High Linearity Oscillator Architectures Band-Pass Based

By Edgar Sánchez-Sinencio TI J. Kilby Chair Professor Analog & Mixed Signal Center Texas A&M University http://amsc.tamu.edu/journals.htm

ECE 622(ESS)

Outline of Presentation

Oscillator Background and General Design Consideration.

Non-Linear Shaping Oscillator with Enhanced Linearity.

- Continuous-time implementation.
- Discrete-time implementation.
- Time-Mode-Based Tunable Oscillator.
- Comparison and Conclusions

Oscillator Applications

- □ Built-in self testing (BIST)
 - Sinusoidal oscillator
 - Low total harmonic distortion (THD) is desired
 - Popular structure : BPF-based oscillator

On-Chip Spectrum Analyzer

TRANSFER FUNCTION CHARACTERIZATION

At a given frequency, the transfer function of a circuit under test (CUT) can be obtained by comparing the amplitude and phase of the signals at the input and output.

Our first integrated 10MHz CMOS OTA-C Voltage-Controlled Quadrature Oscillator in 1989

B. Linares-Barranco, A. Rodriquez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, "10 MHz CMOS OTA-C voltage-controlled quadrature oscillator," Electronics Letters, vol.25, no.12, pp.765-767, 8 June 1989

Oscillator Background and

General Design Considerations

Barkhausen's Condition

□ Feedback system is unstable and will oscillate if

- Total gain through the loop is 1

 $|H(s)\beta(s)| = 1$

- Total phase shift around loop is $2\pi n$ (n = 0, 1, 2, ...)

$$\angle H(s)\beta(s) = 2\pi n, n \in 0, 1, 2, \dots$$

Closed loop equation

$$\frac{H(s)}{1-H(s)\beta(s)}$$

A Band Pass Filter plus a Positive Feedback yields an Oscillator

 \Box Assume H(s) is a second-order BPF and $\beta(s)$ has a linear gain β

Barkhausen condition

Oscillator Performance

- General consideration
 - Amplitude
 - Frequency accuracy
 - Power consumption, Silicon area

Spectral purity

Non-Linear Shaping Oscillator with Enhanced Linearity

(10 MHz Sinusoidal Oscillator)

✓ Motivation

Improve linearity with low-cost solution

✓ Proposed Solution

Harmonic rejection with multi-level square wave technique

Conventional BPF-based Oscillator

- □ Oscillation frequency is set by BPF
- □ Oscillation is guaranteed by high gain of comparator
- □ Linearity is heavily dependent on Q-factor of BPF
- Requires high Q-factor BPF

BPF-based Oscillator

 Input of BPF is roughly a square wave
THD is dominated by lower order harmonics
Requires very high Q-factor for low distortion (i.e. Q = 35 is required for HD3 = -50 dB)

$$HD_n \approx \frac{1}{n^2 Q}$$

How can the linearity of BPF-based Oscillator be improved ?

Use Multilevel comparator yielding lower-order harmonic components

BPF Q-factor requirement can be relaxed

Proposed BPF-based Oscillator Using multi-level comparator

Lower-order harmonics are rejected by multilevel comparator

□ High linearity can be achieved without high-Q BPF

Square Wave Analysis

- Common signal source
- Easy to implement
- □ Full family of odd harmonics
- □ No even harmonics due to symmetric property
- □ Most significant harmonics : 3rd and 5th order

Shifted Square Wave

❑ Shift in time-domain → Phase deviation in frequency domain
❑ Different phase-shift for each harmonics

Multi-Level Square Wave

□ Multiple time-shifted with amplification square waves

How to Determine Values for $H(3\omega_0) = H(5\omega_0) = 0$?

Multiple time-shifted with amplification square waves

- Assuming $\Delta t = T/c$ and evaluating H($n\omega_o$) at n = 1, 3, 5

 $H(3\omega_0) = 1 + 2k_A \cos(6\pi/c) \qquad H(5\omega_0) = 1 + 2k_A \cos(10\pi/c)$

- If we want $H(3\omega_0) = H(5\omega_0) = 0$,

then $\cos(6\pi/c) = \cos(10\pi/c) = -1/(2k_A)$

Sum of Shifted Square Waves without 3rd and 5th Harmonics

How to Implement the Sum of Shifted Signals?

Optimized multi-level square wave $f(t) = f_{sq}(t) + \frac{\sqrt{2}}{2} f_{sq}\left(t - \frac{T}{8}\right) + \frac{\sqrt{2}}{2} f_{sq}\left(t + \frac{T}{8}\right)$

- Selectively rejects 3rd and 5th harmonics

Implementation in the Z-Domain

Recalling $H(n\omega_0) = e^{-jn\Delta\phi}$ and $\Delta\phi = 2\pi/c \implies H(c\omega_0) = e^{-j2\pi}$ **Setting** $z = e^{j\Delta t\omega} = e^{j\Delta\phi\omega/\omega_0} = e^{j2\pi\omega/(c\omega_0)} \qquad \frac{\Im\{f_{sq}(t+n\Delta t)\}}{\Im\{f_{sq}(t)\}} = e^{jn\Delta t\omega} = z^n$

□ Consider previous case (c = 8, Δt = T/8)

- If we want $H(3\omega_0) = H(5\omega_0) = 0$,

Oscillator Design Procedure in the Z-Domain

- Generalized procedure
 - Determine $c = T/\Delta t$
 - 2π corresponds to $c\omega_o$
 - Place conjugate zeros on specific harmonics
 - Place poles at the origin to center delays at zero delay
 - Achieve z-equation
 - Construct time-domain signals

Z-Domain BP Based Oscillator Considerations

Example

- c = 12 and $H(\omega_0) = H(3\omega_0) = H(9\omega_0) = H(11\omega_0) = 0$

Non-Ideality Considerations in the Z-Domain

□ Non-ideal effect

- Consider the case of c = 8 and $H(3\omega_0) = H(5\omega_0) = 0$
- Recalling $H(n\omega_0) = 1 + k_A \cos(n\Delta\phi)$, where $k_A = \sqrt{2}$, $\Delta\phi = \pi/4$
- Introduce magnitude error (Δ_m) and phase error (Δ_p)

$$k_{A} = (1 + \Delta_{m})\sqrt{2}, \ \Delta\phi = (1 + \Delta_{p})\pi/4$$
$$H(n\omega_{0}) = V_{a}\left\{1 + (1 + \Delta_{m})\sqrt{2}\cos(n(1 + \Delta_{p})(\pi/4))\right\}$$

- Evaluating HD3

$$HD3 = \frac{|F(3\omega_0)|}{|F(\omega_0)|} = \frac{1}{3} \frac{|H(3\omega_0)|}{|H(\omega_0)|} = \frac{1}{3} \frac{|1 + \sqrt{2}(1 + \Delta_m)\cos((3\pi/4)(1 + \Delta_p))|}{|1 + \sqrt{2}(1 + \Delta_m)\cos((\pi/4)(1 + \Delta_p))|}$$

Magnitude and Phase Error Deviations

Non-ideal effect

- HD3 is monotonic to Δ_m and Δ_p

- 20 dB better than conventional with 10% Δ_m and 5% Δ_p

Third Harmonic Distortion due to Non-Idealities

□ Non-ideal effect

- 3-d plot of HD3 vs. Δ_m and Δ_p

Continuous time BPF-based Oscillator

□BPF-based oscillator

□Filter

- Biquad second-order Gm-C filter

□ F. Bahmani, E. Sánchez-Sinencio, "Low THD Bandpass-Based Oscillator Using Multilevel Hard Limiter," IET Circuits, Devices and Systems, vol. 1, pp. 151-160, April 2007.

Implementation of the CT-BPF Based Oscillator

Chip Photograph

Experimental Results: for comparison purposes we include a conventional and the proposed oscillator

THD=-39dB

Conventional (2-level comparator)

THD=-53dB

Proposed (4-level comparator)

Switched Cap BPF-based Oscillator: Implementation and Experimental Results

□ SC BPF-based oscillator

□ BPF is implemented by Switched-Capacitor BPF

- Biquad second-order BPF
- $f_{CLK} = 80 \text{ MHz}, f_0 = 10 \text{ MHz}, Q = 10$

□ S. W. Park, J. L. Ausín, F. Bahmani, E. Sánchez-Sinencio, "Non-Linear Shaping SC Oscillator with Enhanced Linearity," *IEEE Journal of Solid-State Circuits (JSSC)*, vol. 42, no. 11, pp. 2421-2431, Nov. 2007

Switched Capacitor BPF

Switched Capacitor BPF

□ Implementation with multi-level square wave

- Conceptual implementation

Proposed Multilevel SC Oscillator

Chip and PCB Photograph of SC Oscillator

□ TSMC 0.35um process

□ TQFP-64 package

Measurement Setup

Master clock : Agilent 33250A (~ 80 MHz)
Spectrum analyzer : Agilent 4395A (~ 500 MHz)

Agilent 4395A

Experimental Result: SC Oscillators

 \Box f_{CLK} = 80 MHz, f_0 = 10 MHz

□ HD3 : 20 dB improvement over conventional

Conventional

Proposed

Performance Comparison

Parameters	This work (Proposed)	This work (Conventional)	ISCAS 2006	JSSC 2002	JSSC 2004
Maximum clock frequency	80 MHz	80 MHz	10 MHz	100 MHz	800 MHz
Maximum output frequency	10 MHz	10 MHz	1 MHz	25 MHz ⁺	400 MHz ⁺⁺
Design Technique	SC BPF (2nd-order)	SC BPF (2nd-order)	SC BPF (4th-order)	DDFS	DDFS
Q-factor	10	10	85	N/A	N/A
THD, SFDR* @ Output frequency	-54.8 dB @ 10 MHz	-34.5 dB @ 10 MHz	-72 dB @ 1 MHz	42.1 dBc* @ 1.56 MHz	55 dBc* @ 8 MHz
Active area	0.2 mm^2	0.18 mm ²	0.12 mm^2	1.4 mm ²	1.47 mm ²
Technology	0.35 um CMOS	0.35 um CMOS	0.35 um CMOS	0.5 um CMOS	0.35 um CMOS
Power consumption	20.1 mW	19.8 mW	23 mW	8 mW	174 mW
Power supply	3.3 V	3.3 V	3 V	2.7 V	3.3 V

 $^{\rm +,\, ++}$ At the maximum output frequencies, SFDR is 17 dBc⁺ and 23 dBc⁺⁺.

* SFDR is presented instead of harmonic distortions.

References

- [1] B. Linares-Barranco, A. Rodriquez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, "10 MHz CMOS OTA-C voltage-controlled quadrature oscillator," Electronics Letters, vol.25, no.12, pp.765-767, 8 June 1989
- [2] F. Bahmani, E. Sánchez-Sinencio, "Low THD Bandpass-Based Oscillator Using Multilevel Hard Limiter," IET Circuits, Devices and Systems, vol. 1, pp. 151-160, April 2007.
- [3] S. W. Park, J. L. Ausín, F. Bahmani, E. Sánchez-Sinencio, "Non-Linear Shaping SC Oscillator with Enhanced Linearity," IEEE Journal of Solid-State Circuits (JSSC), vol. 42, no. 11, pp. 2421-2431, Nov. 2007
- [4] M. M. Elsayed, E. Sanchez-Sinencio, "A Low THD, Low Power, High Output-Swing Time-Mode-Based Tunable Oscillator Via Digital Harmonic-Cancellation Technique," Solid-State Circuits, IEEE Journal of , vol.45, no.5, pp.1061-1071, May 2010
- [5] M. G.Mendez-Rivera, A.Valdes-Garcia, J. Silva-Martinez, and E.Sanchez-Sinencio, <u>"An On-Chip Spectrum Analyzer for Analog</u> <u>Built-In Testing</u>" JOURNAL OF ELECTRONIC TESTING: Theory and Applications, 21, 205–219, June 2005
- [6] A.Valdes-Garcia, F. Hussein, J. Silva-Martinez, and E. Sánchez-Sinencio , "<u>An Integrated Frequency Response Characterization System for Analog</u> <u>Testing</u>" *IEEE Journal of Solid-State Circuits*. Volume 41, Issue 10, pp.2301-2313, Oct, 2006