Due: **April 6, 2017**

HOMEWORK ASSIGNMENT #7

A team of 1 or 2 can submit the homework

Problem 1. Design an H-bridge as shown in Fig. 1 in a CMOS $0.13\mu m$ technology for the following specifications:

Specification	Value
Load	8Ω
Output power	500 mW
VDD	1.2 V
Efficiency @ 500mW	95%
Switching frequency	1 MHz

Show your design procedure to minimize conduction losses and switching losses.

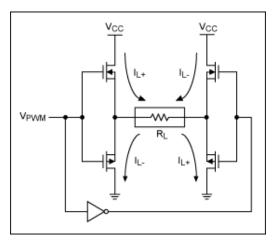


Fig. 1. H-bridge configuration.

Problem 2. Design a triangle waveform generator in CMOS 0.13μm for the following specifications:

Specification	Value
THD	23 dB
VDD	1.2 V
Switching frequency	1.2 MHz
Quiescent current	100 μΑ

Show your design procedure and minimize Cref.

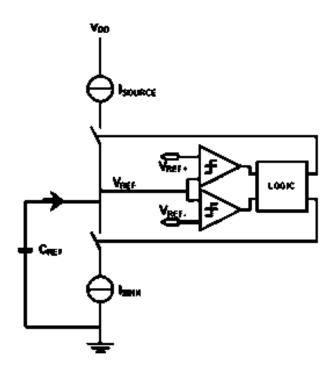


Fig. 2. Triangle-Wave topology.

Problem 3. Using macrodels for the opamp and comparators,

- a) Design an open loop class-D amplifier using your designed H-bridge and reference generator. Perform THD, efficiency, and noise measurements.
- b) Repeat a) in a close loop configuration.
- c) Compare the two results in a table and comment about results.

Problem 4. Design a Class-D amplifier meeting the following specs. You can use any CDA topology including Hysteretic (self-oscillating) or the slide mode control. Use 130nm technology. Provide detail design procedure and discuss your final simulated results

Specification		
Load	8 Ω	
Output power	0.5 W	
VDD	1.2 V	
Efficiency @ 500mW 95%		
Switching frequer	ncy 1.2 MHz	
Full Power THD	0.020 %	