
• A second order filter is also known as a Biquad. 
• A second – order filter consists of a two integrator loop of one lossless and one 

lossy integrator
• Using ideal components all the biquad topologies have the same transfer 

function.
• Biquad with real components are topology dependent .

 We will cover the following material:
- Biquad topologies
- Voltage scaling to equalize signal at all filter nodes.
- State variable Biquad derivation.
- Tow-Thomas Biquad Design Procedure
- Fully Balanced topologies using single ended Op Amps
- Non-ideal integrators and Biquads.
- Mason Rule to obtain transfer functions by inspection
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TWO-INTEGRATOR LOOP FAMILIES
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Family 1a

Two-integrator loops consists of one lossless and one 
lossy integrator, furthermore one is positive and the other is negative.

Why do we consider different filter topologies to obtain 
the same (ideal) transfer function ?
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All loops must be negative.
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Two-Integrator Loop Family 2, ideal to avoid CMF  in Fully Differential Structures 

• Lossy integrators are easy
to implement

Topology using two lossy integrators
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Low sensitivity structure:

5



s
1

2o

1o1

s
1

s

K
1oQ





Family 3  Self-Loop
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A self loop can be    implemented by 
adding a resistor to one (lossless) 
integrator.

Self-Loop two integrator loop
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SCALING for Active-RC, MOSFET-C 
and SC implementations
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Note that the voltages V02 and V03 were not modified

Modify all the impedances connected 
to the output under consideration.

An example.
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VOLTAGE SWING SCALING

A good filter design approach requires to have a proper voltage swing
at a frequency range for all internal and output nodes of the filter.

Let us consider the different types of filter implementations.












o o

iV

KR

1oR

1C

1oV

'
1R

1R

2oV
2oR

QR

2C

3oV

s
1

1o CR

1

1



2o CR

1

2


1

s
1 

3oV

oo

inV
2oV

o

1oV

o

2QCR

1


'
1

1

21oo2Q

22

R

R

CCRR

1

CR

1
ss)s(Ds

21



21oo2Q

2

2Q1k

2

2Q1K

in

o
1

CCRR

1

CR

1
ss

CR

1
s

CR

1

)s(D

s
sCR

1
1

sCR

1

V

V
)s(H

21

1




































1KCR

1

8



)s(H
V

V
)s(H 1

in

o
2

2 

21oo2Q

2

2o1K

in

o
3

CCRR

1

CR

S
S

CRCR

1

V

V
)s(H

21

23







Let us consider that we want
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EXAMPLENUMERICAL
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STATE-VARIABLE FILTER ARCHITECTURES

• Derived from state-variable techniques to solve differential 

equations. The objective is to render an  expression that 

can be implemented using integrator building blocks

• Example
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Where o is the cut-off frequency, (o/Q) is the bandwidth, Q
is the quality (selectivity) factor.

Let us rewrite the above equation by multiplying
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Both numerator and denominator by X(s)/s2.  Thus (2)  can be split into
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Observe that 1/s is an integral operator.  Thus we implement (3) by 
using integral building block.
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Remember that each integrator has its time-constant .  We
can associate more than one time-constant with each integrator.

 
SVi

o

K




 Qo /

X(s)

o

o

K1

I

2

V02 (s)

Vo(s)

Also observe that V02 correspond to a low-pass, Vo to a bandpass
and X(s) to a high pass. K1 could be 1 or any other suitable value
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This two-integrator biquad consists of

– One lossless integrator (I2)

– One Lossy integrator (I1)

– Two negative closed loops:  One determines the center
frequency, the other the bandwidth (or Q).

– One of two integrators must be positive, the other negative.

–The lossy integrator must have a negative feedback.
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Second-Order Filter Structures
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Zero implementation by addition of outputs technique
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Feed-Forward Zeros Implementation
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Tow-Thomas Biquad
with Feedforward Zero 
implementations
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Feedforward Tow-Thomas (TT) Biquad Circuit
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Observe that the regular TT Biquad does not implement a 
highpass output
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Description of the Parameters for the Tow-Thomas Filter
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General Transfer Function
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Design Equations for the Tow-Thomas Filter

Let
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Tow - Thomas  Biquad

** Description of the passive components

r1 2 3 1596698

r2   11 5 100000

r3 6 2 100000

r4 2 1 1596698

r7 3 4 100000

r8 4    11 100000

c1 2 3 9.7491D-11

c2 5 6 9.7491D-11

* Description of Op Amps

E1 3 0 0 2 2D5

E2 11 0 0 4 2D5

E3 6 0 0 5 2D5

*

VIN 1 0 AC 1

*

.AC LIN 100 6000 20000

.PLOT AC VDB(11) VP(11)

.PROBE

.END

PSPICE Input file of Tow Thomas Filter
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Tow - Thomas  Biquad

** Description of the passive components

r1 2 3 1596698

r2   11 5 100000

r3 6 2 100000

r4 2 1 1596698

r7 3 4 100000

r8 4    11 100000

c1 2 3 9.7491D-11

c2 5 6 9.7491D-11

* Description of Op Amps

E1 3 0 0 2 2D5

E2 11 0 0 4 2D5

E3 6 0 0 5 2D5

*

VIN 1 0 AC 1

*

.AC LIN 100 6000 20000

.PLOT AC VDB(11) VP(11)

.PROBE

.END
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KHN Fully-Differential Version
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Kerwin-Huelsman-Newcomb Biquad Circuit
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Simple Design Equations for the KHN Filter

Let
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KHN Biquad Design Procedure

A simple design procedure is described as follows:

1.  Assume that wp, Qp, and H=K are the design specifications.

2.  Select convenient values* or R’, C, and R to determine the
values of R1, R2, C7, C8, R4, and R6.

3.  Calculate the following element values:

pCR
b

'

1


For the HP case:

   1/11
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HPp HbbQ

R

HPp

R

HbQ

R
R

*  A rule of thumb for choosing R’ and R is to make them proportional to 10fp , when
Qp > 10,   or  else  make  R’ and  R  proportional  to fp.   Then  C  should  be  made 
proportional to 1/R’ p .
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For the BP case:
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Example     Design a bandpass modified KHN filter having a gain
of HBP =3, QP = 20, and o = 2p x 103r/s.                 

Procedure

1.  Let us choose R=10 kW, C=0/01 mF, and R’=11.254 kW; that is
R1= R2 = 11.254kW and R4 = R5 = 10kW.

2. Since the values of R1 and R2 are 11.254kW, then

414207.1
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b
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3.  The expression for ;
26

b

RR  then W kR 56

4.  For this case

W k
H

R
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BP

33.33

and

  
W


 260
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BPp HbbQ

R
R

Exercise.- Propose component value condition to make this structure Fully 
Balance Fully Symmetric Structure
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KERWIN-HUELSMAN-NEWCOMB Biquad Circuit with f0=1KHz, Q=20, Peak 

value gain =3

** Description of the passive components

r1 4 3 11.254K

r2   11 5 11.254K

r3 1 12 3.3K

* varying r4 values and parameters with the .step statement

.param R=1

r4 1 11 {R}

r5 2     6 10K

r6 2     3 5K

r9 1    0 260

c7 4 11 0.01U

c8 5 6 0.01U

* Description of Op Amps

E1 3 0 1 2 2D5

E2 11 0 0 4 2D5

E3 6 0 0 5 2D5

*

VIN 12 0 AC 1

*

.AC LIN 100 500 2K

.step DEC param R  300 30K 10

.PLOT AC VDB(11) VP(11)

.PROBE

.END 33
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Second-Order Filter Characteristics
and Mason Rule to obtain Transfer Functions

• Second-Order Transfer function characteristics.
• How can you use this information for better design and tuning

• Time domain measurements and characterization

Analog and Mixed-Signal Center.

Texas A&M University

Edgar Sánchez-Sinencio

• Mason Rule is a good tool, borrow from control theory, to easily obtain 
transfer functions from a signal flow graph 

622 Active Filters by Edgar Sánchez-Sinencio



PROPERTIES of SECOND-ORDER SYSTEMS 

AND MASON’S RULE to determine transfer functions by 

inspection

• Mathematical definitions and properties of Second-Order
Systems.

• Building block second-order system architectures and 
properties.

• Mason’s Rule to obtain easily transfer functions and 
to facilitate the generation of new architectures.



SECOND-ORDER FILTER TYPES

Second-order blocks are important building blocks since with a combination of them
allows the implementation of higher-order filters.  The general order transfer function in
the s-plane has the form:
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Particular conventional cases are:

Lowpass i.e.,

Bandpass i.e.,
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One interesting case used for amplitude equalization is the “equalizer” sometimes referred

to as Bump (DIP) Equalizer. In this case,              and .

Specific structures have different properties.  Some structures have enough degrees of

freedom to allow them to change independently      ,  Q (or BW) and a particular gain          

where        is a particular frequency, i.e., for the LP, BP and HP cases.

Furthermore, some structures have the property to have constant Q or BW while varying

.  We will illustrate later, by examples, some of the structures with such properties.
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Properties of Second-Order Systems in the time domain
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Only two measurements are necessary to fix the position of the complex poles.  The
measurement of the frequency of peaking determines the magnitude of the poles,
and the measurement of the 3-dB bandwidth determines
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Second-Order Low-Pass Networks
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1.  For Therefore, low frequencies are passed.

2.  For Therefore, high frequencies are attenuated.

3.  For the magnitude peaks at

The peak occurs at a frequency lower than         For Q>5, the frequency of 

peaking practically equals      (within 1%).

4.  For Q>5, the 3-dB bandwidth is practically equal to

5.  At and the phase is

6.  At the phase is

7.  For Q>5, the phase undergoes a rapid shift of     radians about
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The Second-Order Band-Pass Function
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The second-order band-pass function has one zero at the origin and another
at infinity:

To normalize the peak value of the magnitude function to unity, let :)Q/(H o
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In practical implementations besides the general specifications

other particular specifications are imposed which

are application dependent.  Among them are silicon area, dynamic

range, power supply rejection ratio, power consumption, tolerance,

accuracy, and sensitivity.  This last parameter is often used as a 

figure of merit. i.e., 

The above definition is usually referred as normalized sensitivity 

due to the (x/p) factor. x and p are the variable of the network

(i.e. R, C,      ) and the variable under consideration 
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The General Input-Output Gain Mason Formula

We can reduce complicated block diagrams to canonical form, from which the control ratio is easily written:

It is possible to simplify signal flow graphs in a manner similar to that of block diagram reduction.   But it is also possible,

and much less time-consuming, to write down the input-output relationship by inspection from the original signal flow graph.

This can be accomplished using the formula presented below.  This formula can also be applied directly to block diagrams,

but the signal flow graph representation is easier to read - especially when the block diagram is very complicated.

Signal Flow Graphs

Let us denote the ratio of the input variable to the output variable by T.  For linear feedback control systems, T=Vout/Vin.  

For the general signal flow graph presented in preceding paragraphs Vout is the output and Vin is the input.

The general formula for and signal flow graph is

where =  the ith forward path gain

=  jth possible product of k non-touching loop gains

=  1 - (sum of all loop gains) + (sum of all gain-products of 2 non-touching loops) - (sum of all gain-

products of 3 non-touching loops + …

=       evaluated with all loops touching      eliminated.

Two loops, paths, or a loop and a path are said to be non-touching if they have no nodes in common.

is called the signal flow graph determinant or characteristic function, since              is the system characteristic

equation.
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Examples
Let us determine the control ratio Vout/Vin and the canonical block diagram of the feedback

control system shown below:

The signal flow graph is

There are two forward paths:
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There are three feedback loops:

There are no non-touching loops, and all loops touch both forward paths; then

Therefore the control ratio is

From Equations (8.3) and (8.4), we have

Therefore

The canonical block diagram is there fore given by

The negative summing point sign for the feedback loop is a result of using a positive sign in the GH

formula above.
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Draw a signal flow graph for the following resistance network in which
is the voltage across

The five variables are          is the input.  The four independent

equations derived from Kirchoff’s voltage and current laws are

The signal flow graph can be drawn directly from these equations:

In Laplace transform notation, the signal flow graph is given by
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ECEN 622 (ESS)

Example of use of Mason Rule in a 3rd Orders State-Variable (observable) Filter 
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What is wrong with this application of Mason’s Rule?
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A possible implementation of H2 (s) using Active-RC follows
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