Analog and Mixed-Signal Center at Texas A&M University

Edgar Sánchez-Sinencio

ELEN 607 (ESS) SPRING'15

Voltage Multistage Transconductance Amplifier Topologies for LV Power Supply.

• Good voltage gain can be obtained using cascode stages. But these stages are not amenable for LV power supply.

• Under LV conditions, high voltage can be obtained using cascade amplifiers. That is growing horizontally, rather than vertically.

- Direct Cascade of simple (inverting) stages gives the required voltage gain without control of poles and zeroes.
- Dynamic behavior for optimal performance requires feedback (and feedforward) circuits.

First Approach: Direct Cascade

$$H(s) = \frac{V_0(s)}{V_{in}(s)} \cong \frac{+g_{m1}g_{m2}/C_pC_L}{1+s\left(\frac{C_L}{g_{02}} + \frac{C_p}{g_{01}}\right) + \frac{C_pC_L}{g_{01}g_{02}}s^2}$$

The poles are located at

$$\omega_{p_1} = \frac{g_{01}}{C_p}$$
, $\omega_{p_2} = \frac{g_{02}}{C_L}$ i.e., 1 MHz and 10 MHz
 $H(o) = \frac{g_{m1}g_{m2}}{g_{01}g_{02}}$

How do you bring one pole close to the origin?

-Use feedback, i.e. Miller effect

The poles locations are approximately at:

$$\omega_{p_2} \cong (g_{m2} + g_{02}) / C_L \text{ and } \omega_{p_1} \cong \left(\frac{g_{01}}{C_{m1}}\right) \frac{g_{02}}{g_{m2}} = \left(\frac{g_{01}}{C_{m1}}\right) \frac{1}{A_{V_{02}}}$$

The good news is that: :

$$\omega_{p_1} \ll \omega_{p_2}$$
 Good for stability
H(o) = $g_{m1}g_{m2}/g_{01}g_{02}$ Large DC voltage gain

The bad news is that a zero is at the RHP.

$$\omega_{z_1} = \frac{g_{m2}}{C_{m1}}$$

Now we will use a feedforward circuit to cancel the zero at the RHP.

This will impact the complexity and performance of the design. Recall that before applying the feedforward we had:

$$H(s) = \frac{V_{0}(s)}{V_{in}(s)} = \frac{g_{m1}(g_{m2} - sC_{m1})/C_{L}C_{m1}}{s^{2} + s(g_{01}(C_{L} + C_{m1})/C_{L}C_{p} + g_{m2}/C_{L} + g_{02}/C_{L}) + g_{01}g_{02}/C_{L}C_{m1}}$$
Now the corresponding H(s) becomes:

$$V_{in} \longrightarrow V_{0} \longrightarrow V_{0}$$

$$g_{m1} \longrightarrow V_{0} \longrightarrow V_{0}$$

$$g_{m1} \longrightarrow C_{L} \longrightarrow V_{0}$$

$$g_{m1} \longrightarrow C_{L} \longrightarrow V_{0}$$
For $g_{mf} = g_{m1}$

$$H(s) = \frac{V_{o}(s)}{V_{in}(s)} = \frac{-g_{m1}g_{m2}}{s^{2}C_{L}C_{m1} + s(C_{m1}g_{m2} + C_{L}g_{o1}) + g_{o1}(g_{of} + g_{o2})}$$

Assume a dominant pole, then

$$\omega_{p1} \cong \frac{g_{o1}(g_{o2} + g_{of})}{g_{m2}C_{m1}} ; \qquad \omega_{p2} = \frac{g_{m2}}{C_L}$$

$$H(o) = A_{vo} = \frac{-g_{m1}g_{m2}}{g_{o1}(g_{o2} + g_{of})} ; \qquad GB \cong A_{vo}\omega_{p1} = \frac{g_{m1}}{C_{m1}}$$

Let us consider a higher-order system, i.e. 3rd order.

Nested G_m-C Compensation Amplifier.

Three-stage amplifier topology with NGCC

$$H(s) = \frac{V_0(s)}{V_i(s)} = \frac{g_{m1}g_{m2}g_{m3} + sg_{m1}(g_{mf2} - g_{m2})C_{m2} + (g_{mf1} - g_{m1})C_{m1}C_{m2}S^2}{g_{01}g_{02}g_{03} + sg_{m2}g_{m3}C_{m1} + s^2(g_{m3} + g_{mf2} - g_{m2})C_{m1}C_{m2} + s^3C_LC_{m1}C_{m2}}$$

By making
$$g_{mf1} = g_{m1}$$
 and $g_{mf2} = g_{m2}$,

$$H(s) = \frac{V_0(s)}{V_i(s)} = \frac{-g_{m1}g_{m2}g_{m3}}{g_{01}g_{02}g_{03} + sg_{m2}g_{m3}C_{m1} + s^2g_{m3}C_{m1}C_{m2} + s^3C_LC_{m1}C_{m2}}$$

Observe the regularity and simplicity of the reduced expression

This 3^{rd} order H(s) assuming a dominant pole can be written as

$$H(s) = \frac{-A_0}{\left(1 + s\frac{A_0}{f_1}\right)\left(1 + \frac{s}{f_2} + \frac{s^2}{f_2f_3}\right)}$$

$$A_{0} = \frac{g_{m1}g_{m3}g_{m2}}{g_{01}g_{03}g_{02}} \text{ and } f_{1} = GB = \frac{g_{m1}}{C_{m1}}$$
$$f_{2} = \frac{g_{m2}}{C_{m2}}, f_{2}f_{3} = \frac{g_{m2}g_{m3}}{C_{m2}C_{L}}; f_{i} = \frac{g_{mi}}{C_{mi}}$$

Note that the dominant pole is located at

$$\mathbf{P}_{1} = \frac{f_{1}}{A_{0}} = \frac{\frac{g_{m1}}{C_{m1}}}{\frac{g_{m1}g_{m2}g_{m3}}{g_{01}g_{02}g_{03}}} = \frac{g_{01}g_{02}g_{03}}{g_{m2}g_{m3}C_{m1}} = \left(\frac{g_{01}}{C_{m1}}\right)\frac{1}{\mathbf{A}_{V0_{2}}A_{V0_{3}}}$$

Analog & Mixed-Signal Center (AMSC)

Multipath Nested Miller Compensation Technology Potential Feedforward Schemes: An Amplifier Topologies Re-Visit.

(a) Multipath nested miller compensation topology. FF : NMC

(b) An abstract model for the amplifier proposed by Castello, et.al.

(c) The amplifier with multipath miller zero cancellation.

Analog & Mixed-Signal Center (AMSC)

Let Us Now Compare Several Four-Order Topologies

Four stage amplifier topology with NGCC (Fan You et al)

$$\begin{split} f_1 &< f_2 < f_3 \leq f_4 \ \ \, , \ \ \, \mathbf{f_1} = GB \\ f_4 &> \frac{f_2}{1 - f_2 \,/\, f_3} \end{split}$$

• Power Comsumption :
$$\mathbf{P} = (\mathbf{V}_{dd} - V_{ss}) \sum_{i=1}^{n} I_i$$

 $\mathbf{P} = (\mathbf{V}_{DD} - V_{ss}) I_n \left[1 + \sum_{i=1}^{n-1} \frac{\alpha_i f_i}{f_n} \right], \ \alpha_i = \frac{C_{mi}}{C_I}, \ \alpha_i f_i = \frac{g_{mi}}{C_I}$

 \mathbf{I}_n and \mathbf{f}_n are current and frequency normalization factors, respectively.

Comparison of Several Topologies.

$$\frac{V_0(s)}{V_i(s)} = -A_0 \frac{1 - b_1 s - b_2 s^2 - b_3 s^3}{(1 + s/P_1)(1 + a_1 s + a_2 s^2 + a_3 s^3)}, \qquad k_i = \frac{g_{mi}}{g_{oi}}, i = 1,3 \text{ and } f_i = \frac{g_{mi}}{C_{mi}}$$

Where

$$A_0 = k_1 k_2 k_3 k_4$$
, $P_1 = \frac{f_1}{A_0} = \frac{GB}{A_0}$

Comparison of Polynomial Coefficients for Four Stage NMC and NGCC Amplifier.

Design $P_h(s)$ \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 $C_{m2}C_{m3}C_{L}$ $(g_{m4} - g_{m2} - g_{m3})C_{m2}C_{m3}$ $\left(g_{m4}C_{m2} - g_{m2}C_{m3}\right)$ NMC - Complex \leftarrow gm2gm3gm4 $g_{m2}g_{m3}g_{m4}$ $g_{m2}g_{m4}$ $\underline{C_{m2}C_{m3}}$ $\underline{\mathbf{C}_{m2}}$ $C_{m2}C_{m3}C_{L}$ - Simple NGCC \leftarrow $g_{m2}g_{m3}$ $g_{m2}g_{m3}g_{m4}$ g_{m2} Z(s) $\mathbf{b_1}$ **b**₂ **b**₃ $\underline{C_{m2}C_{m3}}$ C_{m3} $C_{m1}C_{m2}C_{m3}$ NMC $g_{m3}g_{m4}$ $g_{m2}g_{m3}g_{m4}$ g_{m4} NGCC 0 0 0

Analog & Mixed-Signal Center (AMSC)

Nested G_m-C Compensation (NGCC) Nth-Order

Conceptual multistage amplifier topology with NGCC.

How to Implement a Positive G_m?

• If $G_{m2} > G_{mf1}$, M22current > Mf1current, then add

M21to provide additional current.

• If $G_{m2} < G_{mf1}$, Remove M21and add a PMOStransistor in parallel to M22. **Design Example of a Four-Stage Amplifier**

Four stage operational amplifier with NGCC topology

- The dominant pole f_1 is determined by GB
- Phase margin (ϕ_m) is mainly determined by the high frequency poles

- The location of higher-order poles not only influence on the ϕ_m , but also in settling time and power consumption.
- For specification requiring $A_0 > 80 \text{ dB}$, a four-stage (n = 4) is usually required
- Stability considerations for n = 4 impose

$$\begin{split} f_4 &> \frac{f_2}{1 - f_1 / f_3} \quad ; \quad f_1 = GB \\ f_1 &< f_2 < f_3 \le f_4 \\ H(s) &= \frac{V_o(s)}{V_{in}(s)} = \frac{-A_o}{\left(1 + \frac{A_o}{GB}s\right) \left(1 + \frac{s}{f_2} + \frac{s^2}{f_2 f_3} + \frac{s^3}{f_2 f_3 f_4}\right)} \\ &\frac{1}{f_i} = \frac{C_{mi}}{g_{mi}} \quad , \quad i = 1, \dots 4 \end{split}$$

Design Approach

Step 1. Determine $\mathbf{f_1}$ based on \mathbf{GB} $\mathbf{f_1} = \mathbf{GB}$

Step 2. Determine f_2 based on Phase Margin

$$\phi_m = 90^o - \tan^{-1} \left(\frac{GB}{f_2} \left(\frac{1 - GB^2 / f_3 f_4}{1 - GB^2 / f_2 f_3} \right) \right) \approx 90^o - \tan^{-1} \left(\frac{GB}{f_2} \right)$$

Example:

$$f_2 = 2 \text{ GB}, f_3 > f_2, f_4 > f_2 \rightarrow \phi_m \cong 60^\circ$$

However, this does not guarantee small settling time

Design Approach

Step 3. Determine f_3 , f_4 based on settling time and power

$$H(s) = \frac{A_o}{\left(1 + \frac{A_o s}{f_1}\right) \left(1 + \frac{s}{f_2} + \frac{s^2}{f_2 f_3} + \frac{s^3}{f_2 f_3 f_4}\right)}$$

- a. Sweep f_3 and f_4 **Ts?** (settling time) Numerical Analysis (e.g. **MATLAB**)
- b. Select a set of (f_3, f_4) with desired power and settling time

What is the effect of f_4 /GB?

How far should one push f₄?

The phase margin and normalized settling time (TsGB) of an NGCC amplifier vs. f_4/GB .

• Trade-off between phase margin versus setting time.

How do the Two Topologies Compare for Power Consumption?

The normalized power consumption of the NGCC and the NMC amplifiers as a function of the normalized settling time.

More Experimental Results.

Measured 1.0Vp-p 100 KHz sin-wave at input and output nodes of a unity follower.

Analog & Mixed-Signal Center (AMSC)

Measured Performance of the 4-Stage NGCC Op Amp.

Power Consumptio n	0.68mW	1.40mW
DC Gain	≈100dB	≈100dB
Gain Bandwidth	610kHz	1.0MHz
Phase Margin	60°	58°
Input Offset	5.2mV	5.2mV
Slew Rate	$2.5 \text{V}/\mu\text{S}$	5.0V
Power Supply	$\pm 1.0 V$	$\pm 1.0 V$
Load Condition	$10 \mathrm{k}\Omega // 20 pF$	10kΩ//20pF
Area	0.22mm ²	0.22mm ²

OPTIMAL DESIGN OF LOW POWER NESTED GM-C COMPENSATION AMPLIFIERS USING A CURRENT-BASED MOS TRANSISTOR MODEL

X. Xie, M. C. Schneider, S. H. K. Embabi, E. Sánchez-Sinencio

Department of Electrical Engineering Texas A&M University College Station, Texas 77843-3128, USA

Low Power Operational Amplifiers

- Applications: mobile communication & portable devices
- Major concerns: power, stability, area and speed.
- Design approach:
 - Low voltage multistage cascading.
 - Techniques for solving stability problem:
 - Nested Miller Compensation (NMC)
 - Nested Gm-C Compensation (NGCC)
 - Low operating current weak or moderate inversion.
 - Optimal design in moderate inversion
 - Continuous MOSFET model

Topology of Three-stage NGCC Amplifier

We define:

$$k_i = \frac{g_{mi}}{g_{oi}} \qquad f_i = \frac{g_{mi}}{C_{mi}}$$

$$f_1 = \frac{g_{m1}}{C_{m1}}$$
 — unity gain frequency
$$A_o = k_1 k_2 k_3$$
 — dc gain

- feedforward path g_{mf1} and g_{mf2} to cancel RHP zeros.
 - Transfer function: $\frac{V_o(s)}{V_i(s)} = -\frac{g_{m1}g_{m2}g_{m3} + sg_{m1}(g_{mf2} - g_{m2})C_{m2} + s^2(g_{mf1} - g_{m1})C_{m1}C_{m2}}{g_{o1}g_{o2}g_{o3} + sg_{m2}g_{m3}C_{m1} + s^2(g_{m3} + g_{mf2} - g_{m2})C_{m1}C_{m2} + s^3C_LC_{m1}C_{m2}}$

Making $g_{mf1} = g_{m1}$ and $g_{mf2} = g_{m2}$ gives:

$$\frac{V_o(s)}{V_i(s)} = \frac{-g_{m1}g_{m2}g_{m3}}{g_{o1}g_{o2}g_{o3} + sg_{m2}g_{m3}C_{m1} + s^2g_{m3}C_{m1}C_{m2} + s^3C_LC_{m1}C_{m2}}$$

Rewritten as:

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{-k_1 k_2 k_3}{\left(1 + s \frac{k_1 k_2 k_3}{f_1}\right) \left(1 + \frac{s}{f_2} + \frac{s^2}{f_2 f_3}\right)}$$

Phase margin: $PM \cong 90^{\circ} - \tan^{-1} \frac{1}{(\frac{f_2}{GB} - \frac{GB}{f_3})}$

Topology of Four-stage NGCC Amplifier

Compared to three-stage NGCC:

- easier to obtain high dc gain,
- more complicated design,
- potentially more power consumption.

• Transfer function:

$$\frac{V_o(s)}{V_i(s)} = \frac{-A_0}{\left(1 + \frac{A_0s}{f_1}\right)\left(1 + \frac{s}{f_2} + \frac{s^2}{f_2f_3} + \frac{s^3}{f_2f_3f_4}\right)}$$

• Phase margin:

$$PM = 90^{\circ} - \tan^{-1} \left(\frac{GB}{f_2} \times \frac{1 - GB^2 / f_3 f_4}{1 - GB^2 / f_2 f_4} \right)$$
$$\approx 90^{\circ} - \tan^{-1} \left(\frac{GB}{f_2} \right)$$

• Transfer function of an n-stage NGCC amplifier:

$$\frac{V_o(s)}{V_i(s)} = \frac{-A_0}{\left(1 + \frac{A_0 s}{f_1}\right) \left(1 + \frac{s}{f_2} + \frac{s^2}{f_2 f_3} + \dots + \frac{s^{n-1}}{\prod_{i=2}^n f_i}\right)}$$

Modification on Low Power Three-stage NGCC

Significant parasitic effect:

- very large transistors for weak inversion design,
- long channel transistors used for high dc gain.
- Modified transfer function:

•
$$H'(s) = -\frac{A_0 + a_1 s + a_2 s^2}{\left(1 + s \frac{A_0}{f_1'}\right)\left(1 + \frac{s}{f_2'} + \frac{s^2}{f_2' f_3'}\right)}$$

where

 $a_1 = k_1 k_2 \left(\frac{C_2}{g_{23}} - k_3 \tau \right)$

$$a_{2} = k_{1} \left(\frac{C_{1}(C_{2} + C_{m2})}{g_{o2}g_{o3}} + k_{2}\tau \frac{C_{m2}}{g_{o3}} \right)$$

- Ci parasitic capacitance at each output node,
- τ phase delay due to the current mirror at second stage.

Modification on Low Power Three-stage NGCC (cont.)

 $f_1' = f_1$

$$f_{2}' = f_{2} \frac{1}{1 + \varepsilon_{1} + \varepsilon_{2} \frac{g_{m2}}{g_{m3}} - f_{2}\tau + \frac{g_{o3}}{g_{m3}}(1 + \varepsilon_{1})(1 + \varepsilon_{2})}$$

$$f_{3}' = f_{3} \frac{\frac{1}{1 + \varepsilon_{2}} - f_{2}\tau \frac{1}{1 + \varepsilon_{1}} \frac{1}{1 + \varepsilon_{2}} + \frac{g_{o3}}{g_{m3}} + \frac{g_{m2}}{g_{m3}} \frac{1}{1 + \varepsilon_{1}} \frac{\varepsilon_{2}}{1 + \varepsilon_{2}}}{1 + \frac{C_{2}}{C_{L}} \frac{1}{1 + \varepsilon_{2}} + \frac{C_{1}}{C_{L}} \frac{1}{1 + \varepsilon_{1}} + \frac{g_{m2}\tau}{C_{L}} \frac{1}{1 + \varepsilon_{1}} \frac{1}{1 + \varepsilon_{2}}}$$

with $\varepsilon_1 = C_1/C_m$ and $\varepsilon_2 = C_2/C_m$

Moderate inversion:
good stability,
optimization of power, speed & area.

Ex:
$$f_1 = GB$$
, $f_2 = 2GB$, $f_3 = 4GB$, $C_{m1} = C_{m2} = 8$ pF, $C_L = 20$ pF,
then $g_{m1} = 50 \ \mu\text{S}$, $g_{m2} = 100 \ \mu\text{S}$, $g_{m3} = 500 \ \mu\text{S}$,
For $g_{o3} = 100 \ \mu\text{S}$ (R_L), $C_1 = 1$ pF, $C_2 = 3$ pF, $C_3 = 6$ pF
Assume $\tau = 0$,
Then $f_2' = 0.66f_2$ and $f_3' = 0.67f_3$

Current-Based Transistor Model

- Features of ACM model:
 - physics-based model,
 - universal and continuous expression for any inversion,
 - independent of technology, temperature, geometry and gate voltage,
 - same model for analysis, characterization and design.
- Main design equations: (design parameters: I, g_m, i_f)

$$\frac{I}{\phi_{t}g_{m}n} = \frac{1 + \sqrt{1 + i_{f}}}{2}$$

$$I - - drain current in transistor
$$g_{m} - transconductance in saturation
n - slope factor
$$f_{T} = \frac{\mu\phi_{t}}{2\pi L^{2}} 2(\sqrt{1 + i_{f}} - 1)$$

$$\frac{W}{L} = \frac{g_{m}}{\mu C_{ox}\phi_{t}} \frac{1}{\sqrt{1 + i_{f}} - 1}$$

$$\frac{V_{DSAT}}{\phi_{t}} \equiv (\sqrt{1 + i_{f}} - 1) + 4$$

$$\frac{W}{L} = \frac{g_{m}}{2\mu C_{ox}\phi_{t}} \left(\frac{I}{\phi_{t}g_{m}n} - 1\right)$$

$$I - - drain current in transistor
$$g_{m} - thermal voltage$$

$$i_{f} - inversion level of the transistor defined as$$

$$i_{f} = I/I_{s} , \text{ where } I_{s} = \mu n C_{ox} \frac{\phi_{t}^{2}}{2} \frac{W}{L}$$
is the normalization current.

$$i_{f} << 1 - \text{ weak inversion,}$$

$$i_{f} >> 1 - \text{ strong inversion.}$$$$$$$$

Specifications and Design Procedure

- Specifications:
 - load 10 k $\Omega/20$ pF
 - gain bandwidth GB=1 MHz
 - dc gain $A_0 > 100 \text{ dB}$
 - phase margin $PM > 60^{\circ}$
 - 0.2% settling time $< 1\mu$ S
 - power consumption: minimum
- Other Specs can be included (if determined by g_m , *I*, and i_f):
 - noise,
 - slew rate,
 - common mode rejection.

Implementation of Three-Stage NGCC Amplifier

Remarks:

- Ideally, $f_1 = GB$, $f_2 = 2GB$, $f_3 = 4GB$, Choose $f_2=3GB$, $f_3=5GB$ to compensate large parasitic effect.
- Long channel to obtain adequate gain — cause large parasitic effect.

Transistor NO.	W(µm)	L(µm)	$i_{\rm f}$
$M_1 - M_4$	1×18	4.2	20
M ₀ , M ₅	2×18	4.2	20
M_6, M_7, M_9	6×18	4.2	20
M ₈	25×18	4.2	20
M _{IN1} , M _{IN2}	20×18	4.2	4
$M_{P0} - M_{P3}$	2×18	4.2	80
M_{P4}, M_{P5}	6×18	4.2	80
M _{P6}	33×18	4.2	80

Implementation of Four-Stage NGCC Amplifier

Remarks:

- f₁=GB, f₂=2GB, f₃=5GB, f₄=6GB
- shorter length small parasitic effect
- lower inversion level than 3-stage one.
- Same implementation and same f_i for reference opamp (low-voltage strong inversion 4-stage)

Transistor NO.	W(µm)	L(µm)	\mathbf{i}_{f}
$M_1 - M_4$	4×10.8	1.8	6
M ₀ , M ₅	8×10.8	1.8	6
M ₆ , M ₇ , M ₁₁	8×10.8	1.8	6
M ₈ , M ₉ , M ₁₂	20×10.8	1.8	6
M ₁₀	60×10.8	1.8	6
M_{IN1}, M_{IN2}	8×18	1.8	6
$M_{P0} - M_{P3}$	2×18	1.8	30
M_{P4}, M_{P5}	2×18	1.8	30
M_{P6}, M_{P7}	5×18	1.8	30
M _{P8}	24×18	1.8	30

Simulation Results of NGCC Amplifiers $(V_{DD} = 2 \text{ V}, Z_{LOAD} = 10 \text{ k}\Omega/20 \text{ pF})$

	Specifications	Three-Stage	Four-Stage	Four-Stage(ref.)
Power Consumption	Minimum	0.28 mW	0.30 mW	0.93 mW
DC Gain	$\geq 100 \text{ dB}$	~ 100 dB	~ 105 dB	~ 110 dB
Gain Bandwidth	1.0 MHz	1.08 MHz	1.03 MHz	1.09 MHz
Phase Margin	> 60°	59.5°	62.7°	61.2°
0.2% Settling Time (100 mV)	< 1 µS	0.77 µS	0.55 µS	0.53 µS
THD (1kHz 1V _{P-P})		- 84.8 dB	- 88 dB	- 55.8 dB
1% THD Input (1kHz)		1.36V	1.38V	1.26V
Active Area (relative area)		$0.01 \text{mm}^2(1.75)$	$0.0052 \text{ mm}^2(0.91)$	$0.0057 \text{ mm}^2(1)$
min i_f , max i_f		4,80	6,30	100,130

- * 1.2 μ m AMI n-well CMOS technology
- * BSIM (HSPICE level 13) simulation

Experimental Results

	Specifications	Three-Stage	Four-Stage	Four-Stage(ref.)
Power Consumption	Minimum	0.26 mW	0.28 mW	0.63 mW
DC Gain	$\geq 100 \text{ dB}$	~ 96 dB	~ 105 dB	~ 100 dB
Gain Bandwidth	1.0 MHz	1.10 MHz	1.05 MHz	900 kHz
Phase Margin	$> 60^{\circ}$	56.7°	62.0°	63.6°
THD (1kHz 1V _{P-P})		- 67.7 dB	- 67.5 dB	- 28.5 dB
1% THD Input (1kHz)		1.13 V	1.11 V	0.94 V
Active Area		0.01 mm ²	0.0052 mm^2	0.0067 mm^2
(Relative Area)		(1.49)	(0.78)	(1)

* The output stage of the reference op amp is realized with a PMOS transistor for reduction of power.

Frequency Response

3-stage NGCC amplifier

4-stage NGCC amplifer

Response to 100 kHz 1Vp-p sine wave

 $2 \ \mu S/DIV$

3-stage NGCC amplifier

 $2 \,\mu\text{S/DIV}$

4-stage NGCC amplifier

Step Response with 100 kHz 100 mV Input

 $2 \ \mu S/DIV$

 $2 \mu S/DIV$

3-stage NGCC amplifier

4-stage NGCC amplifier

Step Response with Large Signal (1 kHz 1V)

200 μS/DIV 3-stage NGCC amplifier

200 μS/DIV 4-stage NGCC amplifier

Conclusions

- Using a new MOSFET model, NGCC amplifiers can be designed in moderate inversion yielding optimal trade-off design.
- With same or better performance, low power amplifiers consume 65% less power than low voltage (strong inversion) design.
- Four-stage op amp has better overall performance with much less area and without dissipating evidently more power.
- Three-stage one benefits for the reduction of design complexity.

ELEN 607 (ESS) SPRING'06

Review: Cascade with Miller effect

 $\frac{Vo}{Vi} = \frac{A1(-A2 + sCmR2)}{1 + s(CpR1 + CLR2 + Cm(R1A1 + R1 + R2)) + s^{2}(CpCL + Cm(Cp + CL))R1R2}$

$$D(s) = 1 + \frac{s}{w_{p1}} + \frac{s}{w_{p1}w_{p2}} + \frac{s}{w_{p1}w_{p2}} + \frac{s}{w_{p1}w_{p2}} + \frac{s}{m_{p1}w_{p1}} \approx \frac{-1}{CpR1 + CLR2 + Cm(A2R1 + R1 + R2)} \approx \frac{-1}{R1A2Cm} = -\frac{go1}{A2Cm}$$
$$w_{p2} \approx \frac{-CmA2 \cdot go2}{CpCL + Cm(Cp + CL)} \approx \frac{-gm2}{Cp + CL} \approx -\frac{gm2}{CL} + \frac{s}{m_{p1}w_{p2}} = \frac{gm2}{Cm}$$

Pole splitting via RC feedback branch

Review: Feedforward compensation

° Transfer Function

 $\frac{Vi}{Vo} = \frac{-(-R2Af - A1RfA2 - s(CpR1R2Af + CmR2RfA1 - R2AfCmR1))}{s^{2}(CLR2RfCpR1 + CLR2RfCmR1 + CmR2RfCpR1 + s(RfCpR1 + RfCmR1))}$ $\frac{1}{+s(CLR2Rf + CmR2Rf + R2CpR1 + R2CmR1 + RfA2CmR1) + Rf + R2}$ $\frac{Vo}{Vi} \approx \frac{-gm1gm2 + sCm(gm1 - gmf)}{go1go2 + s \cdot gm2Cm + s^{2}CLCm}$ $w_{p1} \approx \frac{-1}{gm2R2CmR1} \approx \frac{-1}{A2CmR1}$ $w_{z1} \approx \frac{gm1gm2}{Cm(gm1 - gmf1)}$

$$w_{p2} \approx \frac{gm2}{CL}$$

Creating and internal zero cancellation DFCFC

$$w_{p1} \approx \frac{-\operatorname{gm1}}{\operatorname{CmR2(gm1+gm2)}}|_{gm1=gm2} = -\frac{g02}{2Cm}$$
$$w_{p2} \approx \frac{-(\operatorname{Rf} + \operatorname{R3})}{\operatorname{R3} \cdot \operatorname{Rf} \cdot \operatorname{Cm}}|_{Rf=R3} = -\frac{2}{R3Cm}$$

$$w_{z1} \approx -\frac{R1 gmf gm1 + gm3}{Cm(R1 gmf R2 gm1 + R1 gmf gm2 R2 + gm3 R1 + gm3 R2)}$$

Damping factor frequency controlled compensation (DFCFC)

Amplifier Comparisons

\Rightarrow 4 stage NGCC Amplifier.

⇒ 3 stage DFCFC Amplifier

Parameters	NGCC	DFCFC
Av (dB)	100.3	100.4
GBW (MHz)	8.21	8.23
Phase Margin(`)	70	75
0.2% Settling Time(ns)	373	398
Slew Rate(+) (V/us)	11.2	8.2
Slew Rate(-) (V/us)	-7.1	-6.7
CMR (V)	1.25	0.97
CMRR (dB)	63.02	28.55
PSRR+ (dB)	49.62	24.05
PSRR- (dB)	29.1	20.48
Input Referred Offset (v)	290n	-4.13u
Active Area (um ²)	233.4	228.88
Power Consumption (mW)	1.2	0.4

4 stage NGCC Amplifier.

#	M1	M2	M3	M4	M5	M6	M7	M8
Size	49/.4	46/.4	36/.4	10/.4	10/.4	38/.4	6.5/.4	38/.4
#	M9	M10	M11	M12	M13	M14	M15	M16
Size	38/.4	6.5/.4	22/.4	22/.4	22/.4	10/.4	20/.4	30/.4
#	M17	M18	M19	M20	M21	M22	•	•
Size	30/.4	20/.4	70/.4	20/.4	23/.4	44/.4		

#	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
Size	38/.4	38/.4	48/.4	1.2/.4	1.2/.4	1.2/.4	1.2/.4	1.2/.4	1.2/.4	18/.4
#	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
Size	18/.4	30/.4	22/.4	45/.4	45/.4	9/.4	3/.4	31/.4	95/.4	53/.4

•

References

S. Pernici, "A CMOS Low-Distortion Fully Differential Power Amplifier with Double Nested Miller Compensation," *IEEE J. Solid-State Circuits*, Vol. 28, No. 7, pp. 758-763, July 1993.

F. You, S.H.K. Embabi and E. Sánchez-Sinencio, "Multistage Amplifier Topologies with Nested G_m-C Compensation," *IEEE J. of Solid-State Circuits*, Vol. 32, No. 12, pp. 2000-2011, December 1997.

X. Xie, M.C. Schneider, E. Sánchez-Sinencio and S.H.K. Embabi, "Sound Design of low power nested transconconductance-capacitance compensation amplifiers" *Electronics Letters*, Vol. 35, No. 12, pp956-958, June 1999

K.N. Leung, P.K. T. Mok, W.-H. Ki, and J. K. O. Sin, "Three-Stage Large Capacitive Load Amplifier with Damping Factor-Control Frequency Compensation, "*IEEE J. of Solid-State Circuits*, Vol. 35, No. 2, pp. 221-230, February 2000

B.K. Thandri, , and J. Silva-Martinez, "A Feedforward Compensation Scheme for Multi-Stage Amplifiers with No-Miller Capacitors", IEEE J. Solid State Circuits, Vol. 38, pp. 237-243, Feb. 2003.

References

Reading Material

Author(s): Cherry Edward M.

Universal basis for ranking small-signal aspects of compensation techniques for operational amplifiers *INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS* Volume: 39 Issue: 11 Pages: 1105-1144 DOI: 10.1002/cta.689 Published: NOV 2011

Author(s): Peng Xiaohong; Sansen Willy; Hou Ligang; et al.
Impedance Adapting Compensation for Low-Power Multistage Amplifiers
Source: *IEEE JOURNAL OF SOLID-STATE CIRCUITS* Volume: 46 Issue: 2 Pages: 445-451 DOI: 10.1109/JSSC.2010.2090088 Published: FEB 2011

Author(s): Ito Rui; Itakura Tetsuro

Title: Phase Compensation Techniques for Low-Power Operational Amplifiers Source: *IEICE TRANSACTIONS ON ELECTRONICS* Volume: E93C Issue: 6 Pages: 730-740 DOI: 10.1587/transele.E93.C.730 Published: JUN 2010