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Outline of Presentation 

Oscillator Background and General Design Consideration. 

Non-Linear Shaping Oscillator with Enhanced Linearity. 

 Continuous-time implementation. 

 Discrete-time implementation. 

 Time-Mode-Based Tunable Oscillator. 

Comparison and Conclusions 
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Oscillator Applications 
 Built-in self testing (BIST) 

 - Sinusoidal oscillator 

 - Low total harmonic distortion (THD) is desired 

 - Popular structure : BPF-based oscillator 

DUT 

BPF 
(tunable) OSC 

rms 

Power Meter 

ω0 3ω0 5ω0 7ω0 ω0 3ω0 5ω0 7ω0 

Desired 

ω0 3ω0 5ω0 7ω0 

ω0 3ω0 5ω0 7ω0 

We need low distortion Oscillator 
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On-Chip Spectrum Analyzer 

The proposed architecture 
contains: 
• Frequency synthesizer 
• Sinewave Generator  
• Bandpass filter  
• VGA 

Frequency
Synthesizer

DSP, PC,
Digital Tester

VGA
System

Under TestVGA

Sinewave
Generator

fs/m

A/D
Converter
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At a given frequency, the transfer function of a circuit 
under test (CUT) can be obtained by comparing the 
amplitude and phase of the signals at the input and 
output. 

CUT Phase &
Amplitude
Detector

Signal
Generator

( )tA 0cos ω ( )θω +tB 0cos

( )

( ) θω

ω

=∠

=

H
A
BH  

ω

A

ω0

( )0ωH

TRANSFER FUNCTION CHARACTERIZATION 



Highly Linear Band-Pass Based Oscillator Architectures  5 

Our first integrated 10MHz CMOS OTA-C Voltage-
Controlled Quadrature Oscillator in 1989 

B. Linares-Barranco, A. Rodriquez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, "10 MHz CMOS OTA-C 
voltage-controlled quadrature oscillator," Electronics Letters , vol.25, no.12, pp.765-767, 8 June 1989 

• 3-10.34 MHz 

• THD: 0.2-1.87%        

   (-54dB to -34.5dB) 

• Vpp: 0.1-1V 

C1 and C2 are 
parasitic 
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Oscillator Background and  
 

General Design Considerations 
 
 



Highly Linear Band-Pass Based Oscillator Architectures  7 

Barkhausen’s Condition 

X 
(=0) 

+ 
+ H(s) Y 

β(s) 

 Feedback system is unstable and will oscillate if 

 - Total gain through the loop is 1 

 

 - Total phase shift around loop is 2πn (n = 0, 1, 2, …) 

 

 Closed loop equation 

( ) ( ) 1=ssH β
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A Band Pass Filter plus a Positive Feedback yields 
an Oscillator  

 Assume H(s) is a second-order BPF and β(s) has a linear gain β 

 Barkhausen condition 

 - Phase condition is satisfied due to BPF 

 - Gain condition from closed loop equation: 
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Oscillator Performance 
 General consideration 

 - Amplitude 

 - Frequency accuracy 

 - Power consumption, Silicon area 

 

 Spectral purity 

ω0 

Phase noise 

(ωm is topology dependent) 

ω0 +ωm ω0 -ωm ω0 ω0 3ω0 5ω0 7ω0 

Ideal Non-Ideal contains harmonics Phase noise and Spur 

Spur. tone 
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Non-Linear Shaping Oscillator 
 with Enhanced Linearity 

 
(10 MHz Sinusoidal Oscillator) 

Motivation 
 

 Improve linearity with low-cost solution 
 
 Proposed Solution 
 

 Harmonic rejection with multi-level square wave 
technique 
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Conventional BPF-based Oscillator 

Comparator 

BPF 

 Oscillation frequency is set by BPF 

 Oscillation is guaranteed by high gain of comparator 

 Linearity is heavily dependent on Q-factor of BPF 

 Requires high Q-factor BPF 

t 

f 

t 

f 
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BPF-based Oscillator 

 Input of BPF is roughly a square wave 

 THD is dominated by lower order harmonics 

 Requires very high Q-factor for low distortion 

 (i.e. Q = 35 is required for HD3 = -50 dB) 

Low-Q BPF High-Q BPF 
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How can the  linearity of BPF-based  
Oscillator be improved ?  

Comparator 

BPF 

 Use Multilevel comparator yielding  lower-order harmonic components 

 BPF Q-factor requirement can be  relaxed 

t 

f 

t 

f 
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Proposed BPF-based Oscillator 
Using multi-level comparator 

 Lower-order harmonics are rejected by multilevel comparator 

 High linearity can be achieved without high-Q BPF 

Conventional Comparator Multi-level Comparator 

ω0 3ω0 5ω0 ω0 3ω0 5ω0 
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Square Wave Analysis 

t

f
0f 03 f 05 f 07 f

T Tf /10 =

m
3/m

5/m

7/m

Time domain Frequency domain 

.mag

 Common signal source 

 Easy to implement 

 Full family of odd harmonics 

 No even harmonics due to symmetric property 

 Most significant harmonics : 3rd and 5th order 
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Shifted Square Wave 

t

.mag

 Shift in time-domain → Phase deviation in frequency domain 

 Different phase-shift for each harmonics 
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 Multiple time-shifted with amplification square waves 

 - Assuming Δt = T/c and evaluating H(nω0) at n = 1, 3, 5 
 

 

 - If we want H(3ω0) = H(5ω0) = 0, 

  then cos(6π/c) = cos(10π/c) = -1/(2kA) 
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How to Determine Values for H(3ωo)=H(5ωo)=0 ? 

 Optimal Values 
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Sum of Shifted Square Waves without 3rd and 
5th Harmonics  
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How to Implement the Sum of Shifted 
Signals? 

 Optimized multi-level square wave 

 - Selectively rejects 3rd and 5th harmonics 

T
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Implementation in the Z-Domain 

 Recalling                         and                    ⇒ 

 Setting 

 

 Consider previous case (c = 8, Δt = T/8 ) 

 - If we want H(3ω0) = H(5ω0) = 0, 
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Oscillator Design Procedure in the    
Z-Domain 

 Generalized procedure 

 - Determine c = T/Δt  

 - 2π corresponds to cω0 

 - Place conjugate zeros on specific harmonics 

 - Place poles at the origin to center delays at zero delay 

 - Achieve z-equation 

 - Construct time-domain signals 



Highly Linear Band-Pass Based Oscillator Architectures  23 

Z-Domain BP Based Oscillator 
Considerations 

 Example 

 - c = 12 and H(ω0) = H(3ω0) = H(9ω0) = H(11ω0) = 0 
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 Non-ideal effect 

 - Consider the case of c = 8 and H(3ω0) = H(5ω0) = 0 

 - Recalling 

 - Introduce magnitude error (Δm) and phase error (Δp) 

 

 

 - Evaluating HD3 

Non-Ideality Considerations in the 
Z-Domain 
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 Non-ideal effect 

 - HD3 is monotonic to Δm and Δp 

 - 20 dB better than conventional with 10% Δm and 5% Δp 

Magnitude and Phase Error Deviations 
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 Non-ideal effect 

 - 3-d plot of HD3 vs. Δm and Δp 

Third Harmonic Distortion due to    
Non-Idealities 
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Continuous time BPF-based Oscillator 

BPF 
H(s) 

Vout Vcomp 

Vref 

-Vref 

Vout 

Vcomp 

fCLK 

BPF-based oscillator 

Filter 

 - Biquad second-order Gm-C filter 

 - fo = 10 MHz, Q = 15 

 F. Bahmani, E. Sánchez-Sinencio, “Low THD Bandpass-Based Oscillator Using Multilevel Hard Limiter,” IET 
Circuits, Devices and Systems, vol. 1, pp. 151-160, April 2007.  

Multi-Level Hard Comparator 
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Implementation of the CT-BPF 
Based Oscillator 

Multi-Level Hard Comparator 

Biquad second-order Gm-C filter 
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Chip Photograph 
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Experimental Results: 
for comparison purposes we include a conventional and 

the proposed oscillator 

THD=-39dB THD=-53dB 
   Conventional  
(2-level comparator) 

       Proposed  
(4-level comparator) 
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Switched Cap BPF-based Oscillator:  
Implementation and Experimental Results 

SC BPF 
H(z) 

Vout Vcomp 

Vref 

-Vref 

Vout 

Vcomp 

fCLK 

 SC BPF-based oscillator 

 BPF is implemented by Switched-Capacitor BPF 

 - Biquad second-order BPF 

 - fCLK = 80 MHz, f0 = 10 MHz, Q = 10 

 S. W. Park, J. L. Ausín, F. Bahmani, E. Sánchez-Sinencio, “Non-Linear Shaping SC Oscillator with Enhanced 
Linearity,” IEEE Journal of Solid-State Circuits (JSSC), vol. 42, no. 11, pp. 2421-2431, Nov. 2007 

Comparator 
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Switched Capacitor BPF 
 BPF schematic and transfer function 
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Switched Capacitor BPF 
 Implementation with multi-level square wave 

 - Conceptual implementation 

 

 

 

 

 - Actual implementation 
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 Embedded multilevel square wave generator 

 Work with conventional comparator 

Proposed Multilevel SC Oscillator 
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Chip and PCB Photograph of SC Oscillator 

Proposed 
Oscillator 

Conventional 
Oscillator 

Cap. 

BPF + 
Comp. 

CLK 
gen. Cap. 

BPF + 
Comp. 

CLK 
gen. 

1.
25

 m
m

 

1.25 mm 

Proposed 
Oscillator 

Conventional 
Oscillator 

Regulator 

Regulator 

 TSMC 0.35um process 

 TQFP-64 package 
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Measurement Setup 
 Master clock : Agilent 33250A (~ 80 MHz) 
 Spectrum analyzer : Agilent 4395A (~ 500 MHz) 

Agilent 33250A 

Signal generator 
(up to 80 MHz) 

Agilent 4395A 

Spectrum Analyzer 
( 10 Hz ~ 500 MHz) 

SC Oscillator 

master clock 

oscillator 
output 
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Experimental Result: SC Oscillators 

 fCLK = 80 MHz, f0 = 10 MHz 

 HD3 : 20 dB improvement over conventional 

Conventional Proposed 

HD3 = -55 dB 
HD3 = -35 dB 
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Performance Comparison 

Parameters This work 
(Proposed) 

This work 
(Conventional) 

ISCAS 
2006 

JSSC 
2002 

JSSC 
2004 

Maximum clock 
frequency 80 MHz 80 MHz 10 MHz 100 MHz 800 MHz 

Maximum output 
frequency 10 MHz 10 MHz 1 MHz 25 MHz+  400 MHz++ 

Design Technique SC BPF 
(2nd-order) 

SC BPF 
(2nd-order) 

SC BPF 
(4th-order) DDFS DDFS 

Q-factor 10 10 85 N/A N/A 

THD, SFDR* 
@ Output frequency 

-54.8 dB 
@ 10 MHz 

-34.5 dB 
@ 10 MHz 

-72 dB 
@ 1 MHz 

42.1 dBc* 
@ 1.56 MHz 

55 dBc* 
@ 8 MHz 

Active area 0.2 mm2 0.18 mm2 0.12 mm2 1.4 mm2 1.47 mm2 

Technology 0.35 um 
CMOS 

0.35 um 
CMOS 

0.35 um 
CMOS 

0.5 um 
CMOS 

0.35 um 
CMOS 

Power consumption 20.1 mW 19.8 mW 23 mW 8 mW 174 mW 

Power supply 3.3 V 3.3 V 3 V 2.7 V 3.3 V 
+, ++ At the maximum output frequencies, SFDR is 17 dBc+ and 23 dBc++. 
* SFDR is presented instead of harmonic distortions. 
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