622 Active Filters ( Edgar Sdnchez-Sinencio)

State Variable Filters and Mason Rule

* Asecond order filter is also known as a Biquad.

 Asecond — order filter consists of a two integrator loop of one lossless and one
lossy integrator

* Usingideal components all the biquad topologies have the same transfer
function.

* Biquad with real components are topology dependent.

» We will cover the following material:
- Biguad topologies
Voltage scaling to equalize signal at all filter nodes.
State variable Biquad derivation.
Tow-Thomas Biquad Design Procedure
Fully Balanced topologies using single ended Op Amps
- Non-ideal integrators and Biquads.
- Mason Rule to obtain transfer functions by inspection



TWO-INTEGRATOR LOOP FAMILIES

Two-integrator loops consists of one lossless and one
lossy integrator, furthermore one is positive and the other is negative.

Why do we consider different filter topologies to obtain 2
the same (ideal) transfer function ? %é/ A
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Topology using two lossy integrators

B KQ1 B KQz

e Lossy integrators are easy

/ll\ to implement
N

-1 o1 -1
S+ KQ1 | s+KQZ

Two-Integrator Loop Family 2, ideal to avoid CMF in Fully Differential Structures



D(s) =1+ KQ1 n KQz n ®o; Do, n KQlKQz
S S S2 S2

SZD(S) = 52 + (KQl + KQZ )S + ((Dol(x)oz + KQlKQZ)

2 ©
Wy = 0y, 0y, +Kg Kg, BW=6°:KQl+KQ2

Low sensitivity structure:

gBW :1.KQ1. gBW _ KQ1 _ 1
“a T BW TRa T Kg, +Kq, L. Ko,
KQl
® 1
SPo =@, - o1 =
®op 02 My, + @, +Kg Ko, 1 Ko Ko,



Self-Loop two integrator loop

Design Equations: Given ®,, BW, PICK
Ka. and
KQ1 =BW — KQ2 Q2 02

@5 = 0y, 0, + (BW —Kg,)Kq,

o, 0o, =0 +(Kg, —BW)Kq,
|
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Family 3 Self-Loop

®o, 0, Koo, A self loop can be implemented by
D(s) =1+ 5%+ : adding a resistor to one (lossless)

s )
S |ntegrat0r.
$°D(s) =5° + K g, S + @5, 0,



SCALING for Active-RC, MOSFET-C
and SC implementations
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V. > KV Modify all the impedances connected
o1 o1 to the output under consideration.
K
ch —k ch = SC, = sC, /k:> C,—>C;/k
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Note that the voltages Vo2 and Vo3 were not modified



VOLTAGE SWING SCALING

A good filter design approach requires to have a proper voltage swing
at a frequency range for all internal and output nodes of the filter.

Let us consider the different types of filter implementations.
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NUMERICAL EXAMPLE
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THEN

5
RK—§—2-5 R01:R02:1
RQ:5
. 5x1 1
H, (jo, )| = 14+ = =10
Hy(jeo) 25x1\" 25

TO VERIFY
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’s
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We want to make

‘Hi(jwo)‘ :‘HB(J.COO)‘

1
V01—>gV01
C, = 5C;
1 1 1 R, ,
—~ &R & —= | R
SC, SC;5 5 R1—>_1
5
Before scaling
1 Vo
V, =V (- — 3 .V, ==V,
o = Vil SRKC1) SR,,C; 02 %1
After
V. =V —— — ; V., ==V, .
01 I( SRKC1)5 (SR Cl) o)) 01

Thus we have modified V, and V, without changing V,,

This usually can be done when enough degrees of freedom exist.



STATE-VARIABLE FILTER ARCHITECTURES

 Derived from state-variable technigues to solve differential
equations. The objective is to render an expression that
can be implemented using integrator building blocks

« Example
H(s) = Vo(s) —Ks )

(s) w
Vi(s) g2 + 05+ wg

Where o, is the cut-off frequency, (®,/Q) is the bandwidth, Q
is the quality (selectivity) factor.

Let us rewrite the above equation by multiplying

K
VO (S) — _SX(S) (2)
. 2
Vi(s) {1+%1+%}X(s)
Qs s



Both numerator and denominator by X(s)/s%. Thus (2) can be split into

wo X(S) _ 2 X(s)

X(S) ZVi(S)—aT—Ct) SZ
vo(s)z—K@

Observe that 1/s is an integral operator. Thus we implement (3) by
using integral building block.

(32)

(30)



Remember that each integrator has its time-constant. We
can associate more than one time-constant with each integrator.
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Also observe that V,, correspond to a low-pass, V, to a bandpass
and X(s) to a high pass. K; could be 1 or any other suitable value



This two-integrator biquad consists of
— One lossless integrator (1,)
— One Lossy integrator (I,)

— Two negative closed loops: One determines the center
frequency, the other the bandwidth (or Q).

— One of two integrators must be positive, the other negative.

—The lossy integrator must have a negative feedback.



Second-Order Filter Structures

RITRIE
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Z.ero implementation by addition of outputs technique

V., —(s*+(w,/Q)s+w,m,)K
H(S):V_: 2 2
A S° +(w,/Q)s + w;
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Feed-Forward Zeros Implementation
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Tow-Thomas Biquad

Tow-Thomas Biquad
with Feedforward Zero
| implementations
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Feedforward Tow-Thomas (TT) Biquad Circuit
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Observe that the regular TT Biquad does not implement a
highpass output




Description of the Parameters for the Tow-Thomas Filter

General Transfer Function 32+£ 1 ) 1 RGJJF R, 1
T(S):—R8 R,C, R,CoR;) R7R3R;CCy
Re s° +s( L ]+ Rs L
R,Cq R; R3R,C4Cyy
where 2 R, 2 R,
(Dp = , O‘)Z =
R7R2R3C9C10 R3R5R7C9C10
Q=R1\/ R4C, Q:\/ R¢C, /(1_ st
i R,R3R;Cyg R3RsR7Cyp R, R4R;
and
HHP :&, fOr R1:R4R7, R5 —> 00
R R
HBP = RlRS , for R5, RG —> 0
R,R,
H —& for R,,R. >
LPIT R 41 ™6
5
For the bandstop (notch)
R R,R R.R
‘Hnotch‘: fOf R1: = 7’ R5: —

R_G’ RG R8

22



Design Equations for the Tow-Thomas Filter

Let
R,=R
R, =a’R,
R,=R;=R
C,=C,=C
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PSPICE Input file of Tow Thomas Filter

Tow - Thomas Biquad

** Description of the passive components

rl 2 3 1596698

r2 11 5 100000

r3 6 2 100000

rd 2 1 1596698

r7 3 4 100000

r8 4 11 100000

cl 2 3 9.7491D-11
c2 5 6 9.7491D-11
* Description of Op Amps

E1l 3 0 0 2
E2 11 0 0 4
E3 6 0 0 5
*

VIN 1 0 AC 1

*

.AC LIN 100 6000 20000
.PLOT AC VDB (11l) VP (11)

. PROBE

. END

2D5
2D5
2D5
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Tow - Thomas Biquad

** Description of the passive components

rl 2 3 1596698

r2 11 100000

r3 6 100000

rd 1596698

r7 100000

r8 100000

cl 9.7491D-11
c2 5 9.7491D-11
* Description of Op Amps

E1l 3

E2 11

E3 6

*

VIN

*

.AC LIN 100 6000 20000
.PLOT AC VDB (11l) VP (11)

. PROBE

.END

6. BKHz
o U{11) « U(6)

Frequency
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Kerwin-Huelsman-Newcomb Biquad Circuit
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Simple Design Equations for the KHN Filter

Let

Ry=Rs =b“Rg =R

R =R, =R
C,=Cg=C
o 1
" BR'C
0 1+ R/R3+R/Rg
S PRV Ly
Hoo = 1+1/b*
M 14 Ry /R+R4/ Ry
Hep |= 7.
Hip |= £

Rs,



KHN Biquad Design Procedure

A simple design procedure is described as follows:
1. Assume that w,, Q,,, and H=K are the design specifications.

2. Select convenient values* or R, C, and R to determine the
values of R, R,, C,, Cg, R, and R..

3. Calculate the following element values:

p= 1
R'Cw
B R
prHHP

_ R ,
> b /b FHye 1

* A rule of thumb for choosing R" and R is to make them proportional to 10f, , when
Q, > 10, or else make R and R proportional to f,. Then C should be made
proportional to 1/R o, .

For the HP case: P

R3

R




For the BP case:

For the LP case:

R

" Hep

Ro= 11~ :
" bQpL+(1/b?)-1-Hgp |

Rs = Qpr_ITLP

P, bR
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Example Design a bandpass modified KHN filter having a gain
of Hgp =3, Q, = 20, and ®, = 27 x 103r/s.

Procedure

1. Let us choose R=10 k2, C=0/01 uF, and R'=11.254 kQ; that is
R,= R, = 11.254kQ and R, = R = 10kQQ.

2. Since the values of R, and R, are 11.254k(2, then

b=—1=1.414207
Rpr
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3. The expression for Rg = R. then R, =5kQ

4. For this case

and

R

o pQu 1+ (1702 |- 1- Hgp

=260 QO

Exercise.- Propose component value condition to make this structure Fully
Balance Fully Symmetric Structure



KERWIN-HUELSMAN-NEWCOMB Biquad Circuit with f0=1KHz, Q=20,

value gain =3
** Description of the passive components

rl 4 3 11.254K

r2 11 5 11.254K

r3 1 12 3.3K

* varying r4 values and parameters with the
.param R=1

r4 1 11 {R}

r5 2 6 10K

r6 2 3 5K

r9 1 0 260

c7 4 11 0.010

c8 5 6 0.010

* Description of Op Amps

E1l 3 0 1 2 2D5
E2 11 0 0 4 2D5
E3 6 0 0 5 2D5
*

VIN 12 0 AC 1

*

.AC LIN 100 500 2K

.step DEC param R 300 30K 10
.PLOT AC VDB (11l) VP (11)

. PROBE

.END

.step statement

Peak

33



Frequency:respmn5e KHN:Biquad

B.60000008KHz 0.80000000KHz 1.00080000KHz 1.20000000KHz 1.40000088KHz

O voa0+ ¥ . o¥0+wa o+ %A ox o wdb{11,12)
Frequency
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622 Active Filters by Edgar Sanchez-Sinencio

Second-Order Filter Characteristics
and Mason Rule to obtain Transfer Functions

e Second-Order Transfer function characteristics.

* How can you use this information for better design and tuning
 Time domain measurements and characterization

* Mason Rule is a good tool, borrow from control theory, to easily obtain
transfer functions from a signal flow graph

Analog and Mixed-Signal Center.
Texas A&M University

Edgar Sanchez-Sinencio

A
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PROPERTIES of Second-Order Systems

AND MASON'S RULE to determine transfer functions by
inspection

e Mathematical definitions and properties of Second-Order
Systems.

e Building block second-order system architectures and
properties.

e Mason’s Rule to obtain easily transfer functions and
to facilitate the generation of new architectures.



SeconD-ORrDER FILTER TYPES

Second-order blocks are important building blocks since with a combination of them
allows the implementation of higher-order filters. The general order transfer function in

the s-plane has the form:

H(s) =

Particular conventional cases are:
Lowpass
Bandpass
Highpass
(Notch) Band-Elimination

Allpass

K5 + K,s + Ky

MgS 2

2

K =K, =0
K =K;=0
K, =Ks=0
K, =0

@
Kl :l, K2 :——0
Q

and Kjiy=o

2
0



One interesting case used for amplitude equalization is the “equalizer” sometimes referred

to as Bump (DIP) Equalizer. In this case, K;=1 Kj :@(2) and K, :ik& :

Specific structures have different properties. Some structures have enough degrees of
freedom to allow them to change independentlyw, , Q (or BW) and a particular gain/H (@,)
Whe"eoop is a particular frequency, i.e., Wy = 0, ®,, o for the LP, BP and HP cases.
Furthermore, some structures have the property to have constant Q or BW while varying

f, We will illustrate later, by examples, some of the structures with such properties.



Properties of Second-Order Systems in the time domain

®
s+ 95+ 0 =(s+0) +p% =5 + 205+ 07

where a:&, B =, 1_i
2Q 4Q°

Vi N(s) Vo, () =Ky + K,e *'sin (Bt+0)

1 (s+ o) +p°

t A

How to determine the pole location from a A

step response? |:> . -+ \
K, Ky, =F(N(S)) \\\N\/\/\/ AL, 21N

/”I N CYCLES
At,




1 Sinusoidal steady-state response

sinot__ | O I M@)sinfot + 6(c)]

®
5% +5-0 4 2

N(s) _ IN(jo)|

§2 450 + 2 » 20 (0 )
(o) _ 0
i Q | N (coO o) + Q)

Only two measurements are necessary to fix the position of the complex poles. The
measurement of the frequency of peaking determines the magnitude of the polas,,
and the measurement of the 3-dB bandwidth determinee, / Q.



N o ok

Second-Order Low-Pass Networks
H

T(s) =

®
5% +50 4 @2

2

Since H is merely a magnitude scale factor, let H = ®y.

2
T =— %0 _ =

2
SZJFSQ()S)JF@(% (Sj +(S)1+1
) ®y ) Q

. For o/wm, <1, \T(joo)\ ~1. Therefore, low frequencies are passed.
. For o/m, >1, ‘T(j@)‘ ~ (@O/@)Z_Therefore, high frequencies are attenuated.

. For Q>1/+/2, the magnitude peaks atwﬂz 1- -1

2
The peak occurs at a frequency lower thaon M. F§SQ>5, the frequency of
peaking practically equals ¢ (within 1%).
For @>5, the 3-dB bandwidth is practically equal to «,/Q rad/s.
At o/ w, =1,

At (D/@O>>1,the phaseis —m.

T(j%)\ = Q and the phase is — /2.

For Q>5, the phase undergoes a rapid shift of 7 radians about g,



Magnitude ° /5\

-1.5
Phase
2




The Second-Order Band-Pass Function

The second-order band-pass function has one zero at the origin and another

at infinity: T(s) = Hs
2 2

Mg

To normalize the peak value of the magnitude function to unity, letH = (w,/Q):
&S 1 s

T(s) = Q _ Q o

2
32+S(DQ°+cog (Sj +(Sj1+1
) ®, ) Q

) Q)

M Q=05 f o
| . |
' 2 T Magnitude
3 and phase of
. %o q
Q=10
N/ ® ) 82+S&+0&2
0 05 \ 15 2 Q

1 15

0.5 1
v ®, w

@

POoOcC~+—Smou
®wvwo o

R 7



Pole locations and properties

Aty
Im
N — 1B
. \Og
2Q
X

2
Im B=N-"
Constant BW At,
X |
: e > Re X m
§ % Constant Q
» Re
Im M
PV Constant (O
‘o
;‘: 0 > Re

POLE-ZERO LOCI



In practical implementations besides the general specifications

(04, Q,

are application dependent. Among them are silicon area, dynamic

H((Dp)‘) other particular specifications are imposed which

range, power supply rejection ratio, power consumption, tolerance,

accuracy, and sensitivity. This last parameter is often used as a
gP — 5p : X
X =

oX P

The above definition is usually referred as normalized sensitivity (1)

figure of merit. i.e.,

due to the (x/p) factor. x and p are the variable of the network

(i.,e. R, C, )and the variable under consideration Jpn

(i.e., Mg Q, H((Dp)‘)




We can reduce complicated block diagrams to canonical form, from which the control ratio is easily written:

V G

out —
V. 1+GH
It is possible to simplify signal flow graphs in a manner similar to that of block diagram reduction. But it is also possible,

and much less time-consuming, to write down the input-output relationship by inspection from the original signal flow graph.
This can be accomplished using the formula presented below. This formula can also be applied directly to block diagrams,
but the signal flow graph representation is easier to read - especially when the block diagram is very complicated.
Signal Flow Graphs
Let us denote the ratio of the input variable to the output variable by T. For linear feedback control systems, T=V_ /Vi,,.
For the general signal flow graph presented in preceding paragraphs V. is the output and V;,, is the input.
The general formula for and signal flow graph is Z PiAi

T=

Pi the ith forward path gain A

ij = jth possible product of k non-touching loop gains
l— (_1)k+1%2 PJk

j
= 1-3Py +>XPp —ZPjg +---

= 1 - (sum of all loop gains) + (sum of all gain-products of 2 non-touching loops) - (sum of all gain-

B>
I

products of 3 non-touching loops + ...
Ai = Aevaluated with all loops touching Pieliminated.
Two loops, paths, or a loop and a path are said to be non-touching if they have no nodes in common.
Ais called the signal flow graph determinant or characteristic function, since A =id}he system characteristic

equation.



Examples
Let us determine the control ratio Vout/Vin and the canonical block diagram of the feedback
control system shown below:

The signal flow graph is

in out

A 4

There are two forward paths: P, =G;G,G,, P, =G;G3G,



There are three feedback loops:
Pii=GiG4Hy, Py =-GGyG4Hy, Py =—G1G3G4H;
There are no non-touching loops, and all loops touch both forward paths; then
Al =1, AZ = 1

Therefore the control ratio is

T E _ PlAl + PZAZ _ GleG4 + G]_G3G4
R A 1—GlG4H1+GlGZG4H2 +Gle3G4H2
G1G4(Gy +G3)

1- GG H; + G;G,G4H, +G;G3G4H,
From Equations (8.3) and (8.4), we have
G =G1G4(Gy +G3) and GH =G,G4(G3H, + GoH, —Hy)
GH (G, +G3)Hy,—H;
G  G,+Gj

The canonical block diagram is there fore given by

Therefore —

v

The negative summing point sign for the feedback loop is a result of using a positive sign in the GH
formula above.



Example

Draw a signal flow graph for the following resistance network in which Vv, (0) = v3(0) =0.

V, is the voltage across Ci.

Rl 2 R2
W, Wy o
L i

o e

The five variables are Vy, Vo, V3, |1, and i Io; and 1 is the mput The four independent

equations derived from Kirchoff’s voltage and current laws are
) 1 1 1 t
I = Vi —| — Vo, J'lldt——j I,dt,
Rl Rl Cl 0

i2: i Vo — i V3, V3 Z—I |2dt
R R Cyp 70

The signal flow graph can be drawn directly from these equations:

t
_1/R, (-1/(:1)jO dt ~1/R,
t t
1/C dt
1/R, [« 1)[ /R, (1/Cz)j'O dt ™\ 1 _
V1 11 Vo |2 V3
In Laplace transform notation, the signal flow graph is given by
_1/R1 —1/SC1 —1/R2
1/ R, 1/sCy 1/R> 1/sC5 1
Vi . I3 - \ . > . V3 ] v



ECEN 622 (ESS)

Example of use of Mason Rule in a 3™ Orders State-Variable (observable) Filter

VP

\VA Y b \A v bs

6 z)—H:>—<z>——H::>—<z) > oV,
-y
AN
N
P
N
by by by
H,(s)= N +32 ' S +bs _ b3s° + 5% + bys + b,
1+a72_|_ﬂ+a70 83+61282+a18+a0
s ¢ g

What is wrong with this application of Mason’s Rule?
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Ve
\VA'S \VA= Vb \VAE
B B
z D> 0>—ev.
-ay

A

~N
I
~N

bOB?}BZ s blB%Bz s b,B, (Hazj s b3(1+ a, . Blglj
S S S s

s s
H2(s)= 1,82 1B BiBoa,

s s s3
_ bgs® +(bs,B, + bga, + by BB, 5% +(b,B,a, + byBja; s + B;B,b,
- s +a,5% +a,B;5+ B;B,a,

H,



A possible implementation of H, (s) using Active-RC follows

Clbs
||

@)
O
@)

RBl
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