
Operational Transconductance – C
(OTA-C) and Current-Mode Filter 
Structures and Practical Issues

• OTA-C Filter Topologies

• OTA-C Filter Non-idealities

• Pseudo Differential OTA

• OTA-C BP  Least Mean Square Tuning Scheme

• How to use a conventional OTA as a filter by adding 

capacitances at the internal nodes.
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Applications for continuous time filters

Read channel of disk drives --

for phase equalization and 

smoothing the wave form

Top view of a 36 GB, 10,000 RPM,

IBM SCSI server hard disk, with its

top cover removed.
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Receivers and Transmitters in wireless 

applications -- used in PLL and for 

image rejection

6185i digital cell phone

from Nokia. 3



All multi media 

applications --Anti 

aliasing before ADC and 

smoothing after DAC

CMP-35 portable MP3 player
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VOUT

OTA-C Two Integrator Loop Filters
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Analog and Mixed-Signal Center

Canonic OTA-C Biquad
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INTERNAL VOLTAGE SCALING

Assume the voltage V01 needs to be scaled by a factor “a”without changing the 

other node voltages:

1. The impedance at the node under consideration must be increased by “a”. In 

this case C1 becomes C1/a.

2. Multiply all the transconductances leaving that node by the factor “a”. In this 

case gm2 becomes agm2,
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OTA-C Three OTA Filter: Transfer Function Derivation taking into

Account the OTA non-idealities. 
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Now let’s assume the transconductance is characterized by:
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Assuming a one pole OTA model

Table  OTA finite parameters effects for biquad  on the resonant

frequency and bandwidth
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Analog and Mixed-Signal Center

Lossy Integrator With Positive Feedback
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Low-Frequency,  High-Q   OTA-C  Biquad
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. Phase compensation techniques:  passive for integrators.

How to determine the value of RC ?

The R is implemented with a transistor operating in the 

triode (ohmic) region.

The zero generated by the RC should cancel the dominant 

pole of Gm(s).

R
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Active Frequency Compensation Transconductor
[J. Ramirez-Angulo and E. Sanchez-Sinencio, “Active Compensation of Operational Transconductance Amplifier Filters Using Partial

Positive Feedback,” IEEE Journal of Solid-State Circuits, vol. 25, No. 4, pp. 1024-1028, August 1990]
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Behavior of symmetric circuits
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Derivation of CMFF OTA

Single ended OTA circuit
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Circuit of OTA for common mode signals
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Fully-balanced, fully-symmetric CMFF OTA
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OTA with improved flexibility
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Two integrator loop
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(CMFF + CMFB)   OTA

Fully-balanced, fully-symmetric, pseudo differential (CMFF+CMFB) OTA 
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Characteristics of the OTA

• Let the total capacitance at ‘node A’ be Cint

• Let the capacitance used in two integrator loop be 

Cext

• Effective transconductance=

• CMFB loop gain = 

5

1

1
1

1
ds

m

m
effm

g

g

g
g

+

=









+








+






2

2

4

int
244

261

11

1

ds

ext

m

dsmm

mmeffm

g

sC

g

sCggg

ggg

30



• Gain (Io/Vi) =

• Gain(Io/Vi
3) =                                =

• To improve linearity, use larger resistor for source 

degeneration.
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• Differential gain=

• Common mode gain = 

• CMRR(DC) = 
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• Gain from +ve supply=1

• Gain from -ve supply=

• Gain from VSS is less than gain from VDD. So, 

output should be measured wrt VDD

• PSRR is same as CMRR
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Output noise current=
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Simplified noise expression
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Two integrator loop
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Band pass filter
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Design of a new high frequency 

OTA and a Filter Tuning Scheme

Praveen Kallam

Advisor: Dr. E. Sanchez Sinencio
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How to build a filter

• OpAmps - Low frequency, high linearity

• OTAs - Medium high frequencies, medium 

linearity 

• Passive components - High frequency

• Transmission lines - Extremely high frequency
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NMOS VS PMOS

NMOS PMOS

Speed Faster Slower

Device noise Low thermal

noise

Low flicker

noise

Linearity Bulk effect

degrades

linearity

No bulk effect

Substrate

noise

Higher due to

common

substrate

Can be better

shielded
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Advantages of differential Circuits

• Double the signal swings

• Better power supply and substrate noise rejection

• Higher output impedance with conductance 

cancellation schemes

• Better linearity due to cancellation of even 

harmonics

• Partial cancellation of systematic errors using 

layout techniques

• Availability of already inverted signals
41



Disadvantages of differential Circuits

• Duplication of circuit requires double the area and 

power

• Additional circuitry to tackle common mode 

issues
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Common mode issues

• Output DC common mode voltage should be 

stabilized (otherwise, the voltage may hit the rails)

• Common mode gain should be small (otherwise, 

positive feedback in a two integrator loop 

becomes stronger)
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Common Mode Feed Forward

• Can decrease common mode 

gain even at higher frequencies

• Does not have stability 

problems 

• Cannot stabilize the output DC 

voltage
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Common Mode Feed Back

• Stabilizes output DC 

voltage

• Feedback stability issues 

make the circuit slow and 

bulky
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CMFF  +  CMFB

+

- -

+

Gain

C
o
m

m
o
n
 M

o
d
e

C
o
n
tr

o
l

V
in+

V
in-

GainLoop

Stabilization

V
out+

V
out-

46



Two integrator loop
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Band pass filter
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Need for tuning

• Process parameters can change by 10%

• Parameters also change with temperature and 

time(aging)

• Another solution for low-frequency is using 

Switch Capacitor filters
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Methods of tuning

• Master-Slave

• Pre-tuning

• Burst tuning

• Switching between two filters
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Frequency Tuning

PLL
• Most widely used scheme

• Accurate (less than 1% error is reported)

• Square wave input reference

• Only XOR and LPF are the additional components

• Usually used only for filters with Q>10

• Large area overhead

VCF, VCO, Single OTA, Peak detect, adaptive….
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Q tuning

Modified LMS 
• Accurate

• Square wave input

• Independent of frequency tuning

• Not very robust 

• Large area overhead

MLL, Impulse, Freq syn ….
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The most accurate scheme so far 

• Stevenson, J.M.; Sanchez-Sinencio, E    “An 

accurate quality factor tuning scheme for IF and 

high-Q continuous-time filters”. Solid-State 

Circuits, IEEE Journal of Volume: 33 12 , Dec. 

1998 , Page(s): 1970 -1978

• Combines Master-Slave, PLL and modified LMS

• Less than 1% error in both f-tuning and Q-tuning
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LMS Algorithm Derivation.- The mean square error (MSE) is 

defined as     E(t)=0.5[e(t)]2 = 0.5[d(t)-y(t)]2

where d(t) is the desired output signal, and y(t) is the actual output 

signal. The steepest descent algorithm is defined as:
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Linear System case.
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Adaptive  LMS Algorithm

Master

Biquad

H(s)

Slave

BiquadVin

Vout

1/Qd

VREF

k/s
Vb

p


-

+

  )()()( tgtytdw ii = 

Where    is the tuning signal, d(t) is the desired response, y(t) is the

actual response, and gi (t) is the gradient signal ( that is the direction

of tuning.
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VREF Master

Biquad

H(s)

Slave

BiquadVin Vout
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k/s

Vbp

-
+

Block Diagram Solution
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The tuning scheme implemented before

BP Filter

LP Filter

Schmitt Trigger

XOR

Reference Clock

BP Filter

Integrator

Q

f

Q

f

BP Filter

Q

f

1/Q
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Problems in the previous scheme

• Large area overhead (may run into matching 

problems)

• Power hungry

• Not very robust (very low offsets required.) 

• Looses accuracy at low Qs(<10) and very high Qs 

(~100)

• Applies only to Band-Pass filters

59



PLL

BP Filter

LP Filter

Schmitt Trigger

XOR

Reference Clock
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Proposed Q-tuning scheme

New implementation of modified-LMS Q-tuning scheme
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Integrator

Input reference
1/Q
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Tuning is independent of the shape of 

reference waveform

When this input and output is processed by the tuning scheme,



















+
=

2

2

1
aaa

aa

w
w

Qw
jw

Qw
jw

Arg

2

2

1
aaa

aa

w
w

Qw
jw

Qw
jw

G
+

=

   += wtG
Q

Q
AtV

D

a
o sin

   twAtV i

i

ii = sin       +=
i

iii

D

a
io tw

Q

Q
AtV  sincos

      += wt
Q

Q
AtV

D

a
o sincos

    0coscos 22

2

22 =






















 

i

i

D

a

i

i

D

a A
Q

Q
A

Q

Q


62



Improved Offset performance

Previous offset =

Present Offset = 

• Reduced offset  =>  improved accuracy

  mulsummulsuminsummulBPBPinsummul OOGOOGGOOOGG +++ 22

  sumBPBPinsummul OOOOGG +

BP Filter

Integrator

Input reference
1/Q
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The new tuning scheme

BP Filter

LP Filter

Schmitt Trigger
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BP Filter
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f

1/Q

Integrator

64



Improvements over the previous 

tuning scheme
• Area overhead decreased

(Previous scheme => 2 extra filters 

New scheme => 1 extra filter )

• Eases the matching restrictions
(Previous tuning scheme => match 3 filters

New tuning scheme => match 2 filters )

• Improves accuracy of tuning
(New tuning scheme is more tolerant to offsets than the previous one) 
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Circuits to be designed

• Comparator

• Attenuator

• Multiplier

• LPF          outside the IC using Opamp

• Differential difference adder

• Integrator         outside the IC using Opamp
(Both macro model & transistor level are used in simulations for the 

OpAmp)

66



Comparator

• Non-linear amplifier

– Gain should be as close

to unity to improve THD

– If less than unity, no oscillations

• Rate of change of gain wrt input 

should be high (should be very non-linear) 

– cannot use complex circuits

– DIODE

BP Filter

LP Filter

Schmitt Trigger

XOR

Reference Clock

f

Q

BP Filter

Q

f

1/Q

Integrator
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Circuit of differential comparator

bias1

bias2

vi+ vi-

E1

E2

E1

E2
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Comparator characteristics
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Attenuator

• Capacitor

– Large capacitors for matching

– Large capacitors  Large loading

• Resistor

– Larger resistors for matching

– Large resistors  Small loading

– Should take parasitic 

capacitor into consideration
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Multiplier

• Constraints

– Symmetric

– Good frequency response

– Good CMRR

– Gain should not be very small
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Multiplier
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LPF

• Constraints

– High gain PLL might be unstable

– Low gain  small pull-in range

– low cut-off freq  small pull-in range

– High cut-off freq  Jitter noise

– Single ended output

• Built using external components for good control

BP Filter

LP Filter

Schmitt Trigger

XOR

Reference Clock

f

Q

BP Filter

Q

f

1/Q

Integrator

73



Differential difference

adder

• Add/Subtract two differential signals

– High gain Q tuning loop unstable

– Low gain  Lesser accuracy

– Need not have a good frequency response
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DDA circuit

V1+ V2+V1-

CNT

Vo+Vo-

V2-

bias bias
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Integrator

– Very high gain required to 

minimize Q tuning errors

– Frequency compensated Op-Amp

in open loop can be used

– 3dB frequency should be as small as possible

– Phase margin as large as possible

Built using external components
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Simulated results for tuning scheme
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Die Photograph
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Buffer Characterization

This response should be subtracted from other plots to get actual response

Experimental results
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• Qs of 16, 5 and 40 at 80,95 and 110 MHz

Filter response
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DM-CM response of the filter

• CMRR is more than 40dB in the band of interest 81



Supply response of the filter

• PSRR- is more than 40dB in the band of interest 82



Noise response of the filter

• Total integrated noise power at the output= -60dBm 83



Two-tone inter-modulation test

• IM3 of 45dB when the input signal is 44.6mV 84



Both bandwidth and gain corroborate that accuracy of tuning is around 1%

Filter response when tuned to Q=20
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• Tuning accuracy is around 1%

Filter response for four different ICs
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• The tuning works!

Filter response for four different ICs
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Conclusions

• A new high-frequency fully-differential OTA is 

designed.

• A band pass filter with f=100MHz and Q=20 is 

designed using the new OTA in AMI0.5um

• A new tuning scheme for BP filters that 

overcomes many of the problems faced by 

previous scheme is implemented.
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