Fundamentals of Battery Charger

Sam Wong (s-wong@ti.com)
Agenda

• Introduction
• Battery Management Solutions Overview
• Battery Basics
• Battery Charging Considerations and Requirements
• Charger Topology
• Switch-mode Charger
• Advanced Charger
• USB On-the-Go (OTG)
• Typical Safety Features
• Complete Charger Systems
• Learn More
Introduction

• **Sam Wong**
 – Systems & Validation Manager, Switching Charger Solutions Product Line

• **Childhood and Education**
 – Born in Hong Kong
 – University of Texas at Austin, B.S., 1996
 – University of Texas at Dallas, M.S., 2002

• **Career Path**
 • MCU, ADC, Phase-Lock Loop, Temperature Sensors
 – Systems Engineer, TI BMS-Gauge (2009-2012)
 – Systems Engineer, Member Group Technical Staff, TI BMS-Charger (2012-2015)
 – Applications Manager, Member Group Technical Staff, TI BMS-Charger (2015-2016)
 – Systems & Validation Manager, Member Group Technical Staff, TI BMS-Charger (2016-now)
Introduction – Objective of Today

• Introduce battery management systems (BMS) and why it’s important
• How multi-disciplines approach (chemistry, analog and power) enable BMS
• How BMS makes our life better
Overview - Battery Management Solutions

Consumer
- Smartphone
- Power Bank
- Sports Cam
- Tablet
- Portable Audio
- MiFi
- Gaming

Wearables
- Fitness
- Smart watch

Industrial
- POS
- Handheld meters
- Drone
- Security
- Medical
- Robotic
- Super cap
- Solar

NB
- Laptop
- Ultrabook

Automotive
- E-Call
- Dash Cam
- Smart Control
- Telematics Car/Fleet Trac
Overview – Battery Management Trends

• **Ever Increasing Battery Capacity**
 – Supports Multi-core CPU for higher performance.
 – Supports long run time

Source: Mediatek http://heliox20.com/
Overview – Fast Charging Trends

Top Chinese Smartphones Charging Time

- 0 to 60%: 10 min
- 25 min
- 38 min
- 15 min
- 33 min
- 60%
Overview – Battery Management Trends

Samsung Galaxy Note 7 Batteries Reportedly Catch Fire

SEUL, South Korea — Almost $7 billion was wiped off smartphone giant Samsung Electronics Co Ltd's market value Thursday after it delayed shipments of its Galaxy Note 7 amid reports of exploding batteries.

Faults with the new flagship device could be a major blow to the South Korean firm. Samsung was counting on the Galaxy Note 7 to maintain momentum against Apple's new iPhones — which are expected to be unveiled next week.

"This is some major buzz-kill for Samsung, especially given all of the hard-earned excitement that products like the Note 7 have been garnering lately," IDC analyst Bryan Ma said. "The
Overview - Requirements of Battery Management Solutions

Safety
- No fire
- Maintain battery cycle life

Charging
- Charge from empty to full
- Fast charge
- Universal charging

Discharging (Gauging)
- Long run time
- Accurate capacity measurements

Safety
- No fire
- Maintain battery cycle life

Charging
- Charge from empty to full
- Fast charge
- Universal charging

Discharging (Gauging)
- Long run time
- Accurate capacity measurements
Overview - Battery Management Components

System Host

- **PMIC Multi-Rail**

DC/DC Converter(s)

- **System Rails**

Pack+

- **Chemical Fuse**

Pack-

- **Sense Resistor**

Li-Ion Battery Pack

Charger IC

- **1-4 Cells**
- **Host Controlled SMBus or Stand Alone**

Fuel Gauge IC

- **Protection**
- **Over/Under Voltage Gauging**
- **Temp Sensing Charge Control Authentication**

AFE IC

- **Analog Interface**
- **Over Current Cell Balancing**

Secondary Safety Over Voltage Protection IC (Optional)

PMIC

- **SPI or I2C**

- **3 V / 5V**

DC+

- **AC Adapter**

DC-

- **DC/DC Converter(s)**
 - **3 V / 5V**

- **System Host**

- **Focus**

- **Li-Ion Battery Pack**

- **Support Components**

- **SPI or I2C**

- **CLK**

- **DATA**

- **Temp**

- **V_{CELL1}, V_{CELL2}**

- **Sense Resistor**
Battery Basics - 18650 Battery Cell

18650 Cell

Cell Capacity (mAh)

Xiaomi 16,000mAh Power Bank
Battery Basics - Battery Configuration - xSxP

Assume: 1100mAh each battery

1S3P
1100mAh x 3 = 3300mAh
3300mAh x 3.8V = 12.6Wh

2S3P
1100mAh x 3 = 3300mAh
3300mAh x 7.6V = 25.2Wh
Battery Basics - Why is Li-Ion popular?

• Li-Ion is more expensive, and requires more sophisticated pack management compared to other battery types… why has is become so widespread?

• A high performance battery for high performance devices!
 – Gravimetric energy density → High Capacity, Light weight battery
 – Volumetric density energy → High Capacity, Thin battery
 – Low self-discharge → Stays charged when not in use
Typical Anode and Cathode Materials used for Li-Ion Cells

- All the above cells are considered “Li-ion”
- In addition to the different voltage ranges shown, they will also have different capacity, cycle life, and charge/discharge rate performance (not shown)
- Specific performance parameters can be optimized based on chemistry and physical design of a cell – the “important” parameters depend on the application
- The charge control (algorithm) needs to be tuned to the specific type of cell being used

<table>
<thead>
<tr>
<th>Cathode Material (LI+)</th>
<th>Li-CoO₂</th>
<th>Li-Mn₂O₄</th>
<th>Li-FePO₄</th>
<th>Li-NMC</th>
<th>Li-NCA</th>
<th>Li-CoO₂-NMC</th>
<th>Li-MnO₂-NMC</th>
<th>Li-CoO₂</th>
<th>Li-CoO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode Material</td>
<td>Graphite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vₘₐₓ</td>
<td>4.20</td>
<td>4.20</td>
<td>3.60</td>
<td>4.20</td>
<td>4.20</td>
<td>4.35</td>
<td>4.20</td>
<td>4.20</td>
<td>2.70</td>
</tr>
<tr>
<td>Vₘᵢᵈ</td>
<td>3.60</td>
<td>3.80</td>
<td>3.30</td>
<td>3.65</td>
<td>3.60</td>
<td>3.70</td>
<td>3.75</td>
<td>3.75</td>
<td>2.20</td>
</tr>
<tr>
<td>Vₘᵳᵡ</td>
<td>3.00</td>
<td>2.50</td>
<td>2.00</td>
<td>2.50</td>
<td>2.50</td>
<td>3.00</td>
<td>2.00</td>
<td>2.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Battery Basics - Variations of “Li-Ion” Batteries
Battery Model - Battery Equivalent Circuit

- Battery is equivalent to a huge cap + parasitic resistor (over simplified)

![Diagram showing battery model]

- Constant Current
- Capacitor Voltage
- 4.2V
- 3.0V
Battery Model - Battery Equivalent Circuit

- Battery is equivalent to a huge cap + parasitic resistor (over simplified)

\[C \cdot \Delta V = I \cdot \Delta t \ (mAh) \]

- For a given battery, higher charging current (mA) can reduce the charging time (h)
Battery Model - Battery C-rate

• Expressing current relative to nominal battery capacity
• If nominal capacity is 1100mAh
 – 1C discharge rate means discharge of a fully charged battery in 1 hour when $I_{\text{discharge}} = 1100$ mAh
Battery Model - Li-ion Battery Resistance Profile

Impedance is strongly dependent on Temperature, State of Charge (SOC) and Aging

DOD=1-SOC (State of Charge)
SOC=1 (Full charged battery)
SOC=0 (Full discharged battery)
Battery Basics - Effect of battery impedance on run-time

Battery Voltage (V)

4.2
3.9
3.6
3.3
3.0
2.7
2.4

OCV (no load)

I \cdot R

Low impedance cell (loaded)

High impedance cell (loaded)

End of Dsg

Battery Capacity
Battery Charging - Charging System Considerations

- **Battery**
 - Battery chemistry, number of cells... 1s2p, 1s3p, 3s1p, etc.
 - Charge current, battery voltage, and charger profile

- **System**
 - Input voltage, adapter current, system voltage, board size and thickness
Battery Charging - “Ideal” Li-Ion CC-CV Charge Curve

Charge Characteristics
Measurement temperature: 20°C
Charge: CC-CV: 2.1A-4.2V (3hrs.cut)

Cell voltage
“CC”
“CV”
capacity
current

Charge time (min.)

Cell voltage (V)
0 30 60 90 120 150 180
2.0 2.5 3.0 3.5 4.0 4.5

Current (mA)
0 500 1000 1500 2000 2500

Capacity (mAh)
0 500 1000 1500 2000 2500

UR18650F

Texas Instruments
Battery Charging

• Constant Current (CC) and Constant Voltage (CV) required
• CV requires more time than discharge
Battery Charging - “Li-Ion needs high accuracy charge control

- The higher the voltage, the higher the initial capacity
- Overcharging shortens battery cycle life

Source: “Factors that affect cycle-life and possible degradation mechanisms of a Li-Ion cell based on LiCoO₂,” Journal of Power Sources 111 (2002) 130-136
Battery Charging - Charging System

• **Charging system functions:**
 - Regulate battery inputs: constant voltage and constant current
 - Safety of charging
 - Status of charging
Charger Topology

Linear Charger

Switch-mode Charger
Charger Topology – Linear Power Conversion

Conduction Loss Dominates

\[P_{\text{LOSS}} = (V_{\text{IN}} - V_{\text{OUT}}) \times I_{\text{CHG}} \]

Efficiency can only be 50-90%
Charger Topology – Switch-mode Power Conversion

Conduction Loss Dominates

\[P_{\text{LOSS}} = P_{\text{LOSS}_Q2} + P_{\text{LOSS}_Q3} \]

\[P_{\text{LOSS}_Q2} = I_{\text{CHG}}^2 \times R_{\text{DS}_Q2} \times D \]

\[P_{\text{LOSS}_Q3} = I_{\text{CHG}}^2 \times R_{\text{DS}_Q3} \times (1-D) \]

Where Duty Cycle \(D = \frac{V_{\text{OUT}}}{V_{\text{IN}}} \)

Efficiency can be 85-95%
Charging Topology - Linear or Switch-Mode Charger…

• Same type of decision as whether to use an LDO or a DC/DC converter
 – Low current, simplest solution → Linear Charger
 – High Current, high efficiency → Switch-Mode Charger

• General Guideline ~ 1A and higher should use switching charger… or, if you need to maximize charge rate from a current-limited USB port
Charging Topology - LDO vs Switch-mode

<table>
<thead>
<tr>
<th>Linear</th>
<th>Switch-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Thermal performance depends on $V_{OUT} - V_{IN}$</td>
<td>• Good thermal performance across wider $V_{OUT} - V_{IN}$ range</td>
</tr>
<tr>
<td>• Lower charging current</td>
<td>• High charging current</td>
</tr>
<tr>
<td>• No EMI concern</td>
<td>• Proper layout needed for best EMI performance</td>
</tr>
<tr>
<td>• Simple</td>
<td>• High efficiency</td>
</tr>
<tr>
<td>• Lower cost</td>
<td>• High cost</td>
</tr>
</tbody>
</table>

Linear

- +
- V_{IN}

Linear Charger

```
+ V_IN
- Battery
```

Switch-mode

```
V_IN
```

System

```
Battery
```

Switch Charger
Switch-mode Charger – Basic Waveform
Switch-mode Charger – Basic DC/DC

- Single voltage or current loop
- Dynamic response
- Single source and load

Diagram shows a basic DC/DC converter setup with key components labeled:
- Compensation
- EAO
- PWM
- Driver
- Vin
- S
- Vo
- V_ref
- I_ref

Graphs show:
- Output Voltage
- Output Current
- Time
Switch-mode Charger – Basic Charger

- **Battery charger:**
 - Constant voltage and constant current loops
 - High accuracy of voltage regulation (0.5% Charger vs 5% DCDC)
 - Battery can be a *load* or a *source*
Q: How to handle different input sources?

- Different Input sources with *known* current capability
 - OEM adaptor
 - USB port

- **Input Current DPM**
 - Limit the input current with the system load as high priority

Benefit:
Maximize the utilization of adaptor capability *without* overloading
Q: How to handle third party adaptors?

- Different Input sources with *unknown* current capability
 - Non-OEM adaptors
 - Traveler adaptor

- Input Voltage DPM (VINDPM)
 - Limit the input voltage with the system load as high priority

Benefit:
Maximize the utilization of adaptor capability **with** limited overloading
Advanced Charger – Thermal Regulation

• 32ºC rise with high charge current

• 12ºC rise with low charge current

• How to prevent system from over-heat
Advanced Charger - Thermal Regulation Loop

Q: What to do if the device is too hot?

- Thermal regulation
 - Better customer experience
 - Safe charging
 - Continuous charging current

![Diagram of Advanced Charger - Thermal Regulation Loop](image)
• Charge current can be automatically adjusted to maintain a pre-determined max die temperature.
Advanced Charger – BATFET Power-path Management

Q: How to power up system when battery voltage is low?

- Plug in adaptor and no response
- Bad user experience
Advanced Charger – BATFET Power-path Management

- Add a switch to separate the system and battery
- **When battery voltage is low (< 3.6V)**
 - Buck regulates to Vout (3.6V)
 - Linear regulates BATFET to provide charge current
- **When battery voltage is high (> 3.6V)**
 - Fully enable BATFET
 - Buck regulates to Vbat

![Diagram of Advanced Charger with BATFET Power-path Management](image)
USB On-The-Go – What is OTG

- Allow devices to communicate with each other
- USB Host can provide **power** to accessories

Power accessories such as USB sticks, mice, keyboards

Charge accessories such as wearable or phones

Power accessories such as USB sticks, mice, keyboards

Charge accessories such as wearable or phones
USB On-the-Go: OTG Implementation

- Charge runs in buck converter during charging mode.
- In USB On-the-Go Mode (OTG) the buck converter is reversed to run as boost converter to provide OTG power.

Highlights:
- Minimal additional loop control
- Re-use loop control analog
- Re-use power components.
Typical Safety Features

ACOV: Input Overvoltage Protection

Charge time protection: Precharge + fast chg safety timer

OTG OCP: OTG output current limit

Cycle-by-Cycle OCP: Over current protection for charging and OTG

SYSOVP: System Overvoltage Protection

BATOC: Battery over current discharge protection

BATOV: Protection from Overcharge

BAT temp protection: Thermistor Monitoring for Battery overtemp / undertemp

Host

Input 3.9V-14V

Thermal protection: Thermal regulations or shutdown for device overtemp

Destructive tests are performed on all chargers family to ensure “No Smoke”
Complete Charger System (Multi-Disciplines Engineering)

- Battery Chemistry
- Power Electronics
 - Switch-mode converter
 - Linear regulator
- Analog
 - Loop Controls
- Digital
 - State-machines
- Regulatory
 - Understand of safety requirements
Learn More - Battery Power Management for Portable Devices

- Battery Chemistry Characteristics
- Battery Charging Techniques
- Battery Safety and Protection
- Cell-Balancing
- Battery Fuel Gauging
- System Battery Power Management Solutions

Available at:
- Amazon.com
- Artechhouse.com
Summary

• Battery Management Solutions Overview
• Battery Basics
• Battery Charging Considerations and Requirements
• Charger Topology
• Switch-mode Charger & Advanced Charger
• Complete Charger Systems

Sam Wong (s-wong@ti.com)

Thanks You !!