Operational Transconductance - C (OTA-C) and Current-Mode Filter Structures and Practical Issues

- OTA-C Filter Topologies
- OTA-C Filter Non-idealities
- Pseudo Differential OTA

- OTA-C BP Least Mean Square Tuning Scheme
- How to use a conventional OTA as a filter by adding capacitances at the internal nodes.

Applications for continuous time filters

Top view of a 36 GB, 10,000 RPM, IBM SCSI server hard disk, with its top cover removed. Read channel of disk drives -for phase equalization and smoothing the wave form

Receivers and Transmitters in wireless applications -- used in PLL and for image rejection

6185i digital cell phone from Nokia.

CMP-35 portable MP3 player

All multi media applications -- Anti aliasing before ADC and smoothing after DAC

LOSSY OTA-C INTEGRATORS

OTA-C Two Integrator Loop Filters

How to generate the zeros of the filter?

Canonic OTA-C Biquad

Analog and Mixed-Signal Center

Analog and Mixed-Signal Center

INTERNAL VOLTAGE SCALING

Assume the voltage V_{01} needs to be scaled by a factor "a" without changing the other node voltages:

- 1. The impedance at the node under consideration must be increased by "a". In this case C1 becomes C1/a.
- 2. Multiply all the transconductances leaving that node by the factor "a". In this case g_{m2} becomes ag_{m2} .

OTA-C Three OTA Filter: Transfer Function Derivation taking into Account the OTA non-idealities.

Assume ideal OTAs first, then :

$$V_{1} = \frac{1}{sC_{1}} g_{m1} (V_{i} - V_{0})$$
(1)
$$V_{0} = (g_{m2}V_{1} - g_{m3}V_{0}) \frac{1}{sC_{2}}$$
(2)

(1) into (2)

$$(sC_2)V_0 = \left[g_{m2}\frac{g_{m1}}{sC_1}(V_i - V_0) - g_{m3}V_0\right]$$

10

$$V_0 \left[sC_2 + \frac{g_{m1}g_{m2}}{sC_1} + g_{m3} \right] = \frac{g_{m1}g_{m2}}{sC_1} V_i$$

$$H_{LP}(s) = \frac{V_0}{V_i} = \frac{g_{m1}g_{m2}}{s^2 C_1 C_2 + s C_1 g_{m3} + g_{m1}g_{m2}} = \frac{\frac{g_{m1}g_{m2}}{C_1 C_2}}{s^2 + s\frac{g_{m3}}{C_2} + \frac{g_{m1}g_{m2}}{C_1 C_2}}$$

$$\omega_0^2 = \frac{g_{m1}g_{m2}}{C_1C_2}$$
, $BW = \frac{\omega_0}{Q} = \frac{g_{m3}}{C_2}$

$$Q = \frac{1}{g_{m3}} \sqrt{\frac{g_{m1}g_{m2}C_2}{C_1}} = \frac{C_2\omega_0}{g_{m3}}$$

Now let's assume the transconductance is characterized by:

$$g_{m} = g_{mo}e^{-s/\omega_{p}} \cong g_{mo}(1 - s/\omega_{p}) \text{ for } \omega_{p} << \omega_{o}.$$

Under this condition the excess phase can be expressed as $\phi_{E} \cong \omega_{o} / \omega_{p}.$
Note that ideally $\phi_{E} = 0^{0}.$

then,

$$\begin{split} H_{LP}(s) &= \frac{g_{mo1}g_{mo2}(1 - s/\omega_{p1})(1 - s/\omega_{p2})}{s^2 C_1 C_2 + s C_1 g_{mo3}(1 - s/\omega_{p3}) + g_{mo1}g_{mo2}(1 - s/\omega_{p1})(1 - s/\omega_{p2})} \\ D(s) &= s^2 C_1 C_2 + s C_1 g_{mo3} - s^2 \frac{C_1 g_{mo3}}{\omega_{p3}} + g_{mo1}g_{mo2} \left(1 - s \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} \right) + \frac{s^2}{\omega_{p1}\omega_{p2}} \right) \\ D(s) &= s^2 \left\{ C_1 C_2 - \frac{C_1 g_{mo3}}{\omega_{p3}} + \frac{g_{mo1} g_{mo2}}{\omega_{p1}\omega_{p2}} \right\} + s \left\{ C_1 g_{mo3} - \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} \right) g_{mo1} g_{mo2} \right\} + g_{mo1} g_{mo2} \right\} \\ \end{split}$$

Then the actual ω_{oa} and BW_a become

$$\omega_{oa}^{2} = \frac{g_{mo1}g_{mo2}}{C_{1}C_{2} + \frac{g_{mo1}g_{mo2}}{\omega_{p1}\omega_{p2}} - \frac{C_{1}g_{mo3}}{\omega_{p3}}}$$

BW_a = $\frac{\omega_{oa}}{Q_{a}} = \frac{C_{1}g_{mo3} - \left(\frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}}\right)g_{mo1}g_{mo2}}{C_{1}C_{2} - \frac{C_{1}g_{mo3}}{\omega_{p3}} + \frac{1}{\omega_{p1}\omega_{p2}}}$ 12

Let us also assume that $\omega_{p1} = \omega_{p2} = \omega_p$, then $\omega_{oa} \cong \omega_o$, thus,

$$BW_{a} = \frac{\omega_{oa}}{Q_{a}} = \frac{C_{1}g_{mo3} - \frac{2}{\omega_{p1}}g_{mo1}g_{mo2}}{C_{1}C_{2} - \frac{C_{1}g_{mo3}}{\omega_{p}} + \frac{1}{\omega_{p}^{2}}} \cong \frac{C_{1}g_{mo3} - \frac{2}{\omega_{p}}g_{mo1}g_{mo2}}{C_{1}C_{2}}$$
$$BW_{a} \cong \frac{g_{mo3}}{C_{2}} - \frac{g_{mo1}g_{mo2}}{C_{1}C_{2}}\frac{2}{\omega_{p1}} = BW - \omega_{oa}^{2} \cdot \frac{2}{\omega_{p1}} = BW - \frac{2\omega_{oa}^{2}}{\omega_{p1}}$$
$$Q_{a} = \frac{\frac{\omega_{oa}}{BW_{a}}}{\frac{g_{mo3}}{C_{2}} - \omega_{oa}^{2}}\frac{2}{\frac{\omega_{oa}}{C_{2}}}$$
$$Q_{a} = \frac{\frac{C_{2}\omega_{oa}}{g_{m3}}}{1 - \frac{C_{2}\omega_{oa}}{g_{m3}}\frac{2\omega_{oa}}{\omega_{p1}}} = \frac{Q}{1 - \frac{Q_{2}\omega_{oa}}{\omega_{p1}}} = \frac{Q}{1 - \frac{2\omega_{oa}}{\omega_{p1}}}$$

Alternatively, Q_a can be expressed in terms of the excess phase $\phi_E = \tan^{-1} \frac{\omega_0}{\omega_p} \cong \frac{\omega_0}{\omega_p}$ then

$$Q_{a} \approx \frac{Q}{1 - 2\phi_{E}Q} \approx Q(1 + 2\phi_{E}Q)$$
$$BW_{a} = BW - 2\omega_{oa}\phi_{E}$$
13

Furthermor e, if $A_{vo} = g_m R_o$ is taken into account, then

$$Q_{a} = \frac{Q}{1 + \frac{2Q}{A_{vo}}}$$
If $A_{vo} = 500$

$$Q_{a} = \frac{Q}{1 + 4 \times 10^{-3}Q}$$
Note that :
$$Q_{a} = \frac{Q}{1 + 4 \times 10^{-3}Q}$$

Note

$$\begin{array}{c} Q_a \downarrow \text{ when } A_{vo} \downarrow \\ BW_a \downarrow \quad Q_a \uparrow \text{ when } \phi_E \uparrow \end{array}$$

$$Q_{a} \cong \frac{Q}{1 - 2\phi_{E}Q} \cong Q(1 + 2\phi_{E}Q)$$
$$BW_{a} \equiv BW - 2\omega_{oa}\phi_{E}$$

Two-integrator biquad with gain control

Fully differential OTA-C Biquad

Analog and Mixed Signal Center,¹7AMU

Assuming a one pole OTA model Table OTA finite parameters effects for biquad on the resonant frequency and bandwidth

Poles frequency*
$$\sqrt{\frac{g_{m1}g_{m2}}{C_1C_2}} \left[\sqrt{1 + \left(\frac{g_{o1}}{g_{m1}}\right) \left(\frac{g_{m3} + g_{o2} + g_{o3}}{g_{m2}}\right) - \left(\frac{\frac{g_{m1}}{C_1}}{\omega_{P1}}\right) \left(\frac{\frac{g_{m2}}{C_2}}{\omega_{P2}}\right) \right]$$
Bandwidth* $BW_{ideal}(1 - error) \cong \left(\frac{g_{m3}}{C_1} \left(1 - \frac{g_{o1} + g_{o2} + g_{o3}}{g_{m3}} - 2Q\frac{\omega_0}{\omega_{P1,2}}\right) \right)$

* $\omega_{P1,2}$ and $g_{o1,2}$ are the non-dominant pole and output conductance, respectively.

Lossy Integrator With Positive Feedback

$$\frac{V_{o}}{V_{in}} = \frac{g_{m_1} Z}{1 - g_{m_1} Z} = -\frac{g_{m_1}}{s C + (g_{m_2} - g_{m_1})}$$

Analog and Mixed-Signal Center

OTA Excess Phase Compensation

. Phase compensation techniques: passive for integrators.

How to determine the value of RC?

The R is implemented with a transistor operating in the triode (ohmic) region.

The zero generated by the RC should cancel the dominant pole of Gm(s).

Active Frequency Compensation Transconductor

[J. Ramirez-Angulo and E. Sanchez-Sinencio, "Active Compensation of Operational Transconductance Amplifier Filters Using Partial Positive Feedback," IEEE Journal of Solid-State Circuits, vol. 25, No. 4, pp. 1024-1028, August 1990]

$$I_0 = g_m (V_1 - V_2)$$
$$g_m (s) = g_{mo} \left(1 - \frac{s}{\omega} \right)$$
$$\omega \text{ depends on } I_{ss}$$

$$I_{0} = (g_{mp}(s) - g_{mN}(s))\Delta V = g_{meff}(s)\Delta V$$
$$g_{meff}(s) = g_{meffo} \left[1 - \frac{s}{\omega_{eff}}\right]$$
$$g_{meffo} = g_{mPo} - g_{mNo} , \quad \omega_{eff} = \frac{g_{meffo}}{\frac{g_{mPo}}{\omega_{p}} - \frac{g_{mNo}}{\omega_{N}}}$$

It is possible to make

 $\omega_{eff} >> \omega_p, \omega_N$

Phase compensation techniques

In a Biquad:

(a) active; and (b) passive for integrators.

Recall that

$$g_m = \frac{g_{mo}}{1 + s/\omega_p} \cong g_{mo} \left(1 - s/\omega_p\right) \cong g_{mo} e^{-s/\omega_p}$$

21

TAMU AMSC

Behavior of symmetric circuits

An example of fully symmetric circuit

Equivalent circuit for fully differential input

Equivalent circuit for common mode input

Derivation of CMFF OTA

Single ended OTA circuit

Circuit of OTA for differential input

Circuit of OTA for common mode signals

Note.- Independent trajectories, poor CMRR

Fully-balanced, fully-symmetric CMFF OTA

OTA with improved flexibility

Fully-balanced, fully-symmetric, pseudo differential CMFF OTA

Two integrator loop

Two integrator loop using CMFF OTA

Two integrator loop using CMFF+CMFB OTA

(CMFF + CMFB) OTA

Fully-balanced, fully-symmetric, pseudo differential (CMFF+CMFB) OTA

Characteristics of the OTA

- Let the total capacitance at 'node A' be C_{int}
- Let the capacitance used in two integrator loop be C_{ext}
- Effective transconductance=

$$g_{m1\,eff} = \frac{g_{m1}}{1 + \frac{g_{m1}}{g_{ds5}}}$$

• CMFB loop gain =
$$\frac{g_{m1\,eff} \cdot g_{m6} \cdot g_{m2}}{g_{m4} \cdot g_{m4} \cdot g_{ds2}} \cdot \frac{1}{\left(1 + \frac{sC_{int}}{g_{m4}}\right)^2 \left(1 + \frac{sC_{ext}}{g_{ds2}}\right)}$$

• Gain
$$(I_0/V_i) = g_{ds5} \left\{ 2 - \left(1 + \frac{4\beta_1}{g_{ds5}} (V_G - V_T) \right)^{-\frac{1}{2}} \right\}$$

• Gain(I₀/V_i³) =
$$\frac{12\beta_1^2}{g_{ds5}} \left[1 + \frac{4\beta_1}{g_{ds5}} (V_G - V_T) \right]^{-\frac{5}{2}} = \frac{12\beta_1^2 g_{ds5}^{\frac{3}{2}}}{\left[g_{ds5} + 4\beta_1 (V_G - V_T) \right]^{\frac{5}{2}}}$$

• To improve linearity, use larger resistor for source degeneration.

•
$$\operatorname{CMRR}_{(\mathrm{DC})} = \frac{g_{m4}}{g_{ds2}}$$

 $\boldsymbol{\sigma}$

• Gain from +ve supply=1 • Gain from -ve supply= $\begin{bmatrix} 1 - \frac{1}{1 + \frac{sC_{int}}{g_{m4}}} \end{bmatrix} \times \frac{g_{m1,eff}}{g_{ds2}} + \frac{g_{m1,eff}}{g_{m4}}$

- Gain from VSS is less than gain from VDD. So, output should be measured wrt VDD
- PSRR is same as CMRR

Simplified noise expression

Two integrator loop

Band pass filter

Design of a new high frequency OTA and a Filter Tuning Scheme

Praveen Kallam

Advisor: Dr. E. Sanchez Sinencio

How to build a filter

- OpAmps Low frequency, high linearity
- OTAs Medium high frequencies, medium linearity
- Passive components High frequency
- Transmission lines Extremely high frequency

NMOS VS PMOS

	NMOS	PMOS
Speed	Faster	Slower
Device noise	Low thermal	Low flicker
	noise	noise
Linearity	Bulk effect	No bulk effect
•	degrades	
	linearity	
Substrate	Higher due to	Can be better
noise	common	shielded
	substrate	

Advantages of differential Circuits

- Double the signal swings
- Better power supply and substrate noise rejection
- Higher output impedance with conductance cancellation schemes
- Better linearity due to cancellation of even harmonics
- Partial cancellation of systematic errors using layout techniques
- Availability of already inverted signals

Disadvantages of differential Circuits

- Duplication of circuit requires double the area and power
- Additional circuitry to tackle common mode issues

Common mode issues

- Output DC common mode voltage should be stabilized (otherwise, the voltage may hit the rails)
- Common mode gain should be small (otherwise, positive feedback in a two integrator loop becomes stronger)

Common Mode Feed Forward

- Can decrease common mode gain even at higher frequencies
- Does not have stability problems
- Cannot stabilize the output DC voltage

Common Mode Feed Back

- Stabilizes output DC voltage
- Feedback stability issues make the circuit slow and bulky

CMFF + CMFB

Two integrator loop

Band pass filter

Need for tuning

- Process parameters can change by 10%
- Parameters also change with temperature and time(aging)
- Another solution for low-frequency is using Switch Capacitor filters

Methods of tuning

- Master-Slave
- Pre-tuning
- Burst tuning
- Switching between two filters

Frequency Tuning

PLL

- Most widely used scheme
- Accurate (less than 1% error is reported)
- Square wave input reference
- Only XOR and LPF are the additional components
- Usually used only for filters with Q>10
- Large area overhead

VCF, VCO, Single OTA, Peak detect, adaptive....

Q tuning

Modified LMS

- Accurate
- Square wave input
- Independent of frequency tuning
- Not very robust
- Large area overhead

MLL, Impulse, Freq syn

- Stevenson, J.M.; Sanchez-Sinencio, E "An accurate quality factor tuning scheme for IF and high-Q continuous-time filters". Solid-State Circuits, IEEE Journal of Volume: 33 12, Dec. 1998, Page(s): 1970-1978
- Combines Master-Slave, PLL and modified LMS
- Less than 1% error in both f-tuning and Q-tuning

LMS Algorithm Derivation.- The mean square error (MSE) is defined as $E(t)=0.5[e(t)]^2 = 0.5[d(t)-y(t)]^2$ where d(t) is the desired output signal, and y(t) is the actual output signal. The steepest descent algorithm is defined as:

dW ∂E $\frac{dt}{dt} = -\mu \frac{dt}{\partial W}$ $\frac{\mathrm{d}W}{\mathrm{d}t} = -\mu \frac{\partial E}{\partial y} \frac{\partial y}{\partial W}$ $\frac{dW}{dt} = -\mu \frac{\partial [0.5\{d(t) - y(t)\}^2]}{\partial y} \frac{\partial y}{\partial W}$ $\frac{\mathrm{dW}}{\mathrm{dt}} = \mu[\mathrm{d}(t) - \mathrm{y}(t)] \frac{\partial \mathrm{y}(t)}{\partial \mathrm{W}}$

 $\overset{\bullet}{W} = \mu[d(t) - y(t)]G(t) = \mu e(t)G(t)$

Linear System case.

$$\mathbf{y}(t) = \sum_{i=0}^{n} \mathbf{w}_i \mathbf{x}_i,$$

where:

x_i is the input signal. Therefore:

$$\frac{dW}{dt} = \mu[d(t) - y(t)] \frac{\partial \sum_{i=0}^{n} w_i x_i}{\partial W} = \mu[d(t) - y(t)] x_i$$

$$\mathbf{\dot{W}} = \mu e(t) x_{xi}$$

Adaptive LMS Algorithm

$$\dot{w}_i = \mu [d(t) - y(t)]g_i(t)$$

Where is the tuning signal, d(t) is the desired response, y(t) is the actual response, and $g_i(t)$ is the gradient signal (that is the direction of tuning.

Block Diagram Solution

The tuning scheme implemented before

Problems in the previous scheme

- Large area overhead (may run into matching problems)
- Power hungry
- Not very robust (very low offsets required.)
- Looses accuracy at low Qs(<10) and very high Qs
 (~100)
- Applies only to Band-Pass filters

PLL

Proposed Q-tuning scheme

New implementation of modified-LMS Q-tuning scheme

Tuning is independent of the shape of reference waveform

$$V_i(t) = \sum_i A_i \sin(w_i t) \implies V_o(t) = \sum_i A_i \frac{Q_a}{Q_D} \cos(\theta_i) \sin(w_i t + \theta_i)$$

When this input and output is processed by the tuning scheme,

$$\left\{\frac{Q_a}{Q_D}\sum_i A_i^2 \cos^2(\theta) - \left(\frac{Q_a}{Q_D}\right)^2 \sum_i A_i^2 \cos^2(\theta)\right\} = 0$$

Improved Offset performance

Previous offset = $G_{mul}G_{sum}^2(O_{in}-O_{BP})O_{BP}+G_{mul}G_{sum}O_{in}O_{sum}+G_{mul}O_{sum}^2+O_{mul}$

• Reduced offset => improved accuracy

The new tuning scheme

Improvements over the previous tuning scheme

Area overhead decreased

(Previous scheme => 2 extra filters

New scheme => 1 extra filter)

• Eases the matching restrictions

(Previous tuning scheme => match 3 filters New tuning scheme => match 2 filters)

• Improves accuracy of tuning

(New tuning scheme is more tolerant to offsets than the previous one)

Circuits to be designed

- Comparator
- Attenuator
- Multiplier
- LPF outside the IC using Opamp
- Differential difference adder
- Integrator ______outside the IC using Opamp

(Both macro model & transistor level are used in simulations for the OpAmp)

Comparator

• Non-linear amplifier

- Gain should be as close to unity to improve THD
- If less than unity, no oscillations
- Rate of change of gain wrt input should be high (should be very non-linear)
 - cannot use complex circuits
 - DIODE

Circuit of differential comparator

Comparator characteristics

Attenuator

- Capacitor
 - Large capacitors for matching
 - Large capacitors \rightarrow Large loading
- Resistor
 - Larger resistors for matching
 - Large resistors \rightarrow Small loading
 - Should take parasitic capacitor into consideration

Multiplier gain =
$$\frac{-32V_{DD}^3}{(V_1 - V_T)^3}$$
 CM gain = $\frac{4V_{DD}^2}{(V_1 - V_T)^2}$
LPF

• Constraints

- High gain \Rightarrow PLL might be unstable
- Low gain \Rightarrow small pull-in range
- low cut-off freq \Rightarrow small pull-in range
- High cut-off freq \Rightarrow Jitter noise
- Single ended output
- Built using external components for good control

Differential difference adder

- Add/Subtract two differential signals
 - High gain \Rightarrow Q tuning loop unstable
 - Low gain \Rightarrow Lesser accuracy
 - Need not have a good frequency response

Integrator

Simulated results for tuning scheme

Die Photograph

This response should be subtracted from other plots to get actual response

Filter response

• Qs of 16, 5 and 40 at 80,95 and 110 MHz

• CMRR is more than 40dB in the band of interest

• PSRR⁻ is more than 40dB in the band of interest

• Total integrated noise power at the output= -60dBm

Two-tone inter-modulation test

• IM_3 of 45dB when the input signal is 44.6mV

Filter response when tuned to Q=20

Both bandwidth and gain corroborate that accuracy of tuning is arounds¹/₈%

Filter response for four different ICs

• Tuning accuracy is around 1%

Filter response for four different ICs

• The tuning works!

Conclusions

- A new high-frequency fully-differential OTA is designed.
- A band pass filter with f=100MHz and Q=20 is designed using the new OTA in AMI0.5um
- A new tuning scheme for BP filters that overcomes many of the problems faced by previous scheme is implemented.

References

- Stevenson, J.M.; Sanchez-Sinencio, E "An accurate quality factor tuning scheme for IF and high-Q continuous-time filters". Solid-State Circuits, IEEE Journal of Volume: 33 12, Dec. 1998, Page(s): 1970-1978
- Class notes on converting a single ended Op-Amp circuit to a fully symmetric, fully differential circuit.
- Shuo-Yuan Hsiao and Chung-Yu Wu "a 1.2V CMOS Four-Quadrant Analog Multiplier" IEEE international symposium on Circuits and Systems, June 1997 Pages: 241: 244
- G.T Uehara, and P.R. Gray, "A 100 MHz output rate analog to digital interface for PRML magneticdisk read channel in 1.2µm CMOS" Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC. IEEE International. Page(s): 280 -281
- D.D.Kumar and B.J.Hunsinger "ACT-enabled 100MHz equalizer for 100MHz application" Magnetics, IEEE Transactions on Volume: 27 6 2, Nov. 1991, Page(s): 4799 -4803
- Philpott, R.A. Kertis, R.A. Richetta, R.A. Schmerbeck, T.J. and Schulte, D.J. "A 7 MBytes/s (65MHz) mixed signal magnetic recording channel DSP using partial response signaling with maximum likelihood detection" Solid-State Circuits, IEEE Journal of

Volume: 29 3, March 1994, Page(s): 177 -184

- Tao Hai and J.M. Khoury "A 190MHz IF, 400Msamples/s CMOS direct conversion band-pass ΣΔ modulator" Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. IEEE International, Page(s): 60 -61
- J.Franca and Y.Tsividis (editors) *Design of analog-digital VLSI circuits for tele-communications*⁸⁹*and signal processing* Prentice Hall 1994, chapter 7-9

- F.Krummenachar and N.Joehl, "A 4-MHz CMOS continuous time filter with on chip automatic tuning", IEEE *Journal of Solid-State Circuits*, vol. 23, pp. 750-758, June 1988.
- F.Krummenachar and N.Joehl, "A 4-MHz CMOS continuous time filter with on chip automatic tuning", IEEE *Journal of Solid-State Circuits*, vol. 23, pp. 750-758, June 1988.
- H.Khorramabadi and P.Gray, "High-frequency CMOS continuous time filters", IEEE *Journal of Solid-State Circuits*, vol. SC-19, pp. 939-948, December 1984.
- J. Silva-Martinez, M. Steyaert, and W. Sansen, "A 10.7-MHz 68-dB SNR CMOS CMOS continuous time filter with on chip automatic tuning", IEEE *Journal of Solid-State Circuits*, vol. 27, pp. 1843-1853, December 1992.
- S.Pavan and Y.P.Tsividis, "An analytical solution for a class of oscillators, and its application to filter tuning", IEEE Transactions on Circuits and Systems I, vol. 45, pp. 547 -556 May 1998
- O.Shana'a and R.Schaumann "Low-voltage high-speed current-mode continuous-time IC filters with orthogonal w-Q tuning" IEEE Transactions on Circuits and Systems II, vol. 46 pp. 390 -400, April 1999.
- O.H.W.Chou, J.E.Franca, R.P.Martins, J.C.Vital and C.A.Leme, "A 21.4 MHz Gm-C bandpass filter in 0.8um digital CMOS with on-chip frequency and Q-factor tuning", 2nd IEEE-CAS Region 8 Workshop on Analog and Mixed IC Design, pp. 87 -90, 1997.
- C.Plett and M.A.Copeland, "A study of tuning for continuous-time filters using macromodels" IEEE Transactions on Circuits and Systems II, vol. 39, pp. 524 -531, Aug, 1992.

- J. Van der Plas, "MOSFET-C filter with low excess noise and accurate automatic tuning", IEEE *Journal of Solid-State Circuits*, vol. 26, pp. 922-929, July 1991.
- T. Kwan and K. Martin, "A notch filter based frequency-difference detector and its applications", in 1990 IEEE ISCAS Proceedings, pp. 1343-1346, 1990.
- A.I.Karsilayan and R.Schaumann "Automatic tuning of high-Q filters based on envelope detection" in 1999 IEEE ISCAS Proceedings, vol.2, pp. 668 -671, 1999.
- R. Schaumann, M. Ghausi and K.Laker, *Design of Analog Filters*, ch. 7. Englewood Cliffs, New Jersey: Prentice-Hall, 1990.
- B. Widrow, M.lehr, F.Beaufays, E.Wan and M.Bilello, "Learning algorithms for adaptive signal processing and control", in 1993 IEEE ISCAS Proceedings, pp. 1-8, 1993.
- B.Nauta, "A CMOS transconductance-C filter technique for very high frequencies", IEEE Journal of Solid-State Circuits, vol. 27, pp. 142 -153, Feb, 1992.
- V.Gopinathan, Y.P.Tsividis, K.S.Tan, and R.K.Hester, "Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video" IEEE Journal of Solid-State Circuits, vol. 25, pp. 1368 -1378, Dec, 1990.
- Gunhee Han and E.Sanchez-Sinencio, "CMOS transconductance multipliers: a tutorial", IEEE Transactions on Circuits and Systems II, vol. 45, pp. 1550 -1563, Dec. 1998.
- J.Ramirez-Angulo and E.Sanchez-Sinencio, "Active compensation of operational transconductance amplifier filters using partial positive feedback", IEEE Journal of Solid-State Circuits, vol. 25, pp. 91 1024 -1028, Aug, 1990.