Power Management

Introduction

Courtesy of Dr. Sanchez-Sinencio’s Group
Today

• What is power management?
• Big players
• Market
• Types of converters
• Pros and cons
• Specifications
• Selection of converters
Power Management

Motivation

- Portable consumer electronics
- Alternative energy systems
- LED lighting
- IoT
- Automotive

Global power management IC market size and forecast, 2012 – 2019 (USD billion)

Annual power management IC market revenue ($B USD)

(Source: Power Integrated Circuit - Quarterly Update Q1-2017 report, June 2017, Yole Développement)

Compound Annual Growth Rate: 3.6% from 2016 to 2022

Power management

- Power management broadly refers to the generation and control of regulated voltages required to operate an electronic system.
- Distributed power supply systems require localized regulators at the PC board level.
- Power requirements:
 - Low noise
 - Increased efficiency
- Two methods:
 - Linear regulators
 - Switching regulators
Power management

Applications

- Battery Charger
- Fuel Gauge
- Flyback Controller
- PFC Controller
- 3V ~ 4.2V Battery
- 12V Consumer Adapter
- 24/48V Industrial Supply
- AC line
- Low-noise LDO
- DC/DC Boost, Power Switch
- DC/DC Buck-boost
- DC/DC Buck
- DDR Terminator
- Audio Amplifier
- DC LED Driver
- AC LED Driver
- 3V Wireless Module
- 5V USB Port
- 3.3V Sensor
- 1V System on Chip
- 1.8V/0.9V DDR Memory
- 8Ω Speaker
- LED backlight LCD Panel
- LED Lamp 13V/0.8A

Key players

- Texas Instruments, Inc.
- Alpha and Omega Semiconductor
- Analog Devices
- STMicroelectronics
- Mitsubishi Electric
- Renesas Electronics Corporation
- Dialog Semiconductor PLC
- Linear Technology Corporation
- Maxim Integrated
- ON Semiconductor, Rohm Co., Ltd.
- Samsung Semiconductor
- Semtech Corporation
Power management

Distributed power supply system

Data acquisition board
Power management

Why is Power management necessary?
• Increasing chip functionality and complexity will overrun energy budget
• Need for improved efficiency
• For portable applications
 – Use low power, low cost SoC
• Single battery operation
 – Low voltage circuits
• Battery life extension
 – Efficient regulators/converters
 – Standby mode operation
Power management

Trends

• Move towards lower supply voltages
• Power management is the often misguided attempt to operate the analog and digital circuitry on the same supply
• Reducing supply voltage results in lower power dissipation, reduced dynamic range of signal
• Adoption of unipolar supplies (eliminating negative supply)
Power management

Why convert and regulate?

• Need to convert to appropriate voltage circuit needs
• Need to regulate to ensure proper circuit operation/performance
 – If there is an increase/decrease in the amount of current that is drawn, the output voltage should not fall/rise - **Load regulation**
 – If there is a change in the input voltage of our power supply the output voltage should not change - **Line regulation**
• There are other desirable characteristics such as: transient response, efficiency, EMI, cost, size
Power management

Types of converters

• Linear regulators
 – Work by operating a transistor in the linear region (i.e. like a variable resistor), sensing the output voltage (Vout) and automatically changing this variable resistor value such that Vout remains constant
 – Pros: Cheap, simple, small size
 – Cons: Inefficient, low current applications, limited input/output ranges

• Switching regulators
 – Convert a given supply voltage with a known voltage range to virtually any desired output voltage
 – Switching converter delivers power to the load in bursts from the source.
 – Pros: efficient, wide operating range
 – Cons: EMI, inductor usage-board size increased, increased cost

• Switched capacitor voltage converters
 – Uses capacitors for transfer of energy
 – Pros: can be integrated, small size
 – Cons: inefficient, regulation needed
Selection/Design of Power management devices

Terminologies

- **Input-Output voltage relation**: Based on the input output voltage relation, different converter types should be used. If V_{out} is less than V_{in}, a step-down (BUCK) converter is used. If V_{out} is greater than V_{in}, a step-up (BOOST) converter is used. If both cases are required, a BUCKBOOST converter is used. If V_{out} and V_{in} have different polarity, an inverting converter is used.

- **DC line regulation**: Change in output voltage for a change in input voltage. This measurement is made under conditions of low power dissipation.

- **DC load regulation**: Change in output voltage for a static change in output/load current.

- **Efficiency**: Power efficiency is defined as the percentage of the input power that is delivered to the output. Ideally, switching converters can approach 100%.

- **Input voltage (Vin) range**: The input voltage range determines the maximum and minimum allowable input supply for the converter. Input supplies higher than the maximum allowable input can damage the converter.

- **Maximum output current (Iout)**: Maximum output current that the converter can provide while meeting the datasheet parameters.

- **No load current operation**: Several applications need the converter to hold the output voltage stable and provide good performance under a no current load condition.

- **Output voltage noise**: The switching nature of the switching converters results in an output tone with harmonics.

- **Over-current protection**: This feature limits the maximum amount of current that the converter can source.
Selection of Power management devices

Terminologies

- **Power supply rejection ratio (PSRR)** - A measure of how well the converter rejects electrical noise at the input voltage when measured at the output voltage.

- **Quiescent current (Iq)** - Also called ground current, is the current used to operate the converter, and is not delivered to the load. This is measured when the converter is enabled and the output/load current is zero (0).

- **Transient line regulation** - Ability of the converter to maintain a constant output voltage with a transient step at the input.

- **Transient load regulation** - Change in output voltage for a dynamic (step) change in output current.

- **Temperature coefficient** - This describes the output voltage variation with respect to the temperature variation. Usually measured in “parts per million” (ppm).

- **Output voltage ripple amplitude** - This identifies the maximum peak-to-peak ripple amplitude of the output voltage.

- **Soft-start operation** - Guarantees that the output voltage will ramp-up slowly from zero to the required output voltage.
Selection of Power management devices

- Depends a lot on the input and output conditions of the application
- Based on the specific application requirements, different power conversion components could be selected
- Various parameters need to be considered for optimal component choice
- Specific application requirements like efficiency, thermal limits, noise, complexity and cost need to be taken into consideration in order to select an optimal power solution
Selection of Power management (PM) devices

Selecting your PM device

<table>
<thead>
<tr>
<th>Condition</th>
<th>Topology</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>When to use</th>
</tr>
</thead>
</table>
| $V_{OUT} < V_{IN}$ | LDO (Linear Regulator) | • Simple
• Cheap
• Low noise
• Fast | • Low efficiency
• Thermal limit | • Low current
• Low $V_{IN} \rightarrow V_{OUT}$ ratio
• Noise sensitive application |
| $V_{OUT} > V_{IN}$ | Boost | • Good efficiency | • Switch noise | • When $V_{OUT} > V_{IN}$ |
| $V_{OUT} \neq V_{IN}$ (changing V_{IN}) | Buck-Boost | • Good efficiency | • Switch noise | • When V_{IN} can be smaller or larger than V_{OUT}
• i.e.: Battery input |
Low drop-out linear regulator

- **LDO** is suitable for applications which require low noise, low current and low VIN / VOUT ratio
- LDOs regulate the output voltage by controlling the conduction of the pass element in a linear fashion
- Linear regulation provides accurate, noise free output voltage which can quickly respond to load changes on the output
Low drop-out linear regulator

- Linear regulation means that the voltage difference between input and output times the average load current is dissipated in the LDO pass element

\[P_d = \frac{V_{in} - V_{out}}{I_{load}} \]

- LDO power dissipation exceeds ~0.8W, wise to look for alternatives

\[V_{out} = V_{ref} \left(1 + \frac{R_1}{R_2} \right) \]
Low drop-out linear regulator

Selecting or designing LDOs

- Consider the input and output voltage range
- LDO current capability
- Package dissipation capability
- LDO dropout voltage - minimum \(VIN - VOUT \) voltage where the device can regulate
- LDO quiescent current \(I_Q \)
Switching regulators

Analogy

- Imagine that an incandescent light bulb is to be dimmed whereby the switch is on 100% of the time,
- A resistor is placed in series with it and if switched on all the time then when the light is dimmed, energy is wasted in the resistor - (this is like the linear regulator)
- If instead of the resistor, switch is turned off for 50% of the time and then turned on for 50% of the time then light will be dimmed by 50%
- If the rate of switching is slow, (eg. once per second) then the light flickers, but if switching is fast then no flicker seen
- This is the basic principle by which step down switching power supplies work
Buck Converters

• Switch-mode step-down converters which can provide high efficiency and high flexibility at higher VIN / VOUT ratios and higher load current
• Most Buck converters contain an internal high side MOSFET and low side synchronous rectifier MOSFET
• Switches are switched on and off via internal duty-cycle control circuit to regulate the average output voltage
• Switching waveform is filtered via an external LC filter stage
Buck Converters

• MOSFETs are either ON or OFF, very little power dissipated
• Duty-cycle control makes large $\frac{V_{in}}{V_{out}}$ ratios possible
• Internal MOSFETs $R_{\text{ds_on}}$ determines the current handling capabilities of the Buck converter
• MOSFET voltage ratings determine the maximum input voltage
• Switching frequency together with the external LC filter components will determine the ripple voltage on the output
• Higher switching frequency buck converters can use smaller filter components but increased switching loss
• Low power standby modes- use a method called Pulse Skipping Mode (PSM): reduction in switching frequency at light load, thereby increasing light load efficiency
Boost Converters

• Boost converters are used when V_{OUT} needs to be higher than V_{IN}
• Step-up the input voltage to a higher output voltage
• Accomplished by charging an inductor via an internal MOSFET switch, and discharging the inductor via a rectifier to the load when the MOSFET switch is off
• Transition from inductor charge to discharge will reverse the voltage across the inductor, thereby stepping up the voltage higher than V_{IN}
Boost Converters

• on/off duty-cycle of the MOSFET switch will determine $\frac{V_{out}}{V_{in}}$ boost ratio
• Feedback loop controls the duty-cycle to maintain stable output voltage
• Output capacitor is the buffer element to reduce the output voltage ripple
• Current rating of the MOSFET switch together with step-up ratio will determine the maximum load current
• MOSFET voltage rating will determine the maximum output voltage capability
Buck-Boost converter

Topology 1

- Used in applications where input voltage can vary, either below or above the output voltage (more flexibility)
- Input voltage is positive, and the output voltage is negative
- Switch is on, the inductor current builds up
- Switch is opened, the inductor supplies current to the load through the diode
- Circuit can be modified for a negative input and a positive output by reversing the polarity of the diode
Buck-Boost converter

Topology 2

• Circuit allows both the input and output voltage to be positive

• When the switches are closed, the inductor current builds up.

• When the switches open, the inductor current is supplied to the load through the current path provided by D1 and D2

• Output current capability in Buck mode is higher than in Boost mode, due to step-up requiring higher switch current at the same load conditions when compared to Buck mode

• MOSFET voltage ratings will determine the maximum input and output voltage range

• Fundamental disadvantage to this circuit is that it requires two switches and two diodes
Switched Capacitor converters

• Previous discussed topologies used inductors to transfer energy and perform voltage conversions
• Switched capacitor voltage converters accomplish energy transfer and voltage conversion using capacitors
• Not as efficient as an inductive-based converter
• Small solution size and ruggedness not found in the inductive alternative
• No magnetic elements
• Minimal EMI
• Two most common switched capacitor voltage converters are the voltage inverter and the voltage doubler
Switched Capacitor converters

- C1, is charged to the input voltage during the first half of the switching cycle
- During the second half of the switching cycle, its voltage is inverted and applied to capacitor C2 and the load
- Output voltage is the negative of the input voltage, and the average input current is approximately equal to the output current

- Pump capacitor is placed in series with the input voltage during its discharge cycle, thereby accomplishing the voltage doubling function
- Average input current is approximately twice the average output current

- Switching frequency impacts the size of the external capacitors required, and higher switching frequencies allow the use of smaller capacitors
- Duty cycle ~ 50%- optimal charge transfer efficiency
- Inverter and doubler circuits provide no output voltage regulation
Other power management devices

• LED drivers
 – Regulate for constant output current instead of constant output voltage, because LEDs need to be driven with certain current for specific light output
 – Most high brightness LEDs have a forward voltage between 3 ~ 3.5V
 – Depending on the input voltage and the number of LEDs used in the LED string, the converter can be a buck, boost or buck-boost (for different LED strings)
 – Key parameters for selecting LED drivers are input voltage, LED string voltage and LED string current, single / multi-string LEDs and dimming, whether the LED driver needs to fulfil power factor and THD requirements

• Power switches
 – Used to enable and disable power rails
 – EN pin is used to activate the pass element
 – current limit circuit will open the switch when output current exceeds the current limit threshold

• Battery chargers
 – Provide the correct charge current and voltage for the specific battery cell
Summary

- Covered power management basics, terminologies, selections

<table>
<thead>
<tr>
<th>Linear</th>
<th>Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Only steps down (buck) so input voltage must be greater than output voltage</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Low to medium, but actual battery life depends on load current and battery voltage over time. Efficiency is high if difference between input and output voltages is small</td>
</tr>
<tr>
<td>Waste heat</td>
<td>High, if average load and/or input to output voltage difference are high</td>
</tr>
<tr>
<td>Complexity</td>
<td>Low, usually requiring only the regulator and low value bypass capacitors</td>
</tr>
<tr>
<td>Size</td>
<td>Small to medium in portable designs, but may be larger if heatsinking is needed</td>
</tr>
<tr>
<td>Total cost</td>
<td>Low</td>
</tr>
<tr>
<td>Ripple/Noise</td>
<td>Low; no ripple, low noise, better noise rejection</td>
</tr>
</tbody>
</table>
Next class

• Linear regulators