

OpAmp Corretional ITopobojes

Edgar Sánchez-Sinencio
TI J. Kilby Chair Professor

Uncompensated CMOS Operational Amplifier

$$
\mathrm{M} 1=\mathrm{M} 2 ; \mathrm{M} 3=\mathrm{M} 4
$$

Ignoring zeros we can model this topology as:

$A_{V 1}(0) \cong \frac{g_{m 1}}{g_{o 1}+g_{o 3}} \quad ; \quad A_{V 2}(0)=\frac{-g_{m 6}}{g_{o 6}+g_{o 7}} \quad ; \quad \omega_{p 1}=\frac{g_{o 2}+g_{04}}{C_{p 1}} ; \quad \omega_{p 2}=\frac{g_{o 6}+g_{o 7}}{C_{p 2}}$
$A_{V T}(s) \cong \frac{A_{V 1}(0) A_{V 2}(0) A_{V 3}(0)}{\left(1+s / \omega_{p 1}\right)\left(1+s / \omega_{p 2}\right)\left(1+s / \omega_{p 3}\right)} ; \quad \omega_{p 3} \cong \frac{g_{m 8}}{C_{L}}$

- The low frequency voltage gain is high enough for a number of applications.
- The open loop poles are far from the origin, this can cause stability problems for closed loop applications.
- Closed loop poles might end very close to the jw axis and some in the RHP.
- How to tackle this stability problem will be discussed next.

Two-Stage Uncompensated Amplifier

Uncompensated Operational Amplifier
$-A_{V}=A_{V 1} A_{V 2}=\frac{g_{m 2}}{g_{02}+g_{04}} \frac{g_{m 6}}{g_{06}+g_{07}}$
Large voltage gain

- Poles are close to the $j \omega$ axis causing stability problems
\because

Employing a simple capacitor will split correctly the poles but will generate a Zero in the RHP.

Using an RC compensation can eliminate the zero and split poles. The resistor can be implemented with transistor in the ohmic region.

Improved internally compensated CMOS operational amplifier. Better bias for the output stage (M8 and M9)

A variation at the output stage with class - AB is shown below.

CMOS op-amp with class-AB output stage and RC pole splitting.
"Pole Splitting" can be carried out with a compensation capacitor feedback and a voltage buffer as shown below

Two-Stage amplifier with source follower compensation scheme

- Without M12 and M11 a zero in the PRH
- With buffer (voltage follower), zero is eliminated and pole sp \because (due to C_{C}) is kept.

An Improved Frequency Compensation Technique for CMOS Operational Amplifiers using Current Buffers

Background.-

Two-Stage Op-amp with Miller compensation

- The first stage is a differential-input/single-ended output stage, and the second stage is a class A or class $A B$ inverting output stage.

- DC Gain
$A_{v, 0}=-A_{v 1} A_{v 2}$
$A_{v 1}=g_{m 1} r_{o 1}$
$A_{v 2}=g_{m 2} r_{o 2}$
- Transfer Function
- Pole/zero locatpons $=\frac{1-\frac{c_{c}}{g_{m 2}} s}{1+\left(r_{o 1} C_{p}+A_{v 2} r_{o 1} C_{c}+r_{o 2} C_{L}\right) s+r_{01} r_{o 2}\left(C_{p} C_{c}+C_{p} C_{L}+C_{c} C_{L}\right) s^{2}}$

$$
\begin{array}{ll}
s_{z}=\frac{g_{m 2}}{C_{c}} & \text { RHP zero } \\
s_{p 1}=-\frac{1}{r_{o 1} C_{p}+A_{v 2} r_{o 1} C_{c}+r_{o 2} C_{L}} \approx-\frac{1}{A_{v 2} r_{o 1} C_{c}} & \text { Dominant Pole } \\
s_{p 2}=-\frac{r_{01} C_{p}+A_{v 2} r_{o 1} C_{c}+r_{o 2} C_{L}}{r_{o 1} r_{o 2}\left(C_{p} C_{c}+C_{p} C_{L}+C_{c} C_{L}\right)} \approx-\frac{g_{m 2}}{C_{L}} & \text { Non-dominant Pole }
\end{array}
$$

Two-Stage Op-amp with Miller compensation

- Pole Splitting

- Pole/zero locations

$$
\begin{aligned}
& s_{z}=\frac{g_{m 2}}{C_{c}} \\
& s_{p 1}=-\frac{1}{A_{v 2} r_{o 1} C_{c}} \\
& s_{p 2}=-\frac{g_{m 2}}{C_{L}}
\end{aligned}
$$

- Pole-zero position diagram

Increasing C_{c} achieves sufficient pole-splitting thus improving the PM. However, the larger C_{c} shifts the RHP zero to lower frequencies thus ruining the PM.

Miller Op-amp with Nulling Resistance

- Introducing a small series resistance in series with C_{c} may cancel the RHP zero or shift it to the LHP.

$$
\begin{aligned}
& R_{c}=1 / g_{m 2} \\
& R_{c}>1 / g_{m 2}
\end{aligned}
$$

No zero
LHP zero - Can be used to cancel the first non-dominant pole.

- Disadvantages:
- To achieve a sufficient phase margin, second pole cross-over of the unity gain frequency should be avoided.

$$
f_{p 2} \gg G B W \quad \rightarrow \quad C_{L} \ll \frac{g_{m 2}}{g_{m 1}} C_{c}
$$

Thus, the Op-amp stability is severely degraded for capacitive loads of the same order as compensation capacitor.

Improved compensation technique

- The RHP zero is a result of the feed-forward path through \mathbf{C}_{c}.

- The RHP zero can be eliminated if we cut the feed-forward path and make the compensation capacitor unidirectional.

An Improved Frequency Compensation Technique for CMOS Operational Amplifiers

Improved compensation technique

- The controlled current source injects AC current of $C_{c} \frac{d V_{o u t}}{d t}$ to the output of the first stage.

- DC Gain
$A_{v, 0}=-A_{v 1} A_{v 2}$
$A_{v 1}=g_{m 1} r_{o 1}$
$A_{v 2}=g_{m 2} r_{o 2}$
- Transfer Function

$$
A_{v}=\frac{A_{v, 0}}{1+\left(r_{o 1} C_{p}+A_{v 2} r_{o 1} C_{c}+r_{o 2}\left(C_{C}+C_{L}\right)\right) s+r_{o 1} r_{o 2} C_{p}\left(C_{C}+C_{L}\right) s^{2}}
$$

- Pole/zero locations

$$
\begin{array}{ll}
s_{p 1}=-\frac{1}{r_{o 1} C_{p}+A_{v 2} r_{o 1} C_{c}+r_{o 2}\left(C_{C}+C_{L}\right)} \approx-\frac{1}{A_{v 2} r_{o 1} C_{c}} & \text { Dominant Pole } \\
s_{p 2}=-\frac{r_{o 1} C_{p}+A_{v 2} r_{o 1} C_{c}+r_{o 2}\left(C_{C}+C_{L}\right)}{r_{01} r_{o 2} C_{p}\left(C_{C}+C_{L}\right)} \approx-\frac{g_{m 2} C_{c}}{C_{p}\left(C_{C}+C_{L}\right)} & \text { Non-dominant Pole }
\end{array}
$$

- To achieve sufficient PM

$$
f_{p 2} \gg G B W \quad \rightarrow \quad C_{L} \ll \frac{g_{m 2}}{g_{m 1}} \frac{C_{c}^{2}}{C_{p}}
$$

Improved compensation technique

- Numerical example

Miller compensation with nulling resistance

Dominant pole

$$
\omega_{d}=\frac{1}{g_{m 2} r_{01} r_{o 2} c_{c}}
$$

Non-dominant pole

$$
\omega_{n d}=\frac{g_{m 2}}{C_{L}}
$$

Gain-bandwidth product

$$
G B W=\frac{g_{m 1}}{c_{c}}
$$

Phase margin

$$
P M=90-\tan ^{-1}\left(\frac{G B W}{\omega_{n d}}\right)
$$

Improved compensation technique

Dominant pole

$$
\omega_{d}=\frac{1}{g_{m 2} r_{o 1} r_{o 2} c_{c}}
$$

Non-dominant pole

$$
\omega_{n d}=\frac{g_{m_{2}} C_{c}}{C_{p}\left(C_{c}+C_{L}\right)}
$$

Gain-bandwidth product

$$
G B W=\frac{g_{m 1}}{c_{c}}
$$

Phase margin

$$
P M=90-\tan ^{-1}\left(\frac{G B W}{\omega_{n d}}\right)
$$

- If $\frac{g_{m 2}}{g_{m 1}}=10, C_{C}=5 p F, C_{p}=0.5 p F$, and $\frac{\omega_{n d}}{G B W} \geq 4$ for $P M>75^{\circ}$

$$
C_{L} \leq \frac{G B W}{\omega_{n d}} \frac{g_{m 2}}{g_{m 1}} C_{c} \rightarrow C_{L} \leq 12.5 p F \quad C_{L} \leq \frac{G B W}{\omega_{n d}} \frac{g_{m 2}}{g_{m 1}} \frac{C_{c}^{2}}{C_{p}} \rightarrow C_{L} \leq 125 p F
$$

- The improved technique offers an order of magnitude improvement in capacitive load capability for the same performance.

Circuit Implementation

- Miller compensation with nulling resistance.

- Improved compensation technique.

Other performance parameters- PSR
Miller compensation with nulling resistance.

$\frac{V_{\text {OUT }}}{V_{S S}}=\frac{1+s A_{v 2} c_{c} r_{o 1}}{g_{m 1} g_{m 2} r_{o 1} r_{o 2}}$

- Improved compensation technique.

$$
\frac{V_{O U T}}{V_{S S}}=\frac{1+s C_{p} r_{o 1}}{g_{m 1} g_{m 2} r_{o 1} r_{o 2}\left(1+\frac{s}{G B W}\right)}
$$

Design Example - Miller Compensation

- Design an OTA with $G B W>5 M H z, C_{L}=10 p F, P M>70$, and $S R>2$

V/ $\mu \mathrm{s}$.

$$
\begin{aligned}
& \text { - Choose } \mathrm{C}_{\mathrm{c}}=\mathrm{C}_{\mathrm{L}} / 2=5 \mathrm{pF} \text {. } \\
& \text { - } \quad \mathrm{GBW}>5 \mathrm{MHz} \\
& G B W=\frac{g_{m 1}}{c_{c}} \rightarrow g_{m 1} \geq 157 \mu S \\
& \text { - } \quad S R>2 V / \mu S \\
& S R=\frac{I_{p, 0}}{c_{c}} \rightarrow \quad I_{p, 0} \geq 20 \mu A \\
& \mathrm{PM}>70^{\circ} \\
& P M=90-\tan ^{-1}\left(\frac{G B W}{\omega_{n d}}\right) \rightarrow \omega_{n d} \geq 2.7 G B \\
& \text { Let } \\
& \omega_{n d}=3 \times G B W=\frac{g_{m 2}}{C_{L}} \rightarrow \frac{g_{m 2}}{g_{m 1}}=3 \frac{C_{L}}{C_{c}}=6 \\
& \text { Then } \\
& g_{m 2}=6 g_{m 1} \cong 1 \mathrm{mS} \rightarrow I_{p, 2}=3 I_{p, 0} \\
& \text { - Choose } R_{c}>1 / g_{m 2} \\
& R_{c} \geq 1 K \Omega
\end{aligned}
$$

Design Example - Miller Compensation

Design Example - Miller Compensation

- Capacitive load driving capability

- $\quad \mathrm{PM}>70^{\circ}$ for $\mathrm{C}_{\mathrm{L}}<15 \mathrm{pF}$.

Design Example - Improved Compensation

- Design an OTA with $G B W>5 M H z, C_{L}=10 p F, P M>70$, and $S R>2$

V/us.

- Choose $\mathrm{C}_{\mathrm{c}}=\mathrm{C}_{\mathrm{L}} / 2=5 \mathrm{pF}$.
- $\mathrm{GBW}>5 \mathrm{MHz}$

$$
\begin{aligned}
& G B W=\frac{g_{m 1}}{G_{1}} \rightarrow g_{m 1} \geq 157 \mu \mathrm{~S} \\
& \mathrm{SR}>2 \mathrm{~V} / \mu \mathrm{S} \\
& S R=\frac{I_{p, 0}}{C_{c}} \rightarrow I_{p, 0} \geq 20 \mu \mathrm{~A}
\end{aligned}
$$

In order to ${ }_{\text {frame }}$ the current transformer biased during slewing interval

$$
\begin{aligned}
& I_{p 3}>I_{p 0} \quad \rightarrow \quad I_{p, 3}=30 \mu A \\
& \mathrm{PM}>70^{\circ}
\end{aligned}
$$

Let

$$
P M=90-\tan ^{-1}\left(\frac{G B W}{\omega_{n d}}\right) \rightarrow \omega_{n d} \geq 2.7 G B W
$$

$$
\begin{aligned}
& \omega_{n d}=3 \times G B W==\frac{g_{m 2} C_{c}}{C_{p}\left(C_{c}+C_{L}\right)} \rightarrow \frac{g_{m 2}}{g_{m 1}}=0.3 \\
& \text { Then }
\end{aligned}
$$

$$
g_{m 2}=0.3 g_{m 1} \cong 52 \mu S \rightarrow I_{p, 2}=0.3 I_{p, 0}
$$

\checkmark Let's use $g_{\mathrm{m} 2}=6 \mathrm{gm} 1$ like the miller Opamp to make a comparison between the capacitive driving capability.
\checkmark For the same capacitive load driving capability, the second stage will consume less current making it suitable for low power applications

Design Example - Improved Compensation

Design Example - Improved Compensation

- Capacitive load driving capability

- $\quad \mathrm{PM}>70^{\circ}$ for $\mathrm{C}_{\mathrm{L}}<100 \mathrm{pF}$.

Design Example - Improved Compensation

- Summary of Simulation results

Parameter	Spec	Miller Compensation	Improved Compensation
GBW	$>5 \mathrm{MHz}$	5.5 MHz	6 MHz
PM	$>70^{\circ}$	75°	87.6°
SR^{+}	$>2 \mathrm{~V} / \mu \mathrm{s}$	$2.75 \mathrm{~V} / \mu \mathrm{s}$	$3 \mathrm{~V} / \mu \mathrm{s}$
SR $^{-}$	$>2 \mathrm{~V} / \mu \mathrm{s}$	$3 \mathrm{~V} / \mu \mathrm{s}$	$3.15 \mathrm{~V} / \mu \mathrm{s}$
PSR $^{-}$	-	-65.6 dB At $(0-3.1 \mathrm{kHz})$	-51.9 dB PSR $^{+}$ DC gain
-	$-975.4 \mathrm{kHz})$		
At $(0-44 \mathrm{kHz})$	At $(0-538.9 \mathrm{~dB}$		
Current consumption	-	64.5 dB	51.3 dB
Capacitive load driving capability	-	$80 \mu \mathrm{~A}$	$110 \mu \mathrm{~A}$

Using another current buffer Op Amp topology.

Two-Stage amplifier with Current Buffer compensation scheme.

- Improve SR at the expense of power consumption.

Differential Output Two Stage Amp with a capacitor compensation with a current Buffer (Common Gate)

Differential mode half circuit of previous topology

Element	Fig. 1(a)	
$R_{o A}$	$r_{o 1} \\| r_{o 3}$	
C_{A}	$C_{g s 5}+C_{d b 1}+C_{d b 3}+C_{d b 7}$	
$R_{o B}$	∞^{*}	
C_{B}	$C_{g s 7}+C_{s b 7} * *$	
$R_{L} * * *$	$r_{o 5}$	
$C_{L} * * * *$	$C_{d b 5}$	

Note that this and previous structure are fully differential but this approach could be used for single output topologies.

Compensation using a current buffer (current gain)

Note that the current-mirror introduces an extra inversion which must be taken into consideration for the single ended version.
P.J. Hurst, Lewis, S.H. ; Keane, J.P. ; Aram, F. ; Dyer, K.C.
" Miller compensation using current buffers in fully differential CMOS two-stage operational amplifiers" IEEE Transactions on Circuits and Systems I, Volume: 51 , Issue: 2, Feb. 2004

Element			
$R_{o A}$	$r_{o 1}\left\\|r_{o 3}\right\\| r_{o l 1}$		
C_{A}	$C_{g s 5}+C_{d b 1}+C_{d b 3}+C_{d b 11}$		
$R_{o B}$	$r_{o 9} *$		
C_{B}	$C_{g s 9}+C_{g s 11}+C_{d b 9} * *$		
$R_{L} * * *$	$r_{o 5}$		
$C_{L} * * * *$	$C_{d b 5}$		

$$
z \approx-\frac{g_{m 11}}{C_{B}+C_{c}} .
$$

Besides the above zero the amp has three poles

Elements of Current-Mirror Cc compensated

Note that the common-gate and current mirror topologies under ideal case are almost identical, however in practice the one using current-mirrors is more power hungry and has a larger parasitic capacitance $C B$

- Roots close to the $\mathrm{j} \omega$ axis for uncompensated

- Potentially unstable for some values of C_{L}
$\mathrm{I}_{\text {bias }}=\mathrm{C}_{\mathrm{L}} \mathrm{S}_{\mathrm{R}} * 2.5$
- Improved output stage optimal bias of Q_{6} and Q_{7}
- No significant change of pole locations.
$\mathrm{A}_{\mathrm{v}}(0)->+$
$A_{v}(\omega)->-$

Pole splitting $=>$ one dominant pole

z_{1} Phase deteriorates phase margin
The good and the bad news

Two possible solutions to cancel z_{1} and keeping $\mathrm{s}_{\mathrm{p} 2}>\omega_{\mathrm{t}}=\mathrm{GBW}$ and $\mathrm{s}_{\mathrm{p} 1}$ small

Internally Compensated
with $\mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}$

Internally Compensated with unity gain buffer

$$
\left(\mathrm{Q}_{10}, \mathrm{Q}_{11}\right)
$$

Operational Amplifier (conventional) Architectures.

Reader.- See the internally Op Amp compensated with current gain buffer in previous pages

Folded Cascode Op Amp

\square Compared to two-stage Op Amp, folded cascode Op Amp has:

- Improved input common-mode range (ICMR)
- Improved power supply rejection (PSR)
- Push-pull output stage
- Self compensation

Folded-cascode Op Amp broken into stages [Allen]

Folded Cascode OpAmp

\square The extended ICMR is achieved
\square The bias currents I4 and I5 should be designed such that I6 and I7 never goes to zero (i.e. $I_{4,5}=1.2 I_{3} \rightarrow 1.5 I_{3}$)
\square Poor noise performance: In addition to the input transistors, transistors $\mathrm{M}_{4,5}$ and $\mathrm{M}_{10,11}$ generate significant current noise

Small Signal Analysis

R_{A} and R_{B} are the resistances looking into the sources of M_{6} and M_{7}

$$
R_{A}=\frac{r_{d s 6}+1 / g_{m 10}}{1+g_{m 6} r_{d s 6}} \approx \frac{1}{g_{m 6}} \text { and } R_{B}=\frac{r_{d s 7}+R_{I I}}{1+g_{m 7} r_{d s 7}} \approx \frac{R_{I I}}{g_{m 7} r_{d s 7}} \text { where } R_{I I}=g_{m 9} r_{d s 9} r_{d s 11}
$$

The currents i_{7} and i_{10} is expressed as

$$
\begin{gathered}
i_{7}=\frac{g_{m 2}\left(r_{d s 2} \| r_{d s 5}\right)}{R_{B}+\left(r_{d s 2} \| r_{d s 5}\right)} \frac{v_{i n}}{2}=\frac{g_{m 2}}{k+1} \frac{v_{i n}}{2} \text { where } k=\frac{R_{B}}{r_{d s 2} \| r_{d s 5}} \\
i_{10}=-\frac{g_{m 1}\left(r_{d s 1} \| r_{d s 4}\right.}{R_{A}+\left(r_{d s 1} \| r_{d s 4}\right)} \frac{v_{i n}}{2} \approx-g_{m 1} \frac{v_{i n}}{2}
\end{gathered}
$$

Thus, the transfer function can be found as follows

$$
\frac{v_{o u t}}{v_{\text {in }}}=\left(\frac{g_{m 1}}{2}+\frac{g_{m 2}}{2(k+1)}\right) R_{\text {out }}=\left(\frac{2+k}{2+2 k}\right) g_{m 1} R_{\text {out }}
$$

Where

$$
R_{o u t}=g_{m 9} r_{d s 9} r_{d s 11} \| g_{m 7} r_{d s 7}\left(r_{d s 2} \| r_{d s 5}\right)
$$

Where k is the low-frequency unbalance factor

Frequency Response

The frequency response is dominated primarily by the output pole due to the high output impedance

$$
P_{\text {out }}=\frac{-1}{R_{\text {out }} C_{\text {out }}}
$$

\square In order to have sufficient phase margin, all other pole should be located will above the GBW

Pole at source of M_{6} (Folding node)

$$
\begin{aligned}
& P_{A}=-\frac{1}{R_{A}\left(C_{g s}+2 C_{b d}\right)} \approx-\frac{g_{m 6}}{C_{g s}+2 C_{b d}} \\
& P_{B}=-\frac{1}{R_{B}\left(C_{g s}+2 C_{b d}\right)} \approx-\frac{g_{m 7}}{C_{g s}+2 C_{b d}} \\
& P_{6}=-\frac{g_{m 10}}{2 C_{g s}+2 C_{b d}} \\
& P_{8}=-\frac{g_{m 8} r_{d s 8} g_{m 10}}{C_{g s}+C_{b d}} \\
& P_{9}=-\frac{g_{m 9}}{C_{g s}+C_{b d}}
\end{aligned}
$$

Pole at source of M_{7} (Folding node)
Pole at drain of M_{6}
Pole at source of M_{8}
Pole at source of M_{9}

\square Remarks:

We assumed $R_{B} \approx 1 / g_{m 7}$ because at high frequency, where this pole has influence, $C_{o u t}$ shunts the drain of M_{7} to ground.

Power Supply Rejection

\square The following model is used to calculate the negative PSR

- The gate, source and drain of M_{11} varies with V_{SS}
- The gate, source of M_{9} varies with V_{ss}

$$
\frac{V_{\text {out }}}{V_{s s}}=\frac{s C_{\text {gd } 9} R_{\text {out }}}{s C_{\text {out }} R_{\text {out }}+1}
$$

$\square P S R R^{-}$can be calculated

$$
P S R R^{-}=\frac{A_{v}}{\left|V_{\text {out }} / V_{s s}\right|}
$$

[Allen]

Power Supply Rejection

At low frequency, we assume that other source of $V_{s s}$ injection becomes significant
L Low frequency PSRR- is at least as large as the magnitude of the differential voltage gain A_{v}
PSRR ${ }^{+}$can be derived similarly: the primary source of injection is through

Slew Rate

$$
S R^{+}=S R^{-}=\frac{I_{3}}{C_{L}}
$$

The bias currents $I_{4,5}$ should be designed such that $I_{6,7}$ never goes to zero

$$
I_{4,5}=1.2 I_{3} \rightarrow 1.5 I_{5}
$$

Maximum Available Output Swing

The output common mode level $V_{o c m}$ is often dictated by the circuit that interface with the amplifier (e.g. $V_{o c m}=V_{D D} / 2$)

Noise Analysis

\square The noise current of $\mathrm{M}_{1}, \mathrm{M}_{4}$ and M_{10} goes directly to the output
\square At low and medium frequencies, noise contribution of the cascode transistors (M_{6} and M_{8}) can be neglected
\square Total output noise current becomes

$$
\overline{i_{o u t}^{2}}=8 K T \gamma\left(g_{m 1}+g_{m 4}+g_{m 10}\right)
$$

\square Input referred noise density

$$
\overline{v_{n, i n}^{2}}=\frac{8 K T \gamma}{g_{m 1}}\left(1+\frac{g_{m 4}}{g_{m 1}}+\frac{g_{m 10}}{g_{m 1}}\right)
$$

Folded Cascode Op Amp Design Procedure

Design approach for the folded cascode Op Amp using long-channel model

Step	Relationship	Design Equation/Constraint	Comments
1	Slew Rate	$I_{3}=S R \cdot C_{L}$	
2	Bias currents in output cascodes	$I_{4}=I_{5}=1.2 I_{3}$ to $1.5 I_{3}$	Avoid zero current in cascodes
3	Maximum output voltage, $v_{\text {out }}$ (max)	$S_{5}=\frac{2 I_{5}}{K_{P} V_{S D 5^{2}}^{2}}, S_{7}=\frac{2 I_{7}}{K_{P} V_{S D 7^{2}}^{2}},\left(\mathrm{~S}_{4}=\mathrm{S}_{5} \text { and } \mathrm{S}_{6}=\mathrm{S}_{7}\right)$	$\begin{aligned} & V_{S D 5}(\mathrm{sat})=V_{S D 7}(\mathrm{sat}) \\ & =0.5\left[V_{D D^{-}} V_{\text {out }}(\mathrm{max})\right] \end{aligned}$
4	Minimum output voltage, $v_{\text {out }}(\mathrm{min})$	$S_{11}=\frac{2 I_{11}}{K_{N} V_{D S 11^{2}}}, S_{9}=\frac{2 I_{9}}{K_{N} V_{D S 9^{2}}},\left(\mathrm{~S}_{10}=\mathrm{S}_{11} \text { and } \mathrm{S}_{8}=\mathrm{S}_{9}\right)$	$\begin{aligned} & V_{D S 9}(\mathrm{sat})=V_{D S 11}(\mathrm{sat}) \\ & =0.5\left[V_{\text {out }}(\mathrm{min})-V_{S S}\right] \end{aligned}$
5	$G B=\frac{g_{m 1}}{C_{L}}$	$S_{1}=S_{2}=\frac{g_{m 1^{2}}}{K_{N} I_{3}}=\frac{G B^{2} C_{L}^{2}}{K_{N} I_{3}}$	
6	Minimum input CM	$\mathrm{S}_{3}=\frac{2 I_{3}}{K_{N}\left(V_{\text {in }}(\mathrm{min})-V_{S S}-\sqrt{\left(I_{3} / K_{N} \mathrm{~S}_{1}\right)}-V_{T 1}\right)^{2}}$	
7	Maximum input CM	$\mathrm{S}_{4}=\mathrm{S}_{5}=\frac{2 I_{4}}{K_{P}\left(V_{D D^{-}} V_{\text {in }}(\max)+V_{T 1}\right)}{ }^{2}$	S_{4} and S_{5} must meet or exceed value in step 3
8	Differential Voltage Gain	$\frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{g_{m 1}}{2}+\frac{g_{m 2}}{2(1+k)}\right) R_{\text {out }}=\left(\frac{2+k}{2+2 k}\right) g_{m I} R_{\text {out }}$	$k=\frac{R_{I I}\left(g_{d s 2}+g_{d s 4}\right)}{g_{m 7^{r}} d s 7}$
9	Power dissipation	$P_{\text {diss }}=\left(V_{D D^{-}} V_{S S}\right)\left(I_{3}+I_{10}+I_{11}\right)$	

Design Example

\square Design a folded cascode Op Amp to comply with the following specifications using $0.18 \mu \mathrm{~m}$ CMOS technology

Parameter	Spec
Slew rate	$>10 \mathrm{~V} / \mu \mathrm{s}$
Load Capacitor	10 pF
Power Supply	$\pm 1 \mathrm{~V}$
Max/Min Output Voltage	$\pm 0.5 \mathrm{~V}$
GBW	$>10 \mathrm{MHz}$
Min Input CM Voltage	-0.3 V
Max Input CM Voltage	1 V
Differential Voltage Gain	$>60 \mathrm{~dB}$
Power Dissipation	$<2 \mathrm{~mW}$

Design Example (Cont.)

\square Solution:

$>$ From the value of the slew rate we can get I_{3}
$\mathrm{I}_{3}=\mathrm{SR} \times \mathrm{C}_{\mathrm{L}}>\left(10 \times 10^{6}\right)\left(10 \times 10^{-12}\right) \rightarrow \mathrm{I}_{3} \geq 100 \mu \mathrm{~A}$
Select $\mathrm{I}_{3}=120 \mu \mathrm{~A}$
$>I_{4,5}$ will be designed such that $I_{6,7}$ never goes to zero
$\mathrm{I}_{4}=\mathrm{I}_{5}=1.2 \mathrm{I}_{3}$ to $1.5 \mathrm{I}_{3}$
Select $\mathrm{I}_{4}=\mathrm{I}_{5}=1.25 \mathrm{I}_{3}=150 \mu \mathrm{~A}$

$>$ Knowing I_{4} and I_{3}, we can get the quiescent, min, and max values of $I_{6,7}{ }^{\frac{1}{=}}$
$I_{6, Q}=I_{7, Q}=I_{4}-0.5 I_{3}=90 \mu \mathrm{~A}$
$I_{6(\text { min })}=I_{7(\text { min })}=I_{4}-I_{3}=20 \mu \mathrm{~A}$
$I_{6(\max)}=I_{7(\max)}=I_{4}=150 \mu \mathrm{~A}$
$>$ From the min and maximum output voltages we can get overdrive voltage of transistors M_{4-11}

$$
\begin{aligned}
& \left.V_{\text {SDsat }(4-7)}\right|_{\max }=0.5\left(V_{D D}-V_{\text {out }(\max)}\right)=0.25 \mathrm{~V} \\
& \left.V_{\text {DSsat }(8-11)}\right|_{\max }=0.5\left(V_{\text {out }(\min)}-V_{S S}\right)=0.25 \mathrm{~V}
\end{aligned}
$$

Design Example (Cont.)

> The value of $G B$ gives $g_{m 1,2}$

$$
g_{m 1,2}=G B \times C_{L} \geq 628.3 \mu A / V
$$

Thus, choose $g_{m 1,2}=700 \mu \mathrm{~A} / \mathrm{V}$
From $g_{m 1,2}$ and $I_{1,2}$, we can obtain $V_{D S s a t(1,2)}$

$$
V_{D S s a t(1,2)}=\frac{2 I_{1}}{g_{m 1}}=\frac{I_{3}}{g_{m 1}}=0.17 \mathrm{~V}
$$

- The minimum input common mode voltage defines $V_{D S s a t 3}$

$V_{\text {icm(min) }}=V_{S S}+V_{D S s a t(3)}+V_{T n}+V_{D S s a t(1)}$
Thus, $V_{D S s a t(3)}=0.13 \mu A$ for $V_{T n}=0.4 \mathrm{~V}$
$>$ We need to check that the maximum input common mode voltage is satisfied $V_{i c m(\max)}=V_{D D}-V_{S D \operatorname{sat}(4)}+V_{T n}=1.15 \mathrm{~V} \rightarrow$ Meets the spec

Design Example (Cont.)

\square Now, we have the bias currents I_{D} and overdrive voltage $V_{D S \text { sat }}$ of all the transistors. Thus, we can obtain W / L of all the transistors from the ACM model or square-law model if long-channel transistors are used.
\square The channel length of the transistors should be chosen to satisfy the specified voltage gain.
\square The current flowing in transistors M_{6-11} can have any value from $20 \mu A$ to $150 \mu A$ depending on the amplitude and polarity of the differential input voltage. Therefore, they should be sized such that the worst case $V_{D S s a t}$ of each transistor meets the specified limits on the output voltages.
\square Bias voltages of the cascode transistors $V_{P B 2}$ and $V_{N B 2}$ are chosen such that $V_{P B 2}$

Simulation Results

\square DC operating point

Transistor	$\boldsymbol{W} / \boldsymbol{L}$	$\boldsymbol{I}_{\boldsymbol{D}}(\boldsymbol{\mu} \boldsymbol{A})$	$\boldsymbol{V}_{\text {DSsat }}$
$M_{1,2}$	$18 / 1$	120	0.13
M_{3}	$24 / 1$	60	0.16
$M_{4,5}$	$72 / 1$	150	0.23
$M_{6,7}$	$72 / 1$	90	0.23
$M_{8,9}$	$12 / 1$	90	0.24
$M_{10,11}$	$12 / 1$	90	0.24

\square Input common-mode range

Minimum input common mode voltage is 0.28 V

Simulation Results

\square Output Swing

The gain is perfectly linear for $-0.5 \leq V_{\text {out }} \leq 0.5$

\square Open loop response

Open loop response testbench

Simulation Results
\square Slew Rate

Simulation Results

\square PSRR

PSRR $^{+}$testbench

PSRR ${ }^{-}$testbench

Summary of Results

\square The following simulation results for $C_{L}=10 p F, V_{D D}=1 \mathrm{~V}$ and $V_{S S}=-1 V$

Parameter	Spec	Simulation
SR $^{+}$	$>10 \mathrm{~V} / \mu \mathrm{s}$	$11.3 \mathrm{~V} / \mu \mathrm{s}$
SR $^{-}$	$>10 \mathrm{~V} / \mu \mathrm{s}$	$11.18 \mathrm{~V} / \mu \mathrm{s}$
Max/Min Output Voltage	$\pm 0.5 \mathrm{~V}$	$-0.65 \rightarrow 0.61 \mathrm{~V}$
GBW	$>10 \mathrm{MHz}$	10.7 MHz
Min Input CM Voltage	-0.3 V	-0.28 V
Max Input CM Voltage	1 V	1 V
Differential Voltage Gain	$>60 \mathrm{~dB}$	62 dB
PSRR $^{+}$	-	65.64 dB
PSRR $^{-}$	-	75.86 dB
Power Dissipation	$<2 \mathrm{~mW}$	$840 \mu \mathrm{~W}$

Techniques for Wideband Amplifiers

Focus the improvement in the load of the differential pair

Conventional

Current Mirror at the output load

Low Frequency Behavior

Behavior

Frequency Dependent Current Mirror (FDCM)

$$
\mathrm{C}_{\mathrm{F}} \gg \mathrm{Cgs}
$$

$0.1 \mathrm{~K}<\mathrm{R}<1 \mathrm{~K}$

An example of its use:

Wideband Amplifier with Feedforward Technique

-What is the optimal value of R1 as a function og GmP3 ?

- $\mathrm{C}_{\mathrm{F} 1}$ by passes two current mirrors.
- $\mathrm{C}_{\mathrm{F} 2}$ is fed forward to the input of another FDCM and signal is amplified.

Next, we discuss different families of wideband reported in the literature.

- An alternative is to connect C_{F} instead to nodes B to nodes A
F. Centurelli et al, "A Bootstrap Technique for Wideband Amplifiers," IEEE Trans. on Circuits And Systesm - I, Vol. 49, No. 10, pp. 1474-1480, October 2002

FOLDED-CASCODE WIDEBAND AMPLIFIER (See page 11 for cascode)

FC with Capacitive Feedforward

Differential Wideband Amplifier

E.K.F. Lee, " Low-Voltage Opamp Design and Differential Difference Amplifier Design Using Linear Transconductor with Resistor Input

Fig 3 VCVS Amplifier: Op Amp

References

SS Rajput, SS Jamuar, Low voltage analog circuit design techniques, IEEE Circuits and Systems Magazine, pp. 24-42, 2002
S. Yan and E. Sánchez-Sinencio, Low Voltage Analog Circuit Design Techniques: A Tutorial, IEICE Trans. Fundamentals, Vol. E83-A, No. 2, pp 179-196, February 2000
E. Sánchez-Sinencio and Andreas G. Andreou, Eds. " Low-Voltage/Low-Power Integrated Circuits and Systems ", IEEE Press, Piscataway, NJ 1999
X. Xie, M.C. Schneider, E. Sanchez-Sinencio and S.H.K. Embabi, " Sound Design of Low Power Nested Transconductance-Capacitance Compensation Amplifiers", IEE Electronics Letters, Vol. 35, pp.956-958, June 1999.
A. Rodriguez-Vazquez and E. Sánchez-Sinencio, Eds., Special Issue on Low-Voltage and Low-Power Analog and Mixed-Signal Circuits and Systems, IEEE Trans. on Circuits and Systems I, vol. 42, No. 11, November 1995
J. Crols, J.; Steyaert, M.; Switched-opamp: an approach to realize full CMOS switched capacitor circuits at very low power supply voltages" IEEE Journal of Solid-State Circuits,, Volume: 29, Issue: 8, Aug. 1994 Pages:936-942

References

Very low-voltage analog signal processing based quasi-floating gate transistors,J

Ramirez-Angulo, AJ Lopez-Martin, RG Carvajal, et all, IEEE J. Solid-State Circuits, pp 434-442, March 2004

Low threshold CMOS circuits with low standby current
Stan, M.R. Low Power Electronics and Design, 1998. Proceedings. 1998 International Symposium on, 10-12 Aug. 1998 Pages:97-99

A dynamic threshold voltage MOSFET (DTMOS) for ultra low voltage operation Assaderaghi, F.; Sinitsky, D.; Parke, S.; Bokor, J.; Ko, P.K.; Chenming Hu;
Electron Devices Meeting, 1994. Technical Digest., International , 11-14 Dec. 1994 Pages:809812

Resizing rules for MOS analog-design reuse
Galup-Montoro, C.; Schneider, M.C.; Coitinho, R.M.;
Design \& Test of Computers, IEEE ,Volume: 19, Issue: 2, March-April 2002 Pages:50-58
An MOS transistor model for analog circuit design .Cunha, A.I.A.; Schneider, M.C.; GalupMontoro, C.; Solid-State Circuits, IEEE Journal of ,Volume: 33, Issue: 10, Oct. 1998 Pages:1510-151

Series-parallel association of FET's for high gain and high frequency applications Galup-Montoro, C.; Schneider, M.C.; Loss, I.J.B.; Solid-State Circuits, IEEE Journal of ,Volume: 29 , Issue: 9 , Sept. 1994 Pages:1094-1101

References

S. M. Mallya abd J. H. Nevin, " Design Procedures for a Fully Differential Folded Cascode CMOS Operational Amplifier", IEEE J. of Solid-State Circuits, Vol 24, No. 6, pp1737-1740, December 1989.
D. B. Ribner, M. A. Copeland. and M. Milkovic, " 80 MHz low offsetfully-differential and singleended opamps," in Proc. IEEE Custom Integruted Circuits Con/., 1983, pp. 74-75.

This reference discusses three different Op Amp topologies:
S. Rabii and B. A. Wooley, "A 1.8V-V Digital Audio Sigma-Delta Modulator in 0.8-um CMOS", IEEE J. of Solid-State Circuits, Vol. 32, N0. 6, pp. 783-796, June 1997

CMOS Analog Circuit Design, P.E. Allen, D.R. Holberg, Oxford University Press, $3^{\text {rd }}$ Edition, 2012

