
so much harmonic distortion?

Modified your simulink model to include the following inaccuracies in the 3 
bit DAC. Assume that the LSB level is 100 mV and the following output 
voltage levels are measured from 000 to 111 (-0.01, 0.105, 0.195, 0.28, 
0.37, 0.48, 0.6, 0.75) V.
Find the offset & full scale errors in LSBs, the gain error using the LS 
method. Find the corrected codes and compute the DNL & INL. 
Repeat all your simulations with the nonideal DAC and provide the new 
plots and SNDRs. 

Lab 1 (Cont..)



Spring 2009 S. Hoyos - Advanced Mixed-Signal Interfaces 35

RF Bandpass Reconstruction Filter

4th order Bessel bandpass filter with 260 MHz of bandwidth at 5.25 GHz.

It a shunt LC resonator. The normalized resonator quality factor 

Then, 

Tunability with  PN junction varactors in the resonator load capacitance.
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Tuning Loop Block Diagram

A 90º phase difference between the phase detector inputs is achieved by 
the feedback loop. 

The phase detector can be 2 Gilbert-cell multipliers with cross-couple 
connections to cancel DC offsets produced by mismatches.   



Spring 2009 S. Hoyos - Advanced Mixed-Signal Interfaces 37

Distortion vs. Tunability
Nonlinearity of the varactor:
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Filter Testing Results

Higher C2 also worsens the linearity. The varactor can be operated in amore 
linear region if fixed switch capacitors are use to increase the tunability.  This 
can lead to a full bank of digitally switchable caps, which requires a digital tuning 
loop.  
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DAC Architectures
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D/A Converter Transfer 
Characteristic

Note: Vout (bi = 1, for all i) = VFS - Δ = VFS(1-2-N) ≠ VFS
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• N = # of bits

• VFS = Full-scale input 

• Δ = VFS/2N = 1LSB

• bi = 0 or 1

• Multiplication
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Ideal DAC Transfer 
Characteristic
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Monotonicity
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Offset
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Gain Error
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Differential and Integral 
Nonlinearity

• DNL = deviation of an output step from 1 LSB (= Δ = VFS/2N)

• INL = deviation of the output from the ideal transfer characteristic

DNL < -1 ?
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DNL and INL

• DNL measures the incremental (local) nonlinearity.

• INL measures the cumulative (global) nonlinearity.
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DNL and INL
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out

000
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001 011 101010 100 110 111
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Measure DNL and INL (Method I)

Endpoints of the transfer characteristic are always at 0 and VFS-Δ.

Endpoint
stretch
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out
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Measure DNL and INL (Method II)

Least-square
fit and stretch

Endpoints of the transfer characteristic may not be at 0 and VFS-Δ.
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Measure DNL and INL

Method I (endpoint stretch)

Σ(INL) ≠ 0

Method II (LS fit & stretch)

Σ(INL) = 0

Vout
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Binary-Weighted 
DAC



Spring 2009 S. Hoyos - Advanced Mixed-Signal Interfaces 52

Binary-Weighted CR DAC

• Binary-weighted capacitor array → most efficient 
architecture

• Bottom plate @ VR with bj = 1 and @ GND with bj = 0

Cu = unit capacitance
VX

2Cu Cu Cu8Cu 4Cu

VR

Vo

b3 b2 b1 b0

CP
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Binary-Weighted CR DAC

• Cp → gain error (nonlinearity if Cp is nonlinear)
• INL and DNL limited by capacitor array 
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Stray-Insensitive CR DAC
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MSB Transition

Largest DNL error occurs at the midpoint where MSB 
transitions, determined by the mismatch between the MSB 

capacitor and the rest of the array.
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Midpoint DNL

• δC > 0 results in positive DNL.
• δC < 0 results in negative DNL or even 

nonmonotonicity.

δC > 0 δC < 0
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Output Glitches

• Glitches cause waveform distortion, spurs and elevated noise 
floors.

• High-speed DAC output is often followed by a de-glitching SHA.

• Cause: Signal 
and clock skew 
in circuits

• Especially 
severe at MSB 
transition where 
all bits are 
switching –

0111…111 →
1000…000
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De-Glitching SHA

1

N

o

SHA output must be smooth (exponential settling can be 
viewed as pulse shaping → SHA BW does not have to be 

excessively large).

SHA samples the output 
of the DAC after it settles 
and then hold it for T, 
removing the glitching
energy.
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Frequency Response
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Binary-Weighted Current DAC

• Current switching is simple and fast.
• Vo depends on Rout of current sources without op-amp.
• INL and DNL depend on matching, not inherently monotonic.
• Large component spread (2N-1:1)
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R-2R DAC

• A binary-weighted current DAC
• Component spread greatly reduced (2:1)
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Unit-Element DAC
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Resistor-String DAC

• Simple, inherently monotonic → good DNL 
performance

• Complexity ↑ speed ↓ for large N, typically N ≤ 8 bits
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Code-Dependent Ro

• Ro of ladder varies with signal (code).
• On-resistance of switches depend on tap 

voltage.

VR

Vo

Ro

Di
b0 b0 b1 b1

Co

Signal-dependent
RoC causes HD.
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INL and DNL

  

Vj =
Rk

1

j−1

∑

Rk
1

N

∑
⋅ VR =

j −1( )R + ΔRk
1

j−1

∑

NR + ΔRk
1

N

∑
⋅ VR

  

Vj-1 =
j − 2( )R + ΔRk

1

j−2

∑

NR + ΔRk
1

N

∑
⋅ VR

  

Vj − Vj-1 =
R + ΔRj−1

NR + ΔRk
1

N

∑
⋅ VR ≈

VR

N
+

ΔRj−1

NR
⋅ VR

DNLj = Vj − Vj-1 −
VR

N
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

VR

N
≈

ΔRj−1

R
⇒ DNL = 0, σDNL =

σR

R
.

 ΔR = 0,σR[ ]
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INL and DNL

  

Vj =
Rk
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∑
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N

∑
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∑

NR + ΔRk
1

N

∑
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∑
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VR
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⎟ 

VR

N
⇒ INL = 0, σ INL max( ) ≈

N
2

σR

R
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
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.
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Current DAC

• Fast, inherently monotonic → good DNL performance
• Complexity increases for large N, requires B2T decoder.

Io

Binary-to-Thermometer Decoder

b1 bN

I I I
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Unit Current Cell

• 2N current cells typically broken up into a (2N/2 X 
2N/2) matrix

• Current source cascoded to improve accuracy
• Coupled inverters improve synchronization of 

current switches.

o

1

N
j j
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Segmented DAC
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BW vs. UE DAC’s
Binary-weighted DAC

• Pros
– Small
– Simple
– Min. switched elements

• Cons
– Large DNL and glitches
– Not guaranteed 

monotonic

• INL/DNL
– INL(max) ≈ (√N/2)σ
– DNL(max) ≈ 2*INL

Unit-element DAC

• Pros
– Good DNL, small glitches
– Linear glitch energy
– Guaranteed monotonic

• Cons
– Needs B2T decoder
– Large area for N ≥ 8

• INL/DNL
– INL(max) ≈ (√N/2)σ
– DNL(max) ≈ σ

Combine BW and UE architectures → “segmentation”
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Segmented DAC
…

• MSB DAC: M-bit UE 
DAC

• LSB DAC: L-bit BW 
DAC

• Resolution: N = M + L

• 2M+L s.e.

• Good DNL

• Small glitches

• Same INL (depends on 
matching)
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Comparison
Example:  N = 12, M = 8, L= 4, σ = 1%

2M+L = 
260

0.06 
LSB’s

0.32 
LSB’sSegmented

N = 120.64 
LSB’s

0.32 
LSB’s

Binary-
weighted

2N = 40960.01 
LSB’s

0.32 
LSB’sUnit-Element

# of S.E.σDNLσINLArchitecture

Max. DNL error occurs at the MSB segment transitions.
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Example: “8+2” Segmented Current 
DAC

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 
0.6mm2," IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948-
1958, issue 12, 1998.
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MSB-DAC Biasing Scheme

Common-centroid global biasing + divided 4 
quadrants of current cells
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MSB-DAC Biasing Scheme
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Randomization and Dummies
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Measured INL and DNL
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Summary
• Nyquist DAC architectures

– Binary-weighted DAC
– Unit-element (thermometer-coded) DAC
– Segmented DAC
– Resistor-string, current, charge-redistribution DAC’s

• Oversampling DAC
– Oversampling performed in digital domain (zero stuffing)
– Digital noise shaping (ΣΔ modulator)
– 1-bit DAC can be used
– Analog reconstruction/smoothing filter
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