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Problem 1 

Part A 

Design 

 

 The schematic above shows the fully differential section of the amplifier.  This section will be 

designed first.  First, the length of all transistors is set to 650nm to meet the gain specification.  Next, we 

set the value of CM to 12.5pF which is half of the load capacitance.  From the GBW spec, we can find the 

required transconductance for M1,2: 

𝑔𝑚1,2 = 5𝑀𝐻𝑧 ∙ 2𝜋 ∙ 12.5𝑝𝐹 = 400𝜇𝐴/𝑉 

We set an inversion level of if=10 for both of these transistors to ensure power consumption is kept as low 

as possible.  We can therefore calculate the desired W/L and current: 

𝐼1,2 =
1 + √1 + 10

2
∙ 0.026𝑉 ∙

400𝜇𝐴

𝑉
∙ 1.164 = 25𝜇𝐴 

𝑊

𝐿 1,2
=

400𝜇𝐴
𝑉

85𝜇𝐴
𝑉2 ∙ 0.026𝑉

∙
1

√1 + 10 − 1
= 78.12 → (

𝑊

𝐿
)

1,2
=

50𝜇𝑚

650𝑛𝑚
 

 

 Next, we find the require value for gm6,7 to produce the required phase margin.  The phase margin 

should not be too high to ensure the settling time specification is met. 

65° = 90° − tan−1 (
25𝑝𝐹

12.5𝑝𝐹
∙

𝑔𝑚1,2

𝑔𝑚6,7
) − tan−1 (

𝑔𝑚1,2

𝑔𝑚6,7
) →

𝑔𝑚1,2

𝑔𝑚6,7
= 0.149 → 𝑔𝑚6,7 = 2.7𝑚𝐴/𝑉 

Again, we can find the required current and aspect ratio for an inversion level of if=1: 

𝐼5,6 =
1 + √1 + 1

2
∙ 0.026𝑉 ∙

2.7𝑚𝐴

𝑉
∙ 1.194 = 100𝜇𝐴 



𝑊

𝐿 5,6
=

2.7𝑚𝐴
𝑉

777𝜇𝐴
𝑉2 ∙ 0.026𝑉

∙
1

√1 + 1 − 1
= 322.66 → (

𝑊

𝐿
)

5,6
=

210𝜇𝑚

650𝑛𝑚
 

We set IBIAS to 5uA and the size of M10 to: 

(
𝑊

𝐿
)

10
=

5𝜇𝑚

1𝜇𝑚
 

Therefore, the size of M7,8 is: 

(
𝑊

𝐿
)

7,8
= 20 ∙

5𝜇𝑚

1𝜇𝑚
=

100𝜇𝑚

1𝜇𝑚
 

And the size of M9 is: 

(
𝑊

𝐿
)

9
= 10 ∙

5𝜇𝑚

1𝜇𝑚
=

50𝜇𝑚

1𝜇𝑚
 

We set the size of M3,4 to: 

(
𝑊

𝐿
)

3,4
= 4 ∙

5𝜇𝑚

1𝜇𝑚
=

20𝜇𝑚

1𝜇𝑚
 

The size of these transistors is not critical since the gate voltage will be adjusted by the CMFB, but this 

size should provide reasonable VDSAT and will be matched in the CM detector. 

 

Next, we design two separate CM feedback loops using two different topologies.  The first 

topology is found in the figure below [1]: 

 
We set the bias current through M11,12 to 30uA.  This means that M17 will be made the same size as M3,4 to 

provide the correct VCMFB.  Therefore, we find the following sizes: 

(
𝑊

𝐿
)

11,12
= 6 ∙

5𝜇𝑚

1𝜇𝑚
=

30𝜇𝑚

1𝜇𝑚
 



Next, we set the size of M17 equal to the size of M3,4: 

(
𝑊

𝐿
)

17
=

20𝜇𝑚

1𝜇𝑚
 

Lastly, we must size M13-16 to make the GBW of the CMFB equal to the GBW of the differential section.  

This GBW is approximately 5MHz.  We can find that the gain of CMFB loop is: 

𝐴𝑉,𝐶𝑀 =
𝑔𝑚9

2
∙ 𝑟𝑜1,𝐶𝑀 ∙ 𝑔𝑚6𝑟𝑜2 ∙

𝑔𝑚13

𝑔𝑚17
2

=
𝑔𝑚9𝑟𝑜1,𝐶𝑀𝑔𝑚6𝑟𝑜2𝑔𝑚13

𝑔𝑚17
 

Ideally, gm9=gm13, so the gain becomes: 

𝐴𝑉,𝐶𝑀 = 𝑔𝑚13𝑟𝑜1,𝐶𝑀𝑔𝑚6𝑟𝑜2 

The CMFB loop has a dominant pole also at the output of the second stage.  This dominant pole occurs at: 

𝜔𝑝 =
1

𝑟𝑜1,𝐶𝑀𝐶𝑀 ∙ 𝑔𝑚6𝑟𝑜𝑠
 

Therefore, the GBW of the CMFB loop is: 

𝐺𝐵𝑊𝐶𝑀 = 𝑔𝑚13𝑟𝑜1,𝐶𝑀𝑔𝑚6𝑟𝑜2 ∙
1

𝑟𝑜1,𝐶𝑀𝐶𝑀 ∙ 𝑔𝑚6𝑟𝑜𝑠
=

𝑔𝑚13

𝐶𝑀
 

Therefore, in order to make the GBW of the CMFB equal to the GBW of the differential part of the 

amplifier, gm13 should be made equal to gm1.  Therefore, the size of gm13 is made the same as the size of 

gm1: 

(
𝑊

𝐿
)

13−16
=

50𝜇𝑚

650𝑛𝑚
 

 Another CMFB topology was designed and can be found in the figure below [1].  The two CMFB 

topologies will be compared on items such as gain and linearity.   

 
Since M11 is providing current for both branches of the CMFB amplifier, we set its size to provide 60uA 

of current: 

(
𝑊

𝐿
)

11
= 12 ∙

5𝜇𝑚

1𝜇𝑚
=

60𝜇𝑚

1𝜇𝑚
 

We size M16 to the same size as M3,4 to provide the proper CMFB voltage signal: 

(
𝑊

𝐿
)

16
=

20𝜇𝑚

1𝜇𝑚
 

Using the same procedure as above, the GBW of the CMFB loop can be found and the expression for this 

CMFB amplifier is the same as the expression found previously: 



𝐺𝐵𝑊𝐶𝑀 =
𝑔𝑚12

𝐶𝑀
 

Therefore, we once again size M12 to provide the same transconductance as M1: 

(
𝑊

𝐿
)

12−15
=

50𝜇𝑚

650𝑛𝑚
 

Simulation 

 It was found that the above transistor lengths did not provide the required gain with a load 

resistance of 47kΩ.  As a result, some modifications had to be made to the transistor sizes.  For the most 

part, the modifications involved increasing the length of various transistors to attempt to boost the gain.  

The aspect ratio of these transistors was kept approximately the same to provide the same 

transconductance with a higher output resistance.  Any resized transistors were in the differential core of 

the amplifier.  The final transistor sizes can be found in the table below: 

Transistor Calculated Size Final Size 

M1 50𝜇𝑚

650𝑛𝑚
 

200𝜇𝑚

2𝜇𝑚
 

M2 50𝜇𝑚

650𝑛𝑚
 

200𝜇𝑚

2𝜇𝑚
 

M3 20𝜇𝑚

1𝜇𝑚
 

10𝜇𝑚

1𝜇𝑚
 

M4 20𝜇𝑚

1𝜇𝑚
 

10𝜇𝑚

1𝜇𝑚
 

M5 210𝜇𝑚

650𝑛𝑚
 

370𝜇𝑚

1𝜇𝑚
 

M6 210𝜇𝑚

650𝑛𝑚
 

370𝜇𝑚

1𝜇𝑚
 

M7 100𝜇𝑚

1𝜇𝑚
 

600𝜇𝑚

2𝜇𝑚
 

M8 100𝜇𝑚

1𝜇𝑚
 

600𝜇𝑚

2𝜇𝑚
 

M9 50𝜇𝑚

1𝜇𝑚
 

100𝜇𝑚

1𝜇𝑚
 

M10 5𝜇𝑚

1𝜇𝑚
 

10𝜇𝑚

1𝜇𝑚
 

 

The aspect ratio of M1,2 was increased slightly to increase the transconductance of the first stage.  In 

addition to this, the length of these transistors was increased.  Since the second stage has a resistive load, 

it is imperative that the first stage provide a large gain.  Therefore, M3,4 was split into two self-cascoded 

transistors to help increase the gain without affecting the output swing of the first stage.  Lastly, the length 

of all current sources was increased to increase the gain of the second stage.  Additionally, the amount of 

current through the second stage was increased to increase the transconductance of this stage and to 

provide better gain with the resistive load. After these modifications, all specs were met but the power 

dissipation had to increase. 

 

 



 First, the differential AC performance of the amplifier was measured for both CMFBs: 

 

Both CMFBs have a DC gain of 90.54dB.  The first CMFB has a phase margin of 72.11 degrees with a 

GBW of 5.015MHz while the second has a phase margin of 72.06dB and a GBW of 5.022MHz.  

Therefore, the differential performance of both amplifiers is much the same and the DC gain, GBW, and 

PM all meet the required specifications. 

 Next, the common-mode AC performance of both amplifiers was measured: 

 

The DC gain of both CMFB loops is 95.4 dB.  In addition to this, the GBW of both loops was 5.042MHz 

which is very close to the GBW of the differential section.  This was an important goal during the design 

to ensure the bandwidth of the common-mode and differential-mode sections was not over-designed.  The 

phase margin of both loops is 65.52 degrees which indicates that the common-mode loop of  the amplifier 

is very stable. 

 Next, a large differential input step was used to measure the slew rate performance of both 

amplifiers: 



 

The slew rates can be calculated for the 1st CMFB as follows: 

𝑆𝑅+ =
−0.2528𝑉 + 0.4442𝑉

0.1819𝜇𝑠 − 0.1308𝜇𝑠
= 3.75𝑉/𝜇𝑠 

𝑆𝑅− =
0.4355𝑉 − 0.2278𝑉

2.69𝜇𝑠 − 2.634𝜇𝑠
= 3.71𝑉/𝜇𝑠 

The slew rates for the 2nd CMFB can be calculated as follows: 

𝑆𝑅+ =
−0.2124𝑉 + 0.4526𝑉

0.1933𝜇𝑠 − 0.1289𝜇𝑠
= 3.73𝑉/𝜇𝑠  

𝑆𝑅− =
0.4468𝑉 − 0.2304𝑉

2.69𝜇𝑠 − 2.632𝜇𝑠
= 3.73𝑉/𝜇𝑠  

The slew rates for both amplifiers meet the specification of 2V/us.   

 Next, the differential-mode settling performance of the amplifiers was measured: 

 

The first CMFB has a positive settling time of 152.2ns and a negative settling time of 152.3ns.  The 

second CMFB has a positive settling time of 152.9ns and a negative settling time of 153ns.  These times 

are for 1% settling.  Therefore, the rising and falling settling times for both amplifiers met the 

specification of 160ns. 



 The CMRR of both amplifier was also measured: 

 

The CMRR of both amplifiers is the same at 124dB.  This CMRR is well above the specification of 85dB. 

 The results above indicate that the two CMFB amplifiers provide very similar performance in 

CMRR.  One major performance difference between them, however, is their effect on the linearity of the 

amplifier.  From [1], we expect the amplifier with the 1st CMFB to be more linear than the second one.  

We can confirm this by measuring the THD over a range of input values: 

 

From the plots above, we can see that the maximum input peak-peak voltage for a 1% THD at 10kHz for 

the first CMFB is 0.6294V while for the second it is 0.6171V.  Therefore, the first CMFB is slightly more 

linear than the second one.  This agrees with the results discussed in [1].   

 We can also see the difference in linearity by measuring the IIP3 of the amplifier.  Two tones 

with frequencies of 10kHz and 11kHz were used in the PSS analysis.  The following IIP3 plots were 

generated: 



 

For the first CMFB, the IIP3 is 27.8921dBm while for the second CMFB it is 24.887dBm.  Once again, 

we see that the linearity of the first CMFB is better and care must be taken during the design of the 

CMFB amplifier to ensure it does not greatly affect the linearity of the overall amplifier. 

 Next, a common-mode step of 0.5V was used at the input of the amplifier.  The common-mode 

settling times for both amplifiers was the same.  The rising settling time was 136.4ns while the falling 

settling time was 106.6ns for 1% settling: 

 

 

 

 Lastly, the differential input transistors M1 and M2 were adjusted so they had a 2% size mismatch.  

To achieve this, the width of M1 was increased to 204um.  The effects of this mismatch on the linearity of 

the amplifier were observed by making the same measurements as before.  First, the input peak-peak 

voltage is swept to find the maximum voltage for a 1% THD: 



 

From these plots, it appears that the maximum voltage for a 1% THD does not change from the previous 

case without mismatch. 

 We can also measure the IIP3 of the amplifier with mismatch: 

 

The measured IIP3 for the first CMFB with mismatch is 27.908dBm while for the second it is 24.8974dBm.  

These values are very close to the values simulated for the amplifiers without mismatch. 

 While it may seem from the above results that the linearity of the amplifier does not suffer with 

this mismatch present, that is not the case.  The figure below shows the THD curve for the first CMFB with 

and without mismatch.  Clearly, the THD with the mismatch is slightly higher. 



 

In addition, the IIP3 measurement does not capture the effect that the mismatch would have on the 

linearity.  This is because the mismatch will lead to an increase in even-order distortion since the even-

order harmonics of the output will no longer be cancelled out perfectly.  This leads to the increase in the 

THD but does not affect the IIP3 since that is mainly a measure of third-order distortion.  The increase in 

second-order distortion can be seen clearly by examining the magnitude of the harmonics at the output of 

the amplifier: 

Harmonic Power without Mismatch (dBm) Power with Mismatch (dBm) 

0 -139.390 -40.091 

1 5.556 5.556 

2 -136.308 -71.392 

3 -54.375 -54.404 

4 -137.427 -76.365 

5 -56.143 -56.156 

6 -137.447 -77.429 

7 -59.420 -59.413 

8 -141.917 -78.803 

9 -63.876 -63.829 

10 -137.210 -80.390 

 

Clearly, the even-order distortion with the mismatch is much higher than without.  The third order 

distortion decreases a very small amount which accounts for the increase in the IIP3 for both amplifiers 

with mismatch.  The very small increase in THD is most likely due to the fact that the mismatched 

transistors are operating in moderate inversion.  If these transistors were operating in strong inversion, 

small mismatches in the size would cause large changes in the THD.  A larger mismatch in the input 

transistors would be required to see a large effect on the linearity when they are operating in moderate 

inversion. 

 



 A summary of the results for this problem can be found below: 

Parameter Requirement Amplifier with 1st 

CMFB 

Amplifier with 2nd 

CMFB 

DM Gain >90 dB 90.54 dB 90.54 dB 

DM GBW >4 MHz 5.015 MHz 5.022 MHz 

CM Loop Gain N/A 95.4 dB 95.4 dB 

CM Loop GBW N/A 5.042 MHz 5.042 MHz 

DC CMRR >85 dB 124 dB 124 dB 

SR >2 V/us 3.71 V/us 3.73 V/us 

1% Settling Time <160 ns 152.3 ns 153 ns 

Power Dissipation N/A 907.08 uW 907.08 uW 

Peak-Peak Voltage for 

1% THD 

N/A 629.4 mV 617.1 mV 

IIP3 N/A 27.8921 dBm 24.887 dBm 

 

It is interesting to note that although the second CMFB topology provides very similar settling and CM 

loop GBW performance with the same power, it provides slightly worse linearity.  

Problem 2 

Design 
 We start this problem by determining the requirements for the op amp used in the amplifier.  The 

transfer function for the closed loop amplifier is: 

𝐻𝐶𝐿(𝑠) = −
2𝑅

𝑅 + 2𝑅
∙

𝐺𝐵𝑊
𝑠

1 +
𝑅

𝑅 + 2𝑅 ∙
𝐺𝐵𝑊

𝑠

= −2 ∙
1

𝑠

𝐺𝐵𝑊 ∙
1
3

+ 1
 

Therefore, the pole of the amplifier occurs at 𝜔𝑝 =
1

3
𝐺𝐵𝑊, which indicates that the GBW of the 

amplifier will need to be at least: 

𝐺𝐵𝑊 = 3 ∙ 1.3𝑀𝐻𝑧 = 3.9𝑀𝐻𝑧 

This GBW is a very rough estimate of the GBW required to produce a bandwidth of 1.3MHz.  MATLAB 

simulations with a more complex op amp model were performed to get a better estimate of the required 

GBW.  The op amp is assumed to have the following transfer function: 

𝐴(𝑠) = 𝐴0 ∙
1 −

𝑠
𝜔𝑍

(1 +
𝑠

ωp1
) (1 +

𝑠
𝜔𝑝2

)
 

This model is a good approximation of the two-stage amplifier with Miller compensation and takes into 

account the RHP zero created by the compensation capacitor.  In order to achieve a good phase margin, 

the zero frequency is set to 10 times the GBW of the amplifier (𝐴𝑜 ∙ 𝜔𝑝1) while the second pole frequency 

is set to 2.5 times the GBW of the amplifier.  This provides a phase margin of around 65 degrees in open 

loop.  The GBW of the amplifier is then swept from 3MHz to 4MHz and the bandwidth of the closed-

loop system is observed: 



 

This curve indicates that to achieve a closed-loop bandwidth of 1.3MHz, the GBW of the op-amp must be 

approximately 3.25MHz. 

 Next, we determine the gain required to produce less than a 1.1% gain error.  The DC gain of the 

closed-loop is: 

𝐴𝐶𝐿 = −
2

3
∙

𝐴𝑂𝐿

1 +
1
3

𝐴𝑂𝐿

 

We can solve for AOL with a gain error of 1.1%: 

−2 ∙ (1 − 0.011) = −
2

3
∙

𝐴𝑂𝐿

(1 +
1
3 𝐴𝑂𝐿)

→ 𝐴𝑂𝐿 > 270𝑉/𝑉 

Therefore, the gain must be greater than 49dB when loaded with the feedback resistors.  Since the op amp 

will ideally make both of the voltages the same, the negative terminal of the op amp will be a virtual 

ground.  Therefore, the resistive load on the op amp will be 2R.  We set 2R equal to 50kΩ to ensure the 

load does not decrease the gain too much.   

 Since the SR of the inverting amplifier must be greater than 1.5V/us, we ensure that the op amp 

used in the amplifier has this slew rate. 



 

 Next, we must design the op amp used in the amplifier with the above specifications as well as a 

SR of 1.5V/us.  It is assumed that the load capacitance is 25pF.  We will use the simple two-stage op amp 

schematic above.  We start by setting CC to 6.25pF since we earlier set the zero frequency to 10 times the 

GBW and the second pole frequency to 2.5 times the GBW.  We can therefore find the required value for 

gm1: 

𝑔𝑚1 = 3.25𝑀𝐻𝑧 ∙ 2𝜋 ∙ 6.25𝑝𝐹 = 130𝜇𝐴/𝑉 

We set the inversion level of the first stage to 10 to ensure power dissipation is kept somewhat low.  

Another consideration with the choice of this inversion level is the input capacitance of the amplifier.  

This input capacitance will create another pole in the feedback loop due to the feedback resistors.  As a 

result, this input capacitance should be kept as low as possible.  From the inversion level and 

transconductance, we can find the required current and aspect ratio.  We set the length of all transistors to 

520nm to ensure we meet the gain requirement: 

𝐼1 =
(1 + √1 + 10)

2
∙ 0.026𝑉 ∙

130𝜇𝐴

𝑉
∙ 1.164 = 8.5𝜇𝐴 

𝑊

𝐿 1
=

130𝜇𝐴
𝑉

85𝜇𝐴
𝑉2 ∙ 0.026𝑉

∙
1

√1 + 10 − 1
= 25.4 → (

𝑊

𝐿
)

1
=

15𝜇𝑚

520𝑛𝑚
 

Next, we know that gm6 must be 10 times gm1.  Therefore, we can find the required current and size for 

this transistors with an inversion level of 1: 

𝐼6 =
1 + √1 + 1

2
∙ 0.026𝑉 ∙

1.3𝑚𝐴

𝑉
∙ 1.194 = 51𝜇𝐴 

𝑊

𝐿 6
=

1.3𝑚𝐴
𝑉

777𝜇𝐴
𝑉 ∙ 0.026𝑉

∙
1

√1 + 1 − 1
= 155.4 → (

𝑊

𝐿
)

6
=

80𝜇𝑚

520𝑛𝑚
 



Next, we size M2 to provide minimal input-referred offset: 

(
𝑊

𝐿
)

2
=

8.5𝜇𝐴

51𝜇𝐴
∙

80𝜇𝑚

520𝑛𝑚
=

13.3𝜇𝑚

520𝑛𝑚
 

We set the bias current source to 4.25uA and the size of M3 to: 

(
𝑊

𝐿
)

3
=

10𝜇𝑚

1𝜇𝑚
 

Next, we size M4 to provide 17uA of bias current in the first stage: 

(
𝑊

𝐿
)

4
=

40𝜇𝑚

1𝜇𝑚
 

Lastly, we size M5 to provide 51uA of bias current in the final stage: 

(
𝑊

𝐿
)

5
=

120𝜇𝑚

1𝜇𝑚
 

Simulation 
 First, the AC response of the amplifier was simulated with a load of 20pF in parallel with 50kΩ.  

This can be found in the figure below.  The amplifier has a gain of 74.78dB which is well above the 49dB 

required to have a gain accuracy of 1.1% in closed loop.  In addition to this, the GBW of the amplifier is 

3.207MHz which is very close to the value required to obtain a closed-loop bandwidth of 1.3MHz.  

Lastly, the phase margin for a unity-gain configuration is 61.33 degrees which should provide very good 

stability in closed loop.  

 

 Next, the loop was closed around the amplifier with an input resistance of 25kΩ and a feedback 

resistance of 50kΩ.  The resulting closed-loop gain can be found below: 



 

The bandwidth of the amplifier is 1.303MHz which is very close to the desired value of 1.3MHz.  In 

addition to this, the gain error can be calculated as: 

%𝑒𝑟𝑟𝑜𝑟 =
|10

6.017𝑑𝐵
20 − 2|

2
∙ 100 = 0.041% 

Therefore, this gain error is well within the given specification. 

 Next, the stability of the amplifier in closed loop was checked to ensure the phase margin is 

above 60 degrees: 

 

From this graph, we can clearly see that the phase margin is 80.37 degrees which should provide a very 

stable amplifier for this load capacitance of 20pF. 

 Lastly, the slew-rate of the amplifier was checked by using a large signal input: 



 

The slew rates can be calculated as follows: 

𝑆𝑅− =
0.9239𝑉 − 0.7769𝑉

0.2112𝜇𝑠 − 0.1519𝜇𝑠
= 2.48𝑉/𝜇𝑠 

𝑆𝑅+ =
0.3933𝑉 − 0.2504𝑉

2.729𝜇𝑠 − 2.658𝜇𝑠
= 2.01𝑉/𝜇𝑠 

Both slew rates are above the required specification of 1.5V/us. 

 These results, along with the required specifications, can be found in the table below: 

Parameter Specification Simulated Value 

Closed Loop Gain 6.0206 dB 6.017 dB 

Closed Loop Bandwidth 1.3 MHz 1.303 MHz 

Slew Rate >1.5 V/us 2.01 V/us 

 

Analysis 
 If we use the op amp transfer function found in the first part of this problem, we can estimate the 

locations of the poles and zeros in the closed loop response.  The closed loop response will be: 

𝐻𝐶𝐿(𝑠) = −
2

3

𝐴(𝑠)

1 +
1
3 ∙ 𝐴(𝑠)

= −2 ∙
𝐴(𝑠)

3 + 𝐴(𝑠)
 

We can now substitute A(s): 



𝐻𝐶𝐿(𝑠) = −2 ∙ 𝐴0 ∙

1 −
𝑠

𝜔𝑍

(1 +
𝑠

ωp1
) (1 +

𝑠
𝜔𝑝2

)

3 + 𝐴0 ∙
1 −

𝑠
𝜔𝑍

(1 +
𝑠

ωp1
) (1 +

𝑠
𝜔𝑝2

)

= −2 ∙ 𝐴𝑜 ∙
(1 −

𝑠
𝜔𝑍

)

3 (1 +
𝑠

𝜔𝑝1
) (1 +

𝑠
𝜔𝑝2

) + 𝐴𝑜 (1 −
𝑠

𝜔𝑍
)

 

We can expand the terms in the denominator to find the standard second-order response parameters: 

𝐻𝐶𝐿(𝑠) = −2 ∙ 𝐴𝑜 ∙
(1 −

𝑠
𝜔𝑍

)

3 +
3𝑠

𝜔𝑝1
+

3𝑠
𝜔𝑝2

+
3𝑠2

𝜔𝑝1𝜔𝑝2
+ 𝐴𝑜 −

𝐴𝑜𝑠
𝜔𝑍

 

We can normalize the denominator so the s2 term has a coefficient of 1: 

𝐷(𝑠) = 𝜔𝑝1𝜔𝑝2 + 𝑠𝜔𝑝2 + 𝑠𝜔𝑝1 + 𝑠2 +
𝐴𝑜𝜔𝑝1𝜔𝑝2

3
− 𝑠

𝐴𝑜𝜔𝑝1𝜔𝑝2

3𝜔𝑍
 

Reordering the terms, we get: 

𝐷(𝑠) = 𝑠2 + (𝜔𝑝1 + 𝜔𝑝2 −
𝐴𝑜𝜔𝑝1𝜔𝑝2

3𝜔𝑍
) + (𝜔𝑝1𝜔𝑝2 +

𝐴𝑜𝜔𝑝1𝜔𝑝2

3
) = 𝑠2 + 2ζωn𝑠 + 𝜔𝑛

2 

Therefore: 

𝜔𝑛 = √
𝜔𝑝1𝜔𝑝2(𝐴𝑜 + 3)

3
 

𝜁 =
𝜔𝑝1 + 𝜔𝑝2 −

𝐴𝑜𝜔𝑝1𝜔𝑝2

3𝜔𝑍

2𝜔𝑛
 

For our op amp, we can calculate 𝜔𝑛 and 𝜁: 

𝜔𝑛 = √
3670.64𝑟𝑎𝑑

𝑠
∙

55.083𝑀𝑟𝑎𝑑

𝑠
∙

(5483 + 3)

3
=

19.23𝑀𝑟𝑎𝑑

𝑠
= 3.06𝑀𝐻𝑧 

𝜁 =

3670.64𝑟𝑎𝑑
𝑠

+
55.083𝑀𝑟𝑎𝑑

𝑠
−

5483 ∙
3670𝑟𝑎𝑑

𝑠 ∙
55.083𝑀𝑟𝑎𝑑

𝑠

3 ∙
199.58𝑀𝑟𝑎𝑑

𝑠

2 ∙
19.23𝑀𝑟𝑎𝑑

𝑠

= 1.384 

From these parameters, we can find the values of the closed-loop poles: 

𝜔𝑝1,𝐶𝐿 = 3.06𝑀𝐻𝑧 ∙ (−1.384 + √1.3842 − 1) = −1.307𝑀𝐻𝑧 

𝜔𝑝2,𝐶𝐿 = 3.06𝑀𝐻𝑧 ∙ (−1.384 − √1.3842 − 1) = −7.16𝑀𝐻𝑧 



Lastly, we see from the closed loop transfer function that the zero in the open loop transfer function 

remains at the same location: 

𝜔𝑧 =
199.58𝑀𝑟𝑎𝑑

𝑠
= 31.764𝑀𝐻𝑧 

These pole locations were confirmed in simulations using the PZ analysis.  The results can be found in the 

table below: 

Parameter Calculated Simulated 

First Pole 1.307 MHz 1.359 MHz 

Second Pole 7.16 MHz 7.914 MHz 

Zero 31.764 MHz 29.12 MHz 

 

Therefore, we can see that the closed-loop poles calculated from the simple two-stage op amp transfer 

function match somewhat closely with the poles simulated in Spectre. 

 While the phase margin of the closed loop system was found in the simulation section, we can 

also cross-check this phase margin with the rate of convergence.  Since we are placing the amplifier in a 

feedback circuit with a beta value of 1/3, the inverse beta value is 3 or 9.54dB.  We can find the frequency 

at which the open-loop transfer function of the op amp crosses this gain value: 

 

 

 

 

 

 

 

 



Next, we plot the slope of the transfer function in dB/dec: 

 

The slope of the open loop transfer function is -20.47dB/dec.  Since the feedback network ideally has no 

frequency dependence, the ROC is: 

𝑅𝑂𝐶 = |−
20.47𝑑𝐵

𝑑𝑒𝑐
− 0| = 20.47𝑑𝐵/𝑑𝑒𝑐 

From this, we can estimate the phase margin: 

𝑃𝑀 ≈ 180° − 4.5 ∙ 𝑅𝑂𝐶 = 180° − 4.5 ∙ 20.47 = 87.885° 

This is close to the phase margin found from the closed loop LG shown in the simulation section.  This 

measured phase margin, which is more accurate, was 80.37 degrees. 

Appendix A: Matlab Code 

close all; 

 

%Create an array of the GBW we would like to check 

GBW_array=linspace(3e6, 4e6, 100); 

 

s=tf('s'); 

 

%Iterate through each GBW 

for i=1:100 

    GBW=GBW_array(i); 

    Gain=270; 

    P2_1=2.5; 

    PZ_1=10; 

    %Construct the open-loop transfer function 

    H=Gain*(1-s/(GBW*PZ_1))/(1+s/(GBW/Gain))/(1+s/(GBW*P2_1)); 

    %Make sure our phase margin is okay 

    [Gm, Pm, Wgm, Wpm]=margin(H); 

 



    %Construc the cloesd loop transfer function 

    sys=2/3*feedback(H, 1/3, -1); 

 

    %Find the bandwidth of the closed loop function 

    fb(i)=bandwidth(sys); 

 

 

end 

%Plot the GBW and bandwidth 

plot(GBW_array, fb, 'LineWidth', 2); 

xlabel('GBW (MHz)'); 

ylabel('Bandwidth (Hz)'); 

title('Closed Loop Bandwidth vs. Op Amp GBW'); 
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