Low Voltage

Circuit Design

Techniques

ELEN 607 (ESS)

Analog and Mixed-Signal Center (AMSC) Texas A&M University

What is a Self-Cascode Composite Transistor?

(a) Self-Cascode Composite NMOS Transistor

(b) Equivalent Simple Transistor

In practical cases, for optimal operation the W/L ratio of M_2 should be larger than that of M_1 , *i.e.* m > 1.

The 2-transistor structure can be treated as a composite transistor, which has a much larger effective channel length (thus lower output conductance).

Working Conditions [5]

For the composite transistor to function properly, both M_2 and M_1 should conduct, thus, the following conditions should be satisfied:

$$V_G - V_X - V_T > 0 \tag{1}$$

$$V_G - V_S - V_T > 0 \tag{2}$$

We can rewrite (1) as:

$$V_{X} - V_{S} < V_{G} - V_{S} - V_{T} = V_{DSAT}$$
(3)

From (3) we know that transistor M_1 must be in linear region. Depending on the drain voltage, transistor M_2 can work in saturation region or linear region.

Equivalent Transistor Parameter (I)

For the composite transistor work in saturation region, we know M_2 should in saturation and M_1 is in linear region. Thus, we can write equations for these two transistors as:

$$i_1 = \frac{\beta_2}{2} (V_{GS} - V_X - V_T)^2$$
 $i_1 = \beta_1 (V_{GS} - V_T - \frac{1}{2} V_X) V_X$

Solving i_1 we can obtain:

$$i_2 = \frac{1}{2} \frac{\beta_2 \beta_1}{\beta_2 + \beta_1} (V_{GS} - V_T)^2$$

From (3), we have
$$\beta_{eq} = \frac{\beta_2 \beta_1}{\beta_2 + \beta_1}$$

If
$$\beta_2 = m \cdot \beta_1$$
 $\beta_{eq} = \frac{m}{m+1} \beta_1 = \frac{1}{m+1} \beta_2$
 $\beta_{eq} \Big|_{m-\infty} = \beta_1$

Comments on VDSAT

Because transistor M_1 always operates in linear region while the top transistor operates in saturation or linear region. Voltage between the source and drain terminal of M_1 is so small that there is no discernable V_{DSAT} difference in both the composite and simple transistors. Thus, self-cascode structure can be used in *low voltage applications*.

$$V_{DSAT-eq} = V_{DSAT-M2} + V_{DS-M1} = V_{DSAT-M2} + I_{D2}R_{M1}$$

where $R_{M1} = \frac{1}{\mu C_{OX}(V_{GS} - V_T)\frac{W}{L}}$

The operating voltage of a regular cascode circuit is much higher than that of a single transistor. This characteristic makes regular cascode circuit not suitable for low voltage applications.

DC Simulation Results (I)

ID vs. VDS DC Response Curve

DC Response of the composite transistor

Effect of "m" on the output characteristics

DC Simulation Results (II)

From simulations (TMSC 0.35um process), we observe that:

m	W/L	Equivalent W/L
2	1.5/0.6	1.7/0.9
4	1.5/0.6	2.5/1.5
6	1.5/0.6	3.0/2.1
8	1.5/0.6	3.3/2.4
10	1.5/0.6	3.8/3.0
20	1.5/0.6	20/24

When m is larger, the effective length L is also larger

Equivalent (W/L)Transistor Parameter

Because β is proportional to W/L, we can have the equivalent W/L derived from previous results:

$$\left(\frac{W}{L}\right)_{eq} = \frac{\left(\frac{W}{L}\right)_2 \cdot \left(\frac{W}{L}\right)_1}{\left(\frac{W}{L}\right)_2 + \left(\frac{W}{L}\right)_1}$$

If lengths of M_2 and M_1 are equal, and M_2 is *m* times wider than M_1 , the equivalent W/L ratio is:

$$\left(\frac{W}{L}\right)_{eq} = \frac{m}{m+1} \left(\frac{W}{L}\right)_1 = \frac{1}{m+1} \left(\frac{W}{L}\right)_2$$

Equivalent Output Impedance

(Low frequency small signal)

The equivalent output impedance of the composite transistor is:

$$r_{o} = g_{m2}r_{2}r_{1} - r_{2} - r_{1} \approx (g_{m2}r_{1} - 1)r_{2} = (m \cdot g_{m1}r_{1} - 1)r_{2} = (m - 1) \cdot r_{2}$$

$$(m >> 1)$$

Effective Transconductance

The lower transistor M_1 is equivalent to a resistor But this resistor is input dependent.. The effective transconductance of the composite transistor is approximately equal to the transconctance of M_1 :

$$g$$
m-eff= g m2/ m = g m1

Small-Signal Equivalent Circuit (Single Transistor)

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array}$$
\left(\begin{array}{c}
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\bigg{)}
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\bigg{)} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\bigg{)} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array}
\left(\end{array} \\
\bigg{)} \\
\end{array}
\left(\end{array} \\
\bigg{)} \\
\bigg{)}
\left(\end{array} \\
\left(\end{array}
\bigg{)}
\left(\end{array} \\
\left(\end{array} \\
\bigg{)}
\left(\end{array} \\
\left(\end{array} \\
\bigg{)}
\left(\end{array}

Solve this equation set we can obtain the voltage gain as a function of the frequency:

$$A_{2} = (C_{gs}C_{gd} + C_{gs}C_{ds} + C_{ds}C_{gd}) \cdot R_{L}$$

$$B_{2} = (g_{m1}R_{L}R_{S} + R_{L} + R_{S})(C_{gs}C_{ds} + C_{gs}C_{gd} + C_{ds}C_{gd})$$

$$A_{1} = (g_{m1}C_{gd} + g_{0}C_{gd} + g_{0}C_{gs} + g_{m2}C_{gd}) \cdot R_{L}$$

$$B_{1} = (C_{gs} + C_{ds}) + (C_{gd} + C_{ds}) \cdot g_{m1}R_{L} + (C_{gs} + C_{gd})(g_{m1}R_{S} + g_{0}R_{L}g_{m1}R_{S} + g_{0}R_{S} + g_{0}R_{L})$$

$$+ C_{gd}g_{m2}(R_{L} + R_{S} + g_{m1}R_{L}R_{S})$$

$$B_{0} = g_{m2} + g_{0} + g_{m1} + g_{m1}R_{L}g_{0}$$

This function has 2 poles and 2 zeros, but it is too complex!

11

Small-Signal Equivalent Circuit (Composite Transistor)

Circuit Equations

$$\frac{(V_G - V_S)}{R_S} + \frac{V_G \cdot sC_{gs}}{R_L} + \frac{(V_G - V_O) \cdot s \cdot C_{gd}}{R_L} = 0$$

$$\frac{V_O}{R_L} + \frac{(V_O - V_X) \cdot (g_O + s \cdot C_{ds})}{R_L} + \frac{g_{m2} \cdot (V_G - V_X)}{R_L} + \frac{(V_O - V_G) \cdot s \cdot C_{gd}}{R_L} = 0$$

$$\frac{V_O}{R_L} + \frac{(V_O - V_X) \cdot (g_O + s \cdot C_{ds})}{R_L} + \frac{(V_G - V_X) \cdot (g_O + s \cdot C_{ds})}{R_L} = 0$$

Solving this equation set we can obtain the voltage gain as a function of the frequency:

$$A_{2} = (C_{gs}C_{gd} + C_{gs}C_{ds} + C_{ds}C_{gd}) \cdot R_{L}$$

$$A_{1} = (g_{m1}C_{gd} + g_{0}C_{gd} + g_{0}C_{gs} + g_{m2}C_{gd}) \cdot R_{L}$$

$$B_{2} = (g_{m1}R_{L}R_{S} + R_{L} + R_{S})(C_{gs}C_{ds} + C_{gs}C_{gd} + C_{ds}C_{gd})$$

$$B_{0} = g_{m2} + g_{0} + g_{m1} + g_{m1}R_{L}g_{0}$$

$$B_{1} = (C_{gs} + C_{ds}) + (C_{gd} + C_{ds}) \cdot g_{m1}R_{L} + (C_{gs} + C_{gd})(g_{m1}R_{S} + g_{0}R_{L}g_{m1}R_{S} + g_{0}R_{S} + g_{0}R_{L})$$

$$+ C_{gd}g_{m2}(R_{L} + R_{S} + g_{m1}R_{L}R_{S})$$
12

Effect of the Capacitor C_{gd} (Simple)

Let's assume $C_{gs} = 0$ $C_{ds} = 0$ $R_L g_0 <<1$, thus

 $A_{1} = C_{gd} R_{L}$ $A_{0} = -g_{m2} R_{L}$ $A_{2} = 0$ $B_{1} = C_{gd} R_{L} R_{S} g_{0} + C_{gd} \cdot R_{L} + (g_{m2} R_{L} + 1) R_{S} C_{gd}$ $\cong C_{gd} R_{S} g_{m2} R_{L}$ $B_{0} = R_{L} g_{0} + 1 \cong 1$

The simplified transfer function is:

$$A_{V}(s) = \frac{A_{1}s + A_{0}}{B_{1}s + B_{0}}$$

This means that if we consider the effect of only C_{gd} , the function is simplified to one pole and one zero

Effect of the Capacitor C_{gd} (Composite)

Let's assume $C_{gs} = 0$ $C_{ds} = 0$ $R_L g_0 <<1$, thus

$$\begin{aligned} A_{2} &= 0\\ A_{1} &= \left(g_{m1}C_{gd} + g_{0}C_{gd} + g_{m2}C_{gd}\right) \cdot R_{L} \cong \left(g_{m1} + g_{m2}\right) \cdot C_{gd}R_{L}\\ A_{0} &= -g_{m1}g_{m2} \cdot R_{L}\\ B_{2} &= 0\\ B_{1} &= C_{gd} \cdot \left(g_{m1}R_{L} + g_{m1}R_{S} + g_{0}R_{L}g_{m1}R_{S} + g_{0}R_{S} + g_{0}R_{L} + g_{m2}R_{L} + g_{m2}R_{S} + g_{m1}g_{n}\right)\\ &\cong C_{gd}g_{m2}R_{L} \cdot \left(1 + g_{m1}R_{S}\right)\\ B_{0} &= g_{m2} + g_{0} + g_{m1} + g_{m1}R_{L}g_{0} \cong g_{m2} \end{aligned}$$

The simplified transfer function is:

$$A_V(s) = \frac{A_1 s + A_0}{B_1 s + B_0}$$

Comments on the Poles and Zeros

Consider the effect of C_{gd} only, we can get the following conclusion:

The pole of the simple transistor is higher than that of the composite transistor.

$$\frac{\omega_{Z-Composite}}{\omega_{Z-Simple}} = \frac{g_{m1}}{g_{m2}} = \frac{1}{m}$$

The same conclusion can be applied to zeros:

$$\frac{\omega_{P-Composite}}{\omega_{P-Simple}} = \frac{g_{m1}}{g_{m2}} = \frac{1}{m}$$

Frequency Parameters

The transition time τ increases as the value of *m*. According to reference[1], The relationship is:

$$\tau \cong \tau_u \left(1 + \sqrt{1 + m} \right)$$

Where τ_u is the transition time of an unit transistor used in the self-cascode structure.

For the saturated MOS transistor in strong inversion parameters ω_T (Cutoff frequency) and τ are related by:

$$\tau\omega_T = 2$$

Advantage of the Self-Cascode Structure

The main advantage of this structure is smaller transistor area. The sum of areas of M_D and M_s is smaller than the area of the equivalent simple transistor.

The table below shows the simulation results with MOSIS TSMC 0.35u CMOS process:

MS W/L	m	MD W/L	Equivalent FET W/L	Area Ratio*	Gain (RL=inf.)
3.0/0.би	3	9.0u/0.6u	5.6u/1.2u	7.2/6.72	42dB
3.0u/0.6u	8	24.0u/0.6u	38.5u/12.0u	16.2/462.0	47dB
1.5u/0.6u	11	16.5u/0.6u	9.9u/12.0u	10.8/118.8	44dB

* COMPOSITE/SINGLE

For equal chip area:

$$A_{V-CASCODE} > A_{V-SELF-CASCODE} > A_{V-SIMPLE-TRANSISTOR}$$

To achieve the same voltage gain:

$$AREA_{CASCODE} < AREA_{SELF-CASCODE} < AREA_{SIMPLE-TRANSISTOR}$$

Applications (I)--Current Mirror

Simple transistors can be substituted with self-cascode structure to achieve better performance. (i.e. higher output impedance)

Schematic of the Circuit for Simulation

Model: TMSC 0.35um CMOS Process

Current Mirror Simulation Results (DC)

Current Mirror Simulation Results (AC)

Application (I) – Current Mirrors

Traditional vs. Series-Parallel

Series-Parallel Current Mirror

Compare Current Mirrors

Series-Parallel current mirror improves the output impedance

	R	S	Ρ	Q	Μ	Area	Input Imp.	Output Imp.
Trad.	1	1	1	900	900	901T	71.5K	4.0K
Series- Parallel 900	30	1	1	30	900	60T	356.8K	12.4K
	60	2	2	60	900	240T	357.3K	20.7K
	90	3	3	90	900	540T	357.5K	28.8K
	120	4	4	120	900	960T	357.6K	36.8K

Output Impedance Comparison Input Current = **1uA**, Ratio = 1:900

Compare Current Mirrors

	R	S	Ρ	Q	Μ	Area	Input Imp.	Output Imp.
Trad.	1	1	1	900	900	901T	19.1K	800
Series- Parallel 90 12	30	1	1	30	900	60T	155.4K	4.3K
	60	2	2	60	900	240T	154.4K	4.8K
	90	3	3	90	900	540T	154.1K	5.5K
	120	4	4	120	900	960T	154.1K	6.2K

Output Impedance Comparison Input Current = **10uA**, Ratio = 1:900

Voltage Swing

Stacked transistors limit the output swing of S-P current mirror

	R	S	Ρ	Q	Output Vdsat (lin=1uA)	Output Vdsat (lin=10uA)
Trad.	1	1	1	900	89mV	245mV
Series- Parallel	30	1	1	30	441mV	1.4V
	60	2	2	60	303mV	1.0V
	90	3	3	90	244mV	830mV
	120	4	4	120	210mV	720mV

Vdsat (equivalent) of the output transistor reveals the max swing of the output voltage

Applications (II)--Differential Pair

Composite transistors can replace single transistors in a differential pair. Through self-cascode structure, higher voltage gain can be achieved.

Differential Pair Simulation Results (DC)

Differential Pair Simulation Results (AC)

References

- 1. C. Galup-Montoro, etc., "Series-Parallel Association of FET's for High Gain and High Frequency Applications", *IEEE JSSC*, Sept. 1994
- 2. D. Ceuster, etc., "Improvement of SOI MOS current-mirror performances using serial-parallel association of transistors", *Electronics Letters*, Feb. 1996
- 3. P. Furth, H. Om'mani, "A 500-nW Floating-Gate Amplifier with Programmable Gain", IEEE 1999
- 4. I. Fujimori, T. Sugimoto, "A 1.5V, 4.1mW Dual-Channel Audio Delta-Sigma D/A Converter", *IEEE JSSC*, Dec. 1998
- 5. Personal note from Dr. Ugur Cilingiroglu
- 6. Yunchu Li, examples and SPICE tables

LOW VOLTAGE CURRENT-MIRRORS

General scheme for high-performance current mirror structure.

(c) (d) (e)

High-performance current mirrors:

V_{in}

Conventional active-input current mirror

Disadvantage:

- To achieve stability, gm1 can not be arbitrarily small. Thus, can not work over a wide current range.
- Compensation of the amplifier depends on the value of *Iref*.

Improved active input current mirrors (I)

Advantage:

This current mirror can operate over a very wide range of currents: from values equal to junction leakage currents up to the maximum current the OTA might be able to sink.

Disadvantage:

- Additional compensation capacitor between *n*1 and *n*2 may required to achieve stability
- The OTA must be able to sink twice the maximum expected value for *Iref*, which imposes an important design constraint for the OTA.

$$V_{i\min} = \max\left(\frac{V_T + V_{DSAT} - V_G}{A} + V_{clamp}, \frac{V_{DSAT} + A \cdot V_{clamp}}{A+1}\right) \qquad V_{0\min} = V_{DSAT2}$$
$$R_{in} \approx \frac{1}{A \cdot g_{m1} + (1+A) \cdot g_{o1}} \approx \frac{1}{A \cdot g_{m1}} \qquad R_{out} \cong \frac{1}{g_{o2}}$$

Improved active input current mirrors (II)

Advantage:

- This current mirror can operate over a very wide range of currents: from values equal to junction leakage currents up to the maximum current the OTA might be able to sink.
- If the differential voltage amplifier is already compensated for unity gain feedback, the circuit is always stable.

Disadvantage:

- Higher power supply may be required for amplifier
- More chip area and power consumption

$$V_{i\min} = \frac{V_{DSAT1} + V_T + A \cdot V_{clamp}}{A + 1}$$

$$R_{in} \approx \frac{1}{(1+A) \cdot (g_{m1} + g_{o1})} \approx \frac{1}{(1+A) \cdot g_{m1}}$$
$$R_{out} \approx \frac{1}{g_{o2}}$$

$\int_{I_{b}} I_{b} \text{ mproved active input current mirrors (III)}$ $\int_{I_{in}} V_{c} \text{ marrow} V_{out} \text{ Vout}$ $V_{out} \text{ Vout} \text{ Vout}$ $V_{OUT} > 2V_{DSAT}^{Q} + V_{oV}^{MAX}$ $V_{in} \text{ MAX}_{CNOUT} \cong |V_{tp}| + 3V_{DSAT}^{Q} + V_{oV}^{MAX}$ $V_{oV} \text{ marrow} Y_{oV} \text{ marrow}$

37

Open-loop response analysis: (a) input side and (b) output side.

Active regulated cascode current mirror

$$V_{i\min} = \max\left(\frac{V_T + V_{DSAT}}{A1} + V_D, V_{DSAT}\right)$$
$$V_{o\min} = 2V_{DSAT}$$
$$R_{in} \approx \frac{1}{A1 \cdot g_{m1}}$$
$$R_{out} = \frac{g_{m3}(1 + A2)}{g_{o3}g_{o2}}$$

Advantages:

- High output impedance
- Low input impedance

Disadvantages:

- Poles and zeros may cause unstability
- more power and area

Techniques for Wideband Amplifiers

T. Itakura and T. Iida, "A Feedforward Technique with Frequency-Dependent Current Mirrors for a Low-Voltage Wideband Amplifier," *IEEE J. Solid-State Circuits*, Vol. 31, No.6, pp. 847-849, June 1996.

Wideband Amplifier with Feedforward Technique

- C_{F1} by passes two current mirrors.
- C_{F2} is fed forward to the input of another FDCM and signal is amplified.

Next, we discuss different families of wideband reported in the literature.

F. Centurelli et al, "A Bootstrap Technique for Wideband Amplifiers," *IEEE Trans. on Circuits* And Systesm – I, Vol. 49, No. 10, pp. 1474-1480, October 2002

FOLDED-CASCODE WIDEBAND AMPLIFIER

Conventional Folded-Cascode (FC)

FC with Capacitive Feedforward

F. Opt Eynde, W. Sansen, "A CMOS Wideband Amplifier with 800MHz Bandwidth," IEEE Custom Integrated Circuits Conf., pp. 9.1.1-9.1.4, 1991

References

- [1] E. Sánchez-Sinencio and A. Andreou, Editors, "Low Power/Low Voltage Integrated Circuits and Systems, Piscataway, IEEE Press, 1999.
- [2] K. Laker, W. Sansen, "Design of Analog Integrated Circuits and Systems", McGraw-Hill, New York, 1994
- [3] Edgar Sánchez-Sinencio, ELEN626 Notes, 1998
- [4] Teresa Serrano-Gotarredona, etc., "Very wide range tunable CMOS/Bipolar Current Mirrors with Voltage Clamped Input", *IEEE Trans. On Circuits and Systems*, Oct. 1998.
- [5] D.A. Johns and K. Martin, "Analog Integrated Circuit Design", New York, John Wiley 1997
- [6] R. Jacob Baker, H. Li, etc., "CMOS Circuit Design, Layout, and Simulation", IEEE Press, 1997.

Different OTAs

Source Degenerated OTA-1

Common-Mode Equivalent Circuit

$$A_{cm} = \frac{g_{m,n}(r_{ds,p} // [(g_{m,n} + g_{mb,n})r_{ds,n}(R_s + 2R_{ss}) + r_{ds,n} + R_s + 2R_{ss}])}{1 + (g_{m,n} + g_{mb,n})(R_s + 2R_{ss})}$$
(1)

$$V_{o} = \frac{V_{o} - V_{s}}{A_{df}} = \frac{1}{2} \frac{g_{m,n}(r_{ds,p} // [(g_{m,n} + g_{mb,n})r_{ds,n}R_s + r_{ds,n} + R_s])}{1 + (g_{m,n} + g_{mb,n})R_s}$$
(2)

Differential-Mode Equivalent Circuit. Where

$$CMMR = \frac{A_{df}}{A_{cm}}$$

Assume

$$(g_{m,n} + g_{mb,n})r_{ds,n}(R_s + 2R_{ss}) >> R_s, R_{ss}, r_{ds,n}, r_{ds,p} (g_{m,n} + g_{mb,n})r_{ds,n}R_s >> R_s, r_{ds,n}, r_{ds,p} \frac{1}{g_{m,n} + g_{mb,n}} << R_s, R_s << R_{ss}$$

$$A_{cm} \approx \frac{r_{ds,p}}{2R_{ss}}$$
, $A_{df} \approx \frac{1}{2} \frac{r_{ds,p}}{2R_{s}}$, $CMRR \approx \frac{R_{ss}}{R_{s}}$

Where

$$CMRR = \frac{A_{df}}{A_{cm}}$$
, $A_{cm} \approx \frac{r_{ds,p}}{2R_{ss}}$, $A_{df} \approx \frac{r_{ds,p}}{2R_{s}}$

Then

$$CMRR \approx \frac{R_{ss}}{R_{s}}$$

$$A_{cm} = \frac{g_{m,n} \cdot \left(\left(\frac{1}{g_{m,p}} / / r_{ds,p} \right) / / \left[(g_{m,n} + g_{mb,n}) r_{ds,n} 2R_{ss} + r_{ds,n} + 2R_{ss} \right] \right)}{1 + (g_{m,n} + g_{mb,n}) 2R_{ss}}$$
(5)

$$A_{df} = g_{m,n} \left(r_{ds,p} \, // \, r_{ds,n} \right) \tag{6}$$

Where

$$CMRR = \frac{A_{df}}{A_{cm}}, \quad A_{cm} \approx \frac{1}{g_{m,p} \cdot 2R_{ss}}, \quad A_{df} = g_{m,n} (r_{ds,p} // r_{ds,n})$$

Then

$$CMRR = g_{m,n} (r_{ds,p} // r_{ds,n}) g_{m,p} \cdot 2R_{ss}$$

DM Equivalent Circuit

Where

$$CMRR = \frac{A_{df}}{A_{cm}} , \quad A_{cm} \approx 2 \{ \| (g_{m,p} + g_{mb,p}) r_{ds,p} \} / / \| (g_{m,n} + g_{mb,n}) r_{ds,n} \} \} ,$$

$$A_{df} = \frac{1}{2} (g_{m,n} + g_{m,p}) (r_{ds,p} / / r_{ds,n})$$

Then

$$CMRR = \frac{\left(g_{m,n} + g_{m,p}\right)\left(r_{ds,p} / / r_{ds,n}\right)}{4\left\{\left[\left(g_{m,p} + g_{mb,p}\right)r_{ds,p}\right] / / \left[\left(g_{m,n} + g_{mb,n}\right)r_{ds,n}\right]\right\}}$$

$$A_{dm} = T_3 = \frac{v_o - v_o}{v_i^+ - v_i^-}\Big|_{v_{cmc} = V_{bias}} = g_{m,M1,2} (r_{ds,MB} / / r_{ds,M1})$$

$$A_{cm} = T_{4} = \frac{V_{o}^{+} + V_{o}^{-}}{v_{i}^{+} + v_{i}^{-}}\Big|_{v_{cmc} = V_{bias}} = \frac{r_{ds,MB} / \left[2\left(g_{m,M1} + g_{mb,M1}\right)r_{ds,M1}r_{ds,MS} + r_{ds,M1} + 2r_{ds,MS}\right]}{\frac{1 + 2\left(g_{m,M1} + g_{mb,M1}\right)r_{ds,MS}}{g_{m,M1}}} \approx \frac{r_{ds,MB}}{2r_{ds,MS}}$$
53

Folding Cascode Amplifier Architecture

Fig. 1 Conventional folded cascode

Fig. 2 Recycling folded cascode

Recycling folded cascode (RFC): The conventional FC is shown in Fig. 1. Note that transistors NI and N2 conduct the most current and thus have the largest transconductance, yet act as current sinks only. Previous work to enhance the performance of the FC exploited multipath schemes [3]. However, NI and N2 were left unexplored.

Fig. 3 Unity gain capacitive buffer

Table 1: Performance summary of conventional folded cascode and recycling folded cascode

Parameter	Folded cascode	Recycling folded cascode
$C_L (pF)$	1	1
GBW (MHz)	467.7	489.8
Power (µA)	1185	551
Gain (dB)	41.1	50.9
Phase margin (deg)	85.1	77.2
0.1% setting time (ns)	5.7	5.1
Static error (%)	2.04	0.61

Cascode with positive feedback and bulk-driven input stage

Fig.1 Scheme of the initial idea to use of bulk and positive feedback.

Fig. 2 Scheme of the proposed op-amp.

1V CDB Folded Cascode OTA

Fig. 6. 1-V CDB folded cascode OTA.

References

S Mallya, and JH Nevin <u>Design procedures for a fully differential folded-cascode CMOS</u> <u>operational amplifier</u> –*IEEE J. of Solid-State Circuits*, vol. 24, No. 6, pp, 1737-1740, December 1989 -

Folded cascode amplifier with rail-to-rail common-mode range - all 2 versions »
 WC Hsu, WR Krenik, JR Hellums - US Patent 4,797,631, 1989 - Google Patents
 Page 1. [54] FOLDED CASCODE AMPLIFIER WITH RAIL-TO-RAIL COMMON-MODE RANGE [75]
 Inventors: Wei-ChanHsu,Piano;WilliamR. Krenik, Dallas; James R. Heliums, ...

Design of a New Folded Cascode Op-Amp Using Positive Feedback and Bulk Amplification

Mohsen ASLONI^{†a)}, Student Member, Khayrollah HADIDI^{†b)}, and Abdollah KHOEI^{†c)}, Members

• R. Assaad and J. Silva-Martinez, "Enhancing General Performance of the Folded-Cascode Amplifier by

Recycling Current", IEEE Electronics Letters. Vol. 43, Issue 23, November 2007.

T. Lehmann, M. Cassia, **1-V power supply CMOS cascode amplifier IEEE J. of Solid-State Circuits,** vol 36, pp. 1082-1086, July