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Adaptive Filtering Method of Steepest Descent

N

Steepest descent is an old, deterministic method, which is the basis for
stochastic gradient based methods.

This 1s a feedback approach to finding the minimum of the error
performance surface.

e crror surface must be known

e adaptive approach converges to the optimal solution, wy = R™!p
without inverting a matrix
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e {x(n)} are the WSS input samples
e {d(n)} is the WSS desired output

e {d(n)} is the estimate of the desired signal given by

A

d(n) = w (n)x(n)

[z(n),z(n—1),---,z(n — M +1)]* and

/ where x(n)
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\ w(n) = [wo(n), w1 (n), -, wy,(n)]! is the filter weight vector at /

time 7.
Then
e(n) = d(n) —d(n) = d(n) — w (n)x(n)
Thus the MSE of time 7 is
J(n) = Efle(n)|’}
= o2 —wlp—plw(n) +w(n)Rw(n)
where

e 0- — variance of desired signal
e p — cross-correlation between x(n) and d(n)
e R - correlation matrix of x(n)

When w(n) is set to the (optimal) Wiener solution, then

/ w(n) =wog =R 'p \
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4 )

and
J(n) = Jnin = Qw — pHwy
Hence, in order to iteratively find w, we use the method of steepest

descent. To illustrate this concept, let M = 2, in the 2-D spaced w(n),
the MSE forms a bowl-shaped function.

A J(w)

w &

A contour of the MSE is given as

N /
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Thus, if we are at a specific point in the bowl, we can imagine dropping a
marble. It would reach the minimum by going through the path of
steepest descent.

N /
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Hence the direction in which we change the filter direction is —V.J(n), or

wn+1)=w(n)+ WSIQ&O&

or, since VJ(n) = —2p + 2Rw(n)
w(n+1) =w(n)+ pup — Rw(n)]
forn =0,1, 2, - and where y is called the step size and

w(0) =0 (in general)

Stability: Since the SD method uses feedback, the system can go unstable

e bounds on the step size guaranteeing stability can be determined with
respect to the eigenvalues of R (widrow, 1970)

N /
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Define the error vector for the tap weights as
c(n) =w(n) —wy
Then using p = Rwyg in the update,

w(n+1) = w(n)+ pulp — Rw(n)]
= w(n)+ u/Rwyg — Rw(n)]
= w(n) — puRe(n)

and

w(n+1) —wg=w(n) —wg— uRec(n)

or

c(n+1)

c(n) — pRe(n)
I— uR]c(n)

N
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A sing the Unitary Similarity Transform
R = QQQ”
we have
c(n+1) = [I - pQQQ"|c(n)
Pre-multiplying by Q¥ gives
Qfc(n+1) = [Q" - 1Q"QRQ"c(n)
= [I-pR]Q"c(n)
Define the transformed coefficients as
v(n) = Qc(n)
= Q"(w(n) — wo)
Then
/ v(n+1) = [I-pQv(n)
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with 1nitial condition

iovnwﬁioTé&H

if w(0) = 0.

The k" term in v(n + 1) (mode) is given by
vg(n+1) = (1 — prp)v(n) k

or using the recursion

Thus for all lim wvg(n) = 0 we must have

N

11— pudg| <1 forallk,or O0<p<

H
—Q"wy

=1,2,--- M

vE(n) = (1 — puAg) vk (0)

V/B@vm

/
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The k" mode has geometric decay

vr(n) = (1 = pAe)"vx(0)

We can characterize the rate of decay by finding the time it takes to decay
to e~ ! of the initiative. Thus

@wAﬂwv = AH - tv,wvjﬂ@wAOv = @IH@\AAOV

Y
= ! ~ L for pu<1
In(1 - pAg) — pAx
The overall rate of decay is
—! <r< — !
In(1 — pAmax) = In(1 — ptAmin)

N /
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e
/j *— -0
3 4 5

Number of iterations, n

Recall that

J(n) = Juin + (W(n) — wo) " R(w(n) — wo)
= Jmin + (W(n) — wo) " QQQ" (w(n) — W)

/ Jmin + v(n)" Qv (n) \
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M
= Jmin + M yi@w?&lw
k=1

M
— ANBWS + M VLAAH o ?y\avwi_@\aAOv_w
k=1

Thus lim J(n)

n—0oo

»NBE.

Example:

N
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Figure 1: Two-tap predictor for real-valued input.

Consider the effects of the following cases

e Varying the eigenvalue spread x(R) = Amax and keeping p fixed.

vszms

e Varying u and keeping the eigenvalue spread y(R) fixed.

The following 4 figures plot the loci of vy (n) versus v2(n) for the SD
algorithm with step-size 4 = 0.3 and varying eigenvalue spread:

/@xﬁﬁ = 1.22; M)x(R) = 3; (¢) x(R) = 10; (d) x(R) = 100. \
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algorithm with step-size u
(a)x(R) = 1.22; (b)x(R)

N

The following 4 figures plot the loci of wy (n) versus wa(n) for the SD

= 0.3 and varying eigenvalue spread:
= 3; (c) x(R) = 10; (d) x(R) = 100.
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Figure 2: Learning curves of steepest-descent algorithm with step-size pa-

rameter ;4 = 0.3 and varying eigenvalue spread. \
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Figure 3: Loci of vy (n) versus vo(n) with x(R) = 10 and varying step-
/mmN@m” (a) overdamped , i = 0.3 (b) underdamped, p = 1.0. \
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Figure 4: Loci of w; (n) versus ws(n) with x(R) = 10 and varying step-
sizes: (a) overdamped , u = 0.3 (b) underdamped, © = 1.0.

N /
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x(n)}

For M = 2 suppose

R, =

N

0.8 1

Example: Consider the system identification problem

0.8
0.5
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ha@ﬁ eigen analysis we have

2
A1 = 1.8, A2 = 0.2 and n < ﬂ|
also o i
1 1 1 1
qdQ1 = —= Q2 = —=
V2 |1 V2 | -1
and i )
1 1 1
Q=—
V2 |1 -1
Also, ) i
4 1.11
wo=R7'p
—0.389
Thus

/ v(n) = Q"[w(n) — wol

Department of Electrical and Computer Engineering
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Noting that

L1 1 1.11
V2 |1 -1 —0.389

vi(n) = (1 — u(1.8))"0.51
SA:VHCIEQ.BV:HOQ

0.51
1.06
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Figure 5: Convergence properties of steepest descent solution to normal

(@:mmos for two « values (a) o = 1.0, (b)a = 0.5. \
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The Least Mean Square (LMS) Algorithm

The error performance surface used by the SD method is not always
known a priori. We can use estimated values. The estimates are RVs and
thus this leads to a stochastic approach.

We will use the following instantaneous estimates

R(n) = x(n)x" (n)

N /
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Recall the SD update

w(n+1) = win) + 5u[-V(J(n))]

where the gradient of the error surface at w(n) was shown to be
V(J(n)) = —-2p + 2Rw(n)

Using the instantaneous estimates,

V(J(n)) = =2x(n)d*(n)+ 2x(n)x"(n)w(n)
= —2x(n)[d"(n) — x" (n)w(n)]
= —2x(n)[d"(n) — d*(n)]
= —2x(n)e"(n)

where e*(n) is the complex conjugate of the estimate error.

N /
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Putting this in the update
w(n+1) =w(n)+ ux(n)e*(n)

Thus LMS algorithm belongs to the family of stochastic gradient
algorithms.

The update is extremely simple while the instantaneous estimates may

have large variance, the LMS algorithm 1s recursive and effectively
averages these estimates.

The simplicity and good performance of the LMS algorithm make it the
benchmark against which other optimization algorithms are judged.

N /
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The LMS algorithm can be analyzed by invoking the independence

theory, which states
1. The vectors x(1),x(2),---,x(n) are statistically independent.
2. ) is independent of d(1),d(2),---,d(n — 1)

A
w.AvHmmﬁmcmcom:%am@msmmﬁosiv“_uc:mmsam@m:amsﬁow
d(1),d(2),---,d(n—1)

4. x(n) and d(n) are mutually Gaussian

well justified, but allows the analysis to proceeds.

N

~

The independence theorem is justified in some cases, €.g. beamforming
where we receive independent vector observations. In other cases it is not

/
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Using the independence theory we can show that w(n) converges to the
optimal solution in the mean

lim E{w(n)} = wy

n-— 00

In certain cases, to show this, evaluate the update

w(n) + px(n)e*(n)

w(n+1)—wg=w(n) —wq+ ux(n)e*(n)

E)
_|_

=
I

c(n+1) = c(n)+px(n)(d*(n) - x" (n)w(n))
—  c(n) + px(n)d* (n) — px(n)x" (n)[w(n) — wo + wo
= c(n) + px(n)d* (n) — px(n)x" (n)c(n) — px(n)x" (n)w

N /
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\Zoﬁo that since w(n) is based on past inputs desired responses, w(n) /
(and c(n)) is independent of x(n).

Thus
c(n+1) = [I - px(n)x" (n)]e(n) + px(n)ef(n)
4
E{c(n+1)} = (I-pR)E{c(n)} + p E{x(n)es(n)}

4

N
zero, why?

E{c(n+1)} = (I- pR)E{c(n)}
Using arguments similar to the SD case we have

2

lim F{c(n)} =0 if O0<p<-

n—00 ,vfgmx

or equivalently

2
lim E{w(n)}=wy if 0<pu<

/ n—oo Amax \

Department of Electrical and Computer Engineering  University of Delaware Hw H




ELEG-636: Statistical Signal Processing

4 )

Noting that
Amax < trace[R] = Mr(0) = Mo?

a more conservative bound i1s

2
Mo?

0<pu<

Also, convergence in the mean

lim E{w(n)} = wy

n—oo

1s a weak condition that says nothing about the variance, which may even

grow.

A stronger condition is convergence in the mean square, which says

lim E{|c(n)|?} = constant

n—oo

N /
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Dz equivalent condition is to show that /

lim J(n) = lim E{|e(n)|*} = constant

n—oo n—oo

write e(n) as

e(n) = d(n)—dn)=dn)—w?n)xn)
= d(n) — w{'x(n) — ¢ (n)x(n)
= eg(n) — ¢ (n)x(n)

Thus
J(n) = E{le(n)*}

= E{eo(n) — " (n)x(n)(ef(n) — x" (n)e(n))}
= Jmin + “mﬁomgvxgvxmgvn?&w

>4

Y

Jex (1)
— pNB:D + ANmNASKv
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\mm:oo Jox (1) is a scalar /

Jx(n) = E{c(n)x(n)x"(n)c(n)}
= E{trace[c” (n)x(n)x(
(n)e(

(n)e(

= F{trace|x(

n)x" (n)e(n)
= trace[E{x(n)x" n)
Invoking the independence theorem

Jex(n) = trace[E{x(n)x" (n)}E{c(n)c" (n)}]

trace[ RK(n)]

where
K(n) = E{c(n)c" (n)}

Thus

/ J(n) = Jmin + Jex(n) \
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Recall

Let

K(n) = QS(n)Q* and

Jox(n) = trace
= trace
= trace
= trace

= frace

N

\ = Jmin + trace[RK(n)]

QPRQ =92 or R=QNQY

QYK (n)Q = S(n)

where S(n) need not be diagonal. Then

RK(n)]
QQQ"QS(n)Q"]
QQS(n)Q"

Q" QQS(n))
2S(n)]

Department of Electrical and Computer Engineering  University of Delaware

35




ELEG-636: Statistical Signal Processing

hm:.om (2 is diagonal

which is

s;(n) =

N

which for the diagonal elements is

Suppose Jex (1) converges, then s;(n + 1)

.Qw pNB:D v{

Jox(n) = trace[QS(n)] = M Aisi (1)

where s1(n), sa(n),- - -, sp(n) are the diagonal elements of S(n).

S(n+1)= I — p2)S(n)d — uQ) + 1? Jnin2

sin+1) = (1 —puX)?si(n) + @2 Jminks 1=1,2,---, M

The recursion expression can be modified to yield a recursion on S(n),

s;(n) and from the above

.Qw &55 vS

1— (1= pAi)?

Mtv& — tw yw

/
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_ MEFE i=1,2,---. M
2 — tv,s
Utilizing
M
Jex(n) = trace[QS(n)] = > ~ Ais;(n)
i=1
we see
M By
I me.N — %55 L
SWQWO \ AS\V HMH 2 — tv,s.

The LMS misadjustment is defined

M :
H.WB\QLOO P\.@VAAQ\N\V \\h\/\w
M =—= =
&55 sMﬂw 2 — tv,s

A misadjustment at 10% or less is generally considered acceptable.

N

/
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hxmgw_o” one tap predictor of order one AR process. Let /
r(n) = —azx(n—1)+v(n)

and use a one tap predictor.

:M_..; o

u(n-1)

(2) o)
The weight update 1s
wn+1) = whn)+ px(n+1)e(n)
= w(n)+ px(n—1)z(n) —wn)z(n — 1)]
/Zoﬁm wo = —a consider two cases and set u = 0.05. \
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\Go_smﬁﬂ the expected trajectory of w(n). /
Recall
win+1) = wn)+pz(n—1)e(n)

= w(n)+pz(n —1)z(n) —wln)z(n — 1))
= [1 —pzx(n—Dx(n—D]wn)+ px(n — 1)x(n)
Since z(n) = —ax(n — 1) + v(n)
wn+1) = [1—px(n—1)zn—D]wn)+ px(n—1)—ax(n—1)
+o(n)]
= [1 —px(n—Dx(n—1D]wn) — pax(n —)z(n —1)
+px(n — 1)v(n)

Taking the expectation and invoking the dependence theorem

B{w(n+1)} = (1 - uo2) E{w(n)} — poa

N /
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\9\@ can also derive a theoretical expression for J(n).

Note that the initial value of J(n) is

and the final value 1s

if v 1s small

2 2
J(00) = 02 + o7 P2 ) = o2 {1+ i
2 2
Also, the time constant is
1 1 1
T —= — —_— — ~
2In(1 — pA;) 2In(1 — po2)  2uoc?

J(n) = [02 = 021+ So)](1 = po2)*" + 021+ 5o
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N

Random-noise
generator (1)

Example: Adaptive equalization

channel and noise on signal.

e Delay

Channel

/!
Adaptive

transversal
equalizer

vin) \

Random-noise
generator(2)

Goal: Pass known signal through unknown channel to invert effects of

eln}

~
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h he signal is a Bernoulli sequence /

+1 with probability 1/2
Ty =
—1 with probability 1/2

The channel has a raised cosine response

1+cos(Z(n—-2))] n=1,2,3

h, =
otherwise

O N

Note that w controls the eigenvalue spread x(R).
Also the additive noise is ~ N (0, 0.001).

Note that h,, is symmetric about n = 2 and thus introduces a delay of 2.
We will use an M = 11 tap filter, which will be symmetric about n = 5
and introduce a delay of 5.

/,Hr:m an overall delay of 0 = 5 4+ 2 = 7 is added to the system. \
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é )

Channel response and Filter response

A

(a)

(o)

Figure 11: (a) Impulse response of channel; (b) impulse response of opti-
mum transversal equalizer.

N /
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N

Consider three w values

SUMMARY OF PARAMETERS FOR THE EXPERIMENT ON

TABLE 9.1
ADAPTIVE EQUALIZATION
w 2.9 3.1 3.3 3.5

HO) 1.0963 1.1568 1.2264 1.3022
1) 0.4388 0.5596 0.6729 0.7774
H2) 0.0481 0.0783 0.1132 0.1511
Ammin 0.3339 0.2136 0.1256 0.0656
Amax 2.0295 2.3761 2.7263 3.0707
¥(R) = Armax/Amia 6.0782 11.1238 21.7132 46.8216

7

2

damd

Note step size i1s bound by w = 3.5 case

2

=0.14

= 30 (0)

Choose 1 = 0.075 in all cases.

11(1.3022)
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Figure 12: Learning curves of the LMS algorithm for an adaptive equalizer
with number of taps M = 11, step-size parameter © = 0.075, and varying
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Figure 13: Ensemble-average impulse response of the adaptive equalizer

/@m_oa 1000 1iterations) for each of four different eigenvalue spreads. \
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Figure 14: Learning curves of the LMS algorithm for an adaptive equalizer
with the number of taps M = 11, fixed eigenvalue spread, and varying

/ﬁo_.u-mmNo parameter /. \
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hxmgw_o” Directionality of the LMS algorithm /

e The speed of convergence of the LMS algorithm 1s faster in certain
directions in the weight space.

e If the convergence is in the appropriate direction, the convergence
can be accelerated by increased eigenvalue spread.

Consider the deterministic signal
z(n) = Ay cos(win) + Az cos(wan)
with
A2+ A2 A% cos(wy) + A3 cos(ws)

1
R = -
2 | A2 cos(wy) + A2 cos(ws) A2 + A2

which gives

2 1 2 .
/ A\l = m\fﬁ + cos(wy)) + m\»wﬁ + cos(wz)) \
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-

and

N

1 1
= mbwﬁ — cos(wy)) + mbwﬁ — cos(w2))
1 —1
q; = d42 =
1 1

Consider two cases:
zq(n) = cos(1.2n) + 0.5cos(0.1n) and x(R) = 2.9
rp(n) = cos(0.6n) + 0.5cos(0.23n) and x(R)=12.9

In each case let

P=XMq = Rwyg=XMNq =wyg=q; =

P = Aq2 = Rwg = A2 = wg =qg =

~
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4 )

Look at 200 iterations of the algorithm.

Look at minimum eigenfilter first, wyg = qo = Then maximum

eigenfilter, wg = q =

N /
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Figure 15: Convergence of the LMS algorithm, for a deterministic sinu-

soidal process, along “slow” eigenvector (i.e., minimum eigenfilter) for
[m::@i uq(n) and (b)input uy(n). \
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4 — B
N \ W@
, s -

Figure 16: Convergence of the LMS algorithm, for a deterministic si-
nusoidal process, along “fast” eigenvector (i.e., minimum eigenfilter) for

/@3.5?: uq(n) and (b)input uy(n). \
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% ormalized LMS Algorithm /

In the standard LMS algorithm the correction is proportional to
px(n)e* (n)

w(n+1) =w(n)+ ux(n)e*(n)
If x(n) is large, the update suffers from gradient noise amplification. The
normalized LMS algorithm seeks to avoid gradient noise amplification

e The step size is made time varying, 1(n), and optimized to minimize
error.

Thus let
1

win+1) = wn)+ mE::IQ?z

— w(n) + u(n)[p — Rw(n)

Choose j4(n), such that the updated w(n + 1) produces the minimum
MSE,

/ J(n+1) = E{le(n + 1)|*} \
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-

where
e(n+1)=dn+1)—w’(n+1)x(n+1)
Thus we choose p(n) such that it minimizes J(n + 1).

The optimal step size, po(n), will be a function of R and V(n). As
before, we use instantaneous estimates of these values.

To determine po(n), expand J(n + 1)

Jin+1) = E{e(n+1)e*(n+1)}
= E{dn+1)—-w(n+1)x(n+1))
(d*(n+1) —=x"(n+1w(n+1))}
— 3w (n+ p - pHwln+ 1)
+w(n+1)Rw(n+1)

N
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4 )

Jnt1) = of | win) = Jun)V() b
! win) = Suln)V(m)
[ win) = G () 'R () = ()70

= wH(n)Rw(n) — 1u(n)w(n)RV(n)
— () VH () Rw(n) + 12(n) T () RV (1)

N /
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N

Jn+1) = of— W) - Lp(m)Vm)|
o [win) — Lu(m)V(n)
! (n)Row(n) — 2 u(n)w" (n)RV (1)
— S u()VH () Rw(n) + () V¥ (m)RY (1)
Differentiating with respect to u(n),
QAM\WAMVC = WQEASG + W By (n) — Wiﬁmﬂﬂgv
Iwﬂmngdz.gv + w (n)VH (n)RV (n)
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-

Setting it equal to 0

N

o(n)VEm)RV(n) =

w (n)RV(n) — p"V(n)
+VI(n)Rw(n) — VI (n)p

w? ()R — p”|V(n) + V¥ (n)[Rw(n) — p]

VH(n)RV(n)

Rw —p|"V(n) + V¥ (n)[Rw(n) — p]

VH (n)RV(n)
LVA )V (n) + 3VH () VH ()

VH(n)RV(n)

V2 (n)V(n)

ngvﬁﬂgv
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Thus

N

\Gm?m instantaneous estimates

1

xt(n)x(n)  |[x(n)]?
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h hus the NLMS update is /

~

v
Jix(n

:N@v

wn+1)=w(n)+ I x(n)e*(n)

I

To avoid problems when ||x(n)||* &~ 0 we add an offset

~

[
a+ ||x

wn+1)=w(n)+ A:v__wxo;vm*A:v

where a > 0.

Consider now the convergence of the NLMS algorithm.

wn+1)=w(n)+ Z x(n)e*(n)

substituting e(n) = d(n) — w (n)x(n)

wn+1) = w(n)+ x(n)[d* (n) — x" (n)w(n)]

/ [ (n)]|? \
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-

x(n)x (n) x(n)d*(n)

- T; EOIE T@Q FOIE

Compare NLMS and LMS:

NLMS:
Y x(n)d*(n)
[|x(n)]|*

x(n)x" (n)
[1x(n)[ |

i:lenT|p Mizfr@

LMS:
w(n+1) = [T px(n)x™ (n)]w(n) + px(n)d* (n)

Comparing them we see the following corresponding terms

N
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LMS NLMS
U i
x(n)x” (n) x(n)x" (n)

I x(n) II?
x(n)d” (n) x(n)d" (n)
I x(n) II°

Since in the LMS case

0<pu<

the NLMS condition is

N

0< <

2

2

trace[E{x(n)x" (n)}] ~ trace[R]

guarantees stability by analogy,

2

~

trace Tﬁ x_A

n)xH (n) L

[x(n)]]2
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-

make the following approximation

B x(n)x (n)

[[x(n)]]2
Then

x(n)x" (n)
[x(n)]]?

trace | E

N

_ x(n)x(n)

-~ B{|x(n)]]?}

trace[ E{x(n)x" (n)}]

[x(n)]|?

E{trace[x(n)x (n)]}

[x(n)]|?

)
E{trace[x" (n)x(n)]}
[|1x(n)]|*
E{trace[||x(n)]|°]}
[|1x(n)]|?
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-

N

Thus the NLMS update

‘()
e ™

w(n+1) =w(n) + i

will converge if 0 < 1 < 2

e The NLMS has a simpler convergence criterion than the LMS

e The NLMS generally converges faster than the LMS algorithm
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