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Transmitter Digital Predistortion
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Digital Predistortion Principle

Shaping of digital data that cancels the distortion of nonlinearities in the 
analog and RF circuits.

Issues: Bandwidth expansion, DSP table size and updating, PM-AM 
errors in modulators
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Correction of Power Amplifier Memory 
and Nonlinearity
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Nonlinear and Memory Effect Mitigation
in a WCDMA TX
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Nonlinear and Memory Effect Mitigation
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Impact of Predistortion on the 
Constellation Error 
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Transmitter Digital Predistortion
Building Blocks

Reference signal and signal memory stores a sequence of desired and actual 
signal.

Data enables DSP to calculate AM/AM and AM/PM correction tables. This is 
done ongoing, no transmission interruption.

Between predistortion updates, ref LO is switched in to calibrate gain of the 
down-converter.   
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Digital Correction to Errors in 
Modulators

The modulator has amplitude offset (a1, a2), gain error (α, β) and phase offset Φ. 

Digital predistortion can compensate for the errors.  

HW # 2: Find a digital predistortion that cancels the effect of the nonidealities. 
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Cartesian Feedback Adaptive RF 
Power Amplifier Linearization 

SungWon Chung, e.t. “Open-Loop Digital Predistortion Using Cartesian Feedback for Adaptive RF Power 
Amplifier Linearization”.
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Look-up Table in Cartesian Feedback

The cartesian LTU is trained by analog feedback loop.

The predistorted I and Q data cancels out the PA nonlinearity.

In contrast with Polar appraoch, the cartesian approach can reverse 
nonlinearities that are not rotational symmetric.

The fundamental equation is    fPA([Ipd Qpd])=[I Q]

There is no parameterized model. No apparent convergence issues.

Can this approach remove memory issues?
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Asymmetry Nonlinearity in the Transmit Path 

Demodulator 900 MHz transmitter output using class-A power amplifier for 
a rectangular baseband constellation. (a) below PS 1 dB compression point, 
(b) at PA 1-dB compression point (27 dB).



Spring 2009 S. Hoyos - Advanced Mixed-Signal Interfaces 13

Transmitted Noise Model 

HW # 2(cont.): Find an expression of Y(s) that includes all the noise sources.

Please comment on how to design the building blocks to minimize the noise.
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Interpolation Noise in Coarse LUT  

This is like quantization noise in the coarse LUT.
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Noise Sources in Open Loop 
Predistortion

Two noise sources in open loop digital predistortion system: (a) 
downconversion noise, (b) LUT interpolation noise.
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Distortion Gain 
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Signal Bandwidth effect and Power
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A Transmitter with an All-digital PLL 
and Polar Modulation 

Robert Bogdan Staszewski, et. al, “All-Digital PLL and Transmitter for Mobile Phones” JSSC05

Designed for GSM/EDGE

Uses Polar modulation

ΣΔ modulator for freq. Information
in a digitally controlled VCO.

PA is also digitally controlled.
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Polar Modulation 

Digital to Frequency Conversion (DFC)

Digital to RF Amplitude Conversion (DRAC)
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DAC Architecture 
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Digitally Controlled Oscillator
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Digitally Controlled PA

64 parallel connected 
NMOS for 6 bits of 
resolution.

C1 is on-chip cap while 
C2 and L1 filters the 
residual second harmonic. 
The circuit is single ended. 

Power supply is 1.4 V.  
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Polar Transmitter Based on APLL
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Z-Domain Model of ADPLL
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Amplitude Modulation Path

DAC segmentation, 
unit element and ΣΔ.

DEM (bank of 8) 
used in unit element
to improve time-
averaged linearity.
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Measured Output Spectrums
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Spectrum Spurs
34 fR is a clock 

harmonic

f0 +2fR is second 
clock harmonic 
modulated by the DCO

66fR –f0 is the mixing 
product of the previous 
spurs.
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Lab 2
Proposed your own predistortion technique capable of compensating the following 

transmitter non-idealities in your ΣΔ modulator and transmitter:

Offset, phase and gain mismatches in the mixers

Gain, offset and DNL errors in the Digital-to-RF Converter. 

Non-linearities in the mixer and PA

Quantization noise aliasing

Memory in the PA (assume one clock cycle memory only)

The technique should be fully adaptive. If your technique assumes some parameter 
modeling, it should be clearly stated how the adaptive technique is capable of learning the 
model parameters.

Provide a report that explains the modeling of transmitter non-idealities and the principles of 
the adaptive predistortion technique.

Provide simulations showing the effectiveness of your technique in compensating the non-
idealities. Use the same transmitter specs proposed in Lab 1.

Explain the impact of non-idealities in the feedback sensing circuits and provide ideas on
how you can compensate for these problems. 

If you are using any idea from a paper, please provide the corresponding reference.  

Clearly indicate which are your contributions versus the ideas used from the references.
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Lab 2 (cont…)

For the evaluation of your predistortion technique, please drive the TX with a 64 QAM 
constellation with a max amplitude of 1 in both I&Q components. 

Provide plots of the constellation sensed by the receiver without any non-idealities and 
with the non-idealities before predistortion and after predistortion. Also provide the EVM in 
dB in each case (see http://en.wikipedia.org/wiki/Error_vector_magnitude). Use the 
following values for the non-idealities.

Offset (-4% of your full swing), phase (1º of I mixer with respect to Q 
mixer) and gain (+3  %) mismatches in the mixers.

For the Digital-to-RF Converter, assume that the 3-bit D/A converter was designed 
for an ideal LSB level of 100 mV. The following output voltages levels were measured 
for the real D/A for thee codes 000 to 111 respectively: -0.01V 0.105V 0.195V 0.28V 
0.37V 0.48V 0.6V 0.75V.

Non-linearities in the mixer and PA are

Memory in the PA is 2% of previous sample.
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Transmitter Nonidealities

Errors in Transmitter
– Base band nonlinearities (DACs)
– Gain and phase mismatches (Mixers)
– Nonlinearities and memory effects (Power 

amplifiers)

Problems
– Spectral re-growth
– In band distortion 
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Digital Calibration [1-10]
• Objective
Build a nonlinear digital filter that adaptively predistort the 

baseband signal to minimize the transmitter errors
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Digital Calibration
Three approaches
1) Predistortion [7,8]
First model these errors then get the inverse function that can 

compensate for these error. However this is a difficult task.
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Predistortion
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Digital Calibration
2)Postdistortion [1,2,9]
Which means calibrating the errors after the transmitter 

which is not our case because we need a predistorter. 
However its easier to be implemented
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Postdistortion
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Example
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 convex function
Here you needn't know h(n) but unfortunately you can't put the postdistorter as a predistorter because
they are nonlinear functions   
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Digital Calibration
3) Pre-Postdistortion [4,5,6,10]
Use the indirect learning architecture to design the 

predistorter directly. The advantage of this type of 
approaches is that it eliminates the need for model 
assumption and parameter estimation
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Pre-Postdistortion

1-Initially z(0)=x(0)

2-The postdistorter is then designed using the MSE between y(0) and z(0)  

3-In the next iteration Fpre(1)=Fpost(0) 

4-The postdistorter is then redesigned using the MSE between y(1) and z(1) 

5-The system converge such that fpost=fpre at steady state
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Pre-Postdistortion (quadrature
Transceveier)
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Postdistortion Design
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Postdistortion Design
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Postdistortion Design
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Postdistortion Design
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Postdistortion Design

The optimal filter weight vector  can be found by 
differentiating  and setting this to zero
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Postdistortion Design

• To reduce the complexity and memory requirements 
due to matrix inversion, a recursive normalized least 
mean square (NLMS) method is used
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Tx Model
• 10% gain mismatch and 10° phase mismatch between the inphase and 

quadrature mixers. 
• A Wiener power amplifier model is used. The LTI portion has the a transfer 

function which is given by

• The coefficients of the memoryless nonlinear portion of the power amplifier 
model are extracted from an actual class AB power amplifier [5], c1 = 14.9740 
+ 0.0519j, c3 = −23.0954 + 4.9680j, and c5 = 21.3936 + 0.4305j 
(Gain=23.52dB, OP1-dB=21.4dBm, OIP3=32.8dBm)
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Results (64 QAM)

EVM=19.79 % before predistortion
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Results (5 Multi-tones Input signals)

Before 
Predistortion

ACPR=30dB

After
Predistortion

ACPR=55dB
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Another Approach
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Comparison

1st approach 2nd approach

EVM (64 QAM) 0.7% 2.2%

ACPR (5 multi-tone 
Input signal)

55dB 50dB

Complexity for the
predistorter design

48 weights 16 weights
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Polyphase Multipath Transmitter 
Technique

Eric A. M. Klumperink, et. al., “Polyphase Multipath Radio Circuits for Dynamic Spectrum Access,”
IEEE Communications Magazine • May 2007
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Non-linearities
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2-Path Circuit Cancelling Even 
Harmonics 
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Polyphase 3-path circuit cancelling 2ω
and 3ω harmonics.
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Polyphase n-path transmitter using 
mixers as phase shifters.
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Circuit concept of an 18-path power 
upconverter.
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Matlab Simulations
Single-path power 

upconverter has spectral 
components at 

KLOωLO ± mωBB

Non cancelled products 
for KLO=j x n + m, where 
j=…-2, -1, 0, 1, 2,….., 
where m is positive or 
negative. Among these, the 
most important ones are 
3ωLO + 3ωBB, 5ωLO + 5ωBB, 
7ωLO + 7ωBB, 15ωLO -
3ωBB, 13ωLO - 5ωBB.

E. Mensink, E. A. M. Klumperink, and B. Nauta, “Distortion cancellation by polyphase multipath 
circuits,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 52, no. 9, pp. 1785–1794, Sep. 2005.
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Using 1/3 Duty Cycle 

First significant noncancelled product for an 18-path system with 1/3 duty 
cycle and balanced BB-signals is 17ωLO - ωBB
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Photo and output spectra of the 18-path Power 
Upconverter (PU) chip, with out-of-band power < –40 dBc

up to the 17th harmonic (LO = 350 MHz)..
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Extraction of Nonlinear Coefficients
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Extraction of Nonlinear Coefficients 

A linearity test can be used but needs estimation of the output harmonics 
which requires costly analog and/or digital circuits. 

The analog approach involves down conversion of the harmonics followed 
by low pass filtering. A PLL is needed to generate the LOs. The design needs 
to be very wideband.

The digital approach consists of down conversion followed by an ADC and 
digital DFT that can be designed to focus on the harmonic distortion.  

An alternative approach uses time average cross-correlation of the 
nonlinear system response to the sum of pseudo-random (PN-pseudo noise) 
sequences that are uncorrelated to each other  with the product of the 
sequences. 
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Correlation Technique Extraction of 
Nonlinear Coefficients 

M. Y. Li, I. Galton, L. E. Larson and P. M. Asbeck, “Correlation Techniques for Estimation of Amplifier 
Nonlinearity, “Radio and Wireless Conference, 2004 IEEE
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Correlation Technique Extraction of 
Nonlinear Coefficients 
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