

NOISE

Edgar Sánchez-Sinencio Department of Electrical and Computer Engineering Analog and Mixed-Signal Center Texas A&M University http://www.ece.tamu.edu/~sanchez/

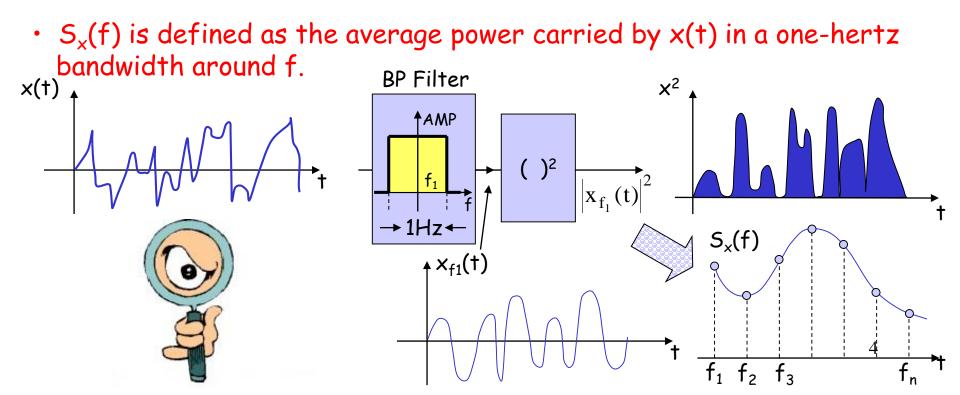
NOISE

• NOISE limits the minimum signal level that a circuit can process with acceptable quality.

Can you identify the signal buried in the noise?

How does the minimal signal must be with respect to the noise level?

 Let us consider the street noise, can one predict the (exact) noise at any time?


No, because it is a random process

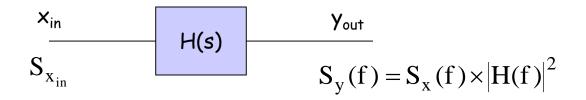
- If you decide to blow your car's horn every 5 minutes, then you can say this signal is deterministic.
- So, how can we incorporate noise in circuit design?
 - Observe the noise for a long time
 - Construct a "statistical model"
- The average power noise is predictable
- Most noise sources in circuits exhibit a constant average power

- Average power delivered by a periodic voltage v(t), of period T, to a load resistance R_L is given by

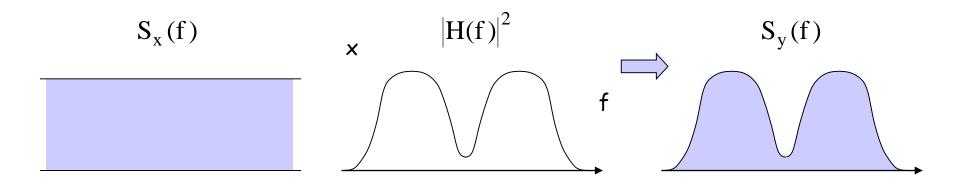
$$P_{av} = \frac{1}{T} \int_{-T/2}^{T/2} \frac{v^2(t)}{R_L} dt = \frac{1}{T} \int_{-T/2}^{T/2} v(t)i(t) dt$$

- For non-periodic signals, T becomes a large quantity
- How much power a signal carries at each frequency is defined by the "power spectral density" (PSD) ($S_x(f)$)

• $S_x(f)$ is expressed in V²/Hz rather than VI/Hz = w/Hz, in fact { $S_x(f)$ }^{1/2} = v/Hz^{-1/2} is often used. Say a filter at 1MHz is equal to 1.414 nV/Hz^{-1/2}, means an average power in a 1-Hz bandwidth at 1MHz is equal to (1.414×10⁻⁹)²V²=2×10⁻¹⁸V²

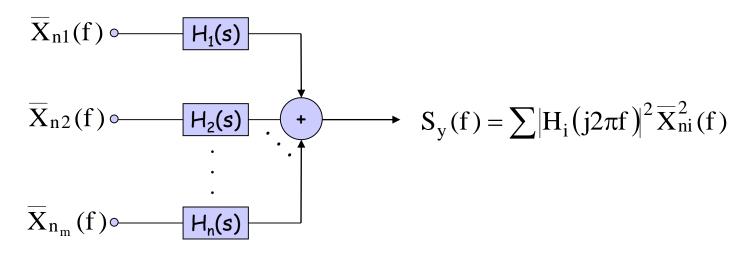

• Another spectrum is the "White Spectrum" or white noise

 How do you determine the output spectrum of a linear, timeinvariant system with transfer function, H(s)?

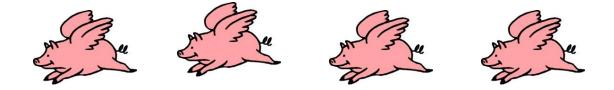

 $S_n(f)$

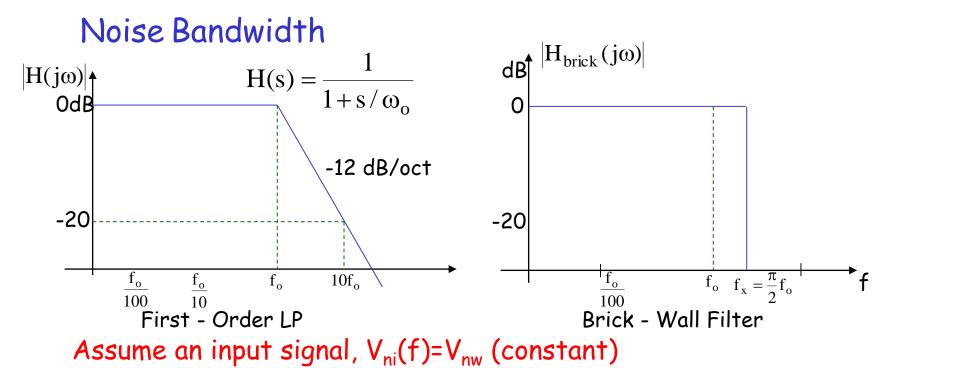
≻f

In practice is band limited.



• How is the shape of the output spectrum?


• A practical example is the telephone bandwidth, where BW of $S_{xin}(f)$ is between 0-20KHz, BW of H(f) is 4KHz and consequently BW of $S_{yout}(f)$ is 4 KHz.


If there are more than two noise sources, how do you compute their total effects?

 $\overline{x}_{n1}(f), \overline{x}_{n2}(f), \dots$ are uncorrelated noise sources

Superposition is applied to obtain the total output spectrum.

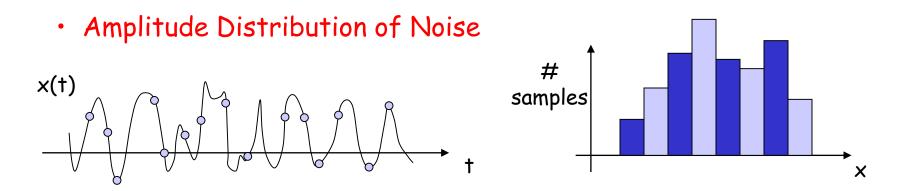
$$\overline{V}_{n,out(rms)}^{2} = \int_{0}^{\infty} \overline{V}_{ni}^{2}(f) |H(2\pi fj)|^{2} df = \int_{0}^{\infty} \frac{\overline{V}_{nw}^{2}}{1 + \left(\frac{f}{f_{o}}\right)^{2}} df = \overline{V}_{nw} f_{o} \tan^{-1} \left(\frac{f}{f_{o}}\right) |_{0}^{\infty} = \frac{\overline{V}_{nw} \pi f_{o}}{2}$$

If this same input signal, V_{nw} , is applied to the (brick-wall) filter

$$\overline{V}_{brick(rms)}^2 = \int_0^{f_x} \overline{V}_{nw}^2 df = \overline{V}_{nw}^2 f_x \quad , \quad since \quad V_{n,out} = V_{brick} \quad , \quad then \quad f_x = \frac{\pi f_o}{2}$$

Equivalent Noise Bandwidth

$$\Delta f = \frac{1}{A_{vo}^2} \int_{o}^{\infty} |A_v(f)|^2 df$$



Examples

First-order system:

$$A_{v}(f) = \frac{1}{1 + j f/f_{3dB}} , \quad \Delta f = \int_{0}^{\infty} \frac{df}{1 + (f/f_{3dB})^{2}} = 1.571 f_{3dB}$$

$$A_{\nu}(f) = \left| \frac{1}{1 + j f/f_{3dB}} \right|^2 \quad , \quad \Delta f = \int_{o}^{\infty} \left| \frac{1}{1 + \left(f/f_{3dB} \right)^2} \right| df = 1.22 f_a = 1.22 \times 0.6436 f_{3dB}$$

Probability Density Function (PDF), the distribution of x(t) is

 $p_x(x)dx = probability of x < X < x + dx$

 An important example of PDFs is the Gaussian (or normal) Distribution.

$$p_{x}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp \frac{-(x-m)^{2}}{2\sigma^{2}}$$

Where σ and m are the standard deviation and mean of the distribution, respectively. 10

• How do you determine the total average power due to two or more noise sources?

$$P_{av} = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} [x_1(t) + x_2(t)]^2 dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} (x_1^2(t) dt + x_2^2(t) dt + 2x_1(t)x_2(t) dt$$

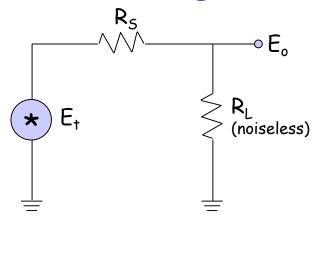
$$P_{av} = P_{av_1} + P_{av_2} + \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} 2x_1(t)x_2(t)dt$$

= 0? When?

т /

If noise sources are uncorrelated the third term is zero.

Example of uncorrelated and correlated noises is that of spectators


in a sports stadium.

Noisy

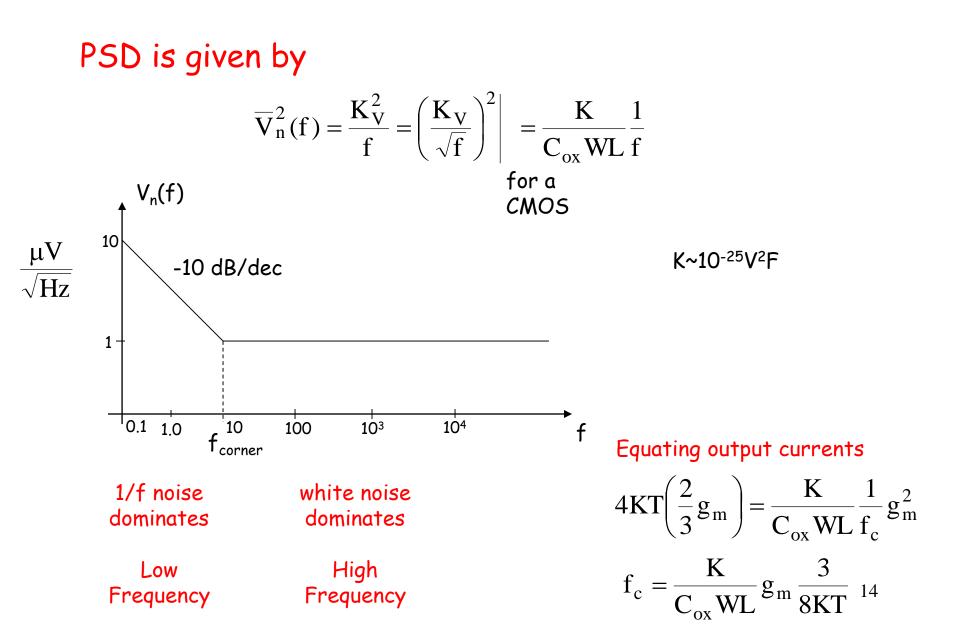
Noise Voltage

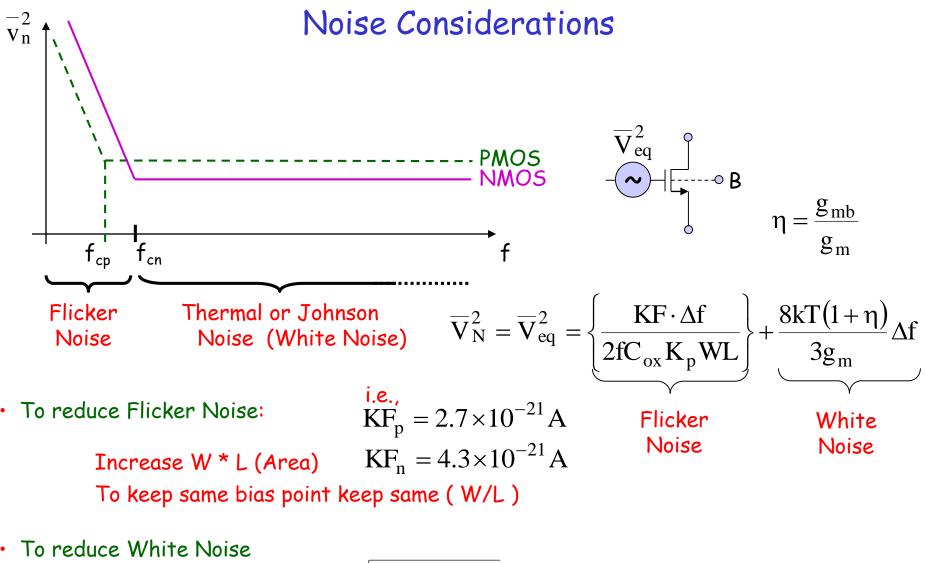
Power Supplied to R_L is

$$P_{t} = I_{o}E_{o} = \frac{E_{o}^{2}}{R_{L}}$$

$$P_{t} \begin{vmatrix} = \frac{E_{t}^{2}}{4R} = KT\Delta f & , \quad E_{o} = \frac{E_{t}}{2R}R = \frac{E_{t}}{2} \\ R_{s} = R_{L} = R \end{vmatrix}$$

Then

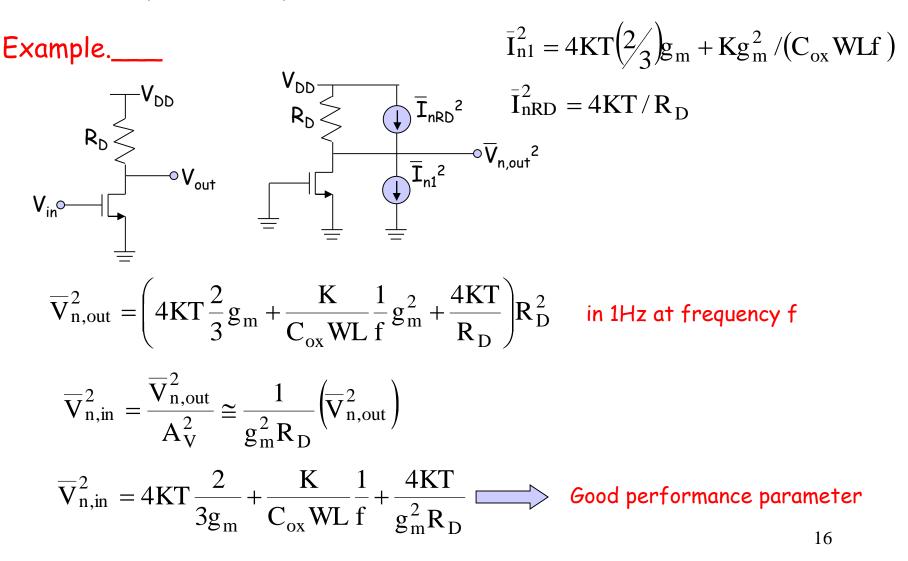

$$E_{t} = \sqrt{4kTR\Delta f} \quad (V_{rms})$$


$$E_{t} \begin{vmatrix} BW \\ R = 1K\Omega \\ \Delta f = 1Hz \end{vmatrix}$$

$$BW = 1K\Omega$$

$$BW = 1Hz$$

Flicker or 1/f Noise

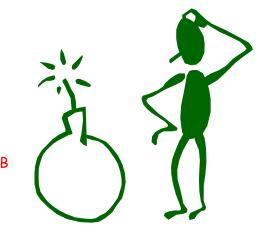


Increase
$$g_m$$
. Since $g_m \cong \sqrt{2K_p I_D \left(\frac{W}{L}\right)} = K_p (V_{gs} - V_T) \frac{W}{L}$

(a) (W/L) and (I_D) will increase g_m , power consumption (I_D) , and area (b) (W/L) and modify the bias to keep I_D same as before increasing g_m . How to compute the total output noise due to individual noise sources?

How to compute the input-referred noise?

• Can we always use the input-referred noise by a single voltage source in series with the input?


A necessary and sufficient representation

- Simplifications
 - For zero source impedance, $I_{n,in}^2$ not affecting the output
 - For infinite source impedance, then $V^2_{n, in}$ has no effect
- Note that both sources will not count the noise twice.

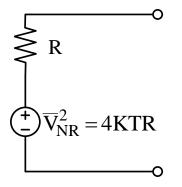
To compute the rms output noise:

- (i) Compute the frequency response bandwidth f_{3dB}
- (ii) Compute the noise bandwidth, Δf

 $\Delta f = 1.571 * f_{3dB}$

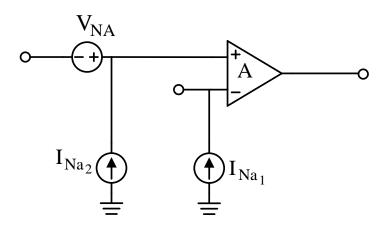
(assuming a single pole)

(iii)
$$V_{out,noise} = \left\{ \overline{V}_{n,out}^2 \cdot \Delta f \right\}^{1/2} V_{rms}$$

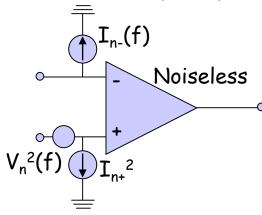

where $\overline{V}_{n,out}^2$ is the spectral density value of the output noise at low frequency.

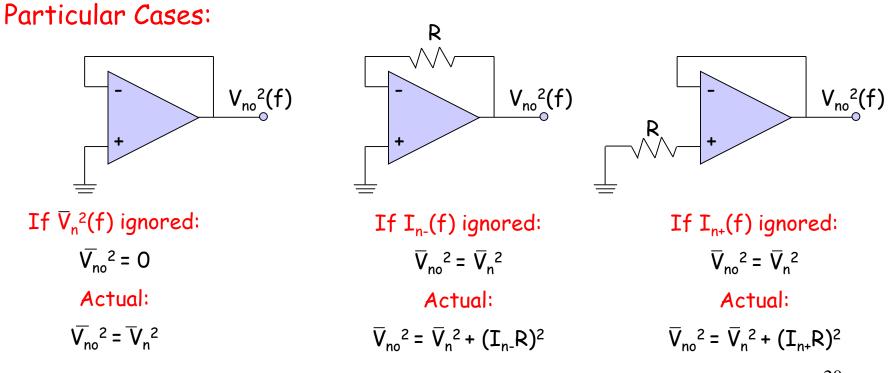
622 (ESS)

NOISE CONSIDERATIONS REMARKS


Basic elements and their noise models

Resistor. -




Op Amp

Noise in an op amp macromodel

Ideal capacitors and inductors do not generate noise, but accumulate.

Computation of Total RMS Noise Voltage at Filter Output

- 1. Determine the noise transfer function $I_k(s) = \frac{V_2}{N_k}$ from each equivalent voltage or current noise $I_k^2 = \overline{V}_{n_k}^2$ or $\overline{I}_{n_k}^2$ of the kth element, to the output the filter.
- 2. Spectral density from the different noise sources are added: $\overline{V}_{no}^{2}(\omega) = \sum_{k} |T_{k}(j\omega)|^{2} \cdot (n_{k})^{2}$

where $\left|T_k(j\omega)\right|$ is the absolute value of the noise transfer function from source kth.

3. Obtain the total output noise power by integrating the mean square noise spectral density $\overline{V_{no}}^2(\omega)$.

That is:

$$(E_{no})_{rms}^2 = \int_0^\infty \overline{V}_{NO}^2(\omega)d\omega$$

This is often referred as the noise floor.

Dynamic range of an Active-RC is obtained as:

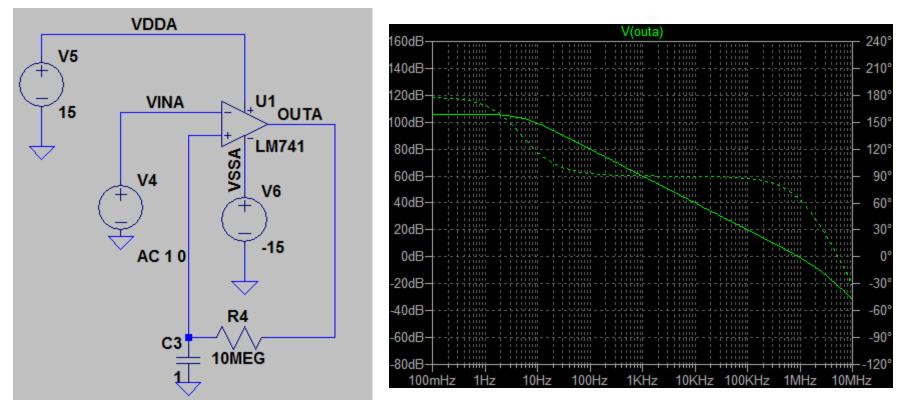
$$DR = 20 \log \frac{(V_{so rms})_{max}}{(E_{no})_{rms}} \qquad [dB]$$

Where $V_{so\;rms}\;$ is the maximum undistorted rms voltage at the output.

How do you simulate noise in SPICE?

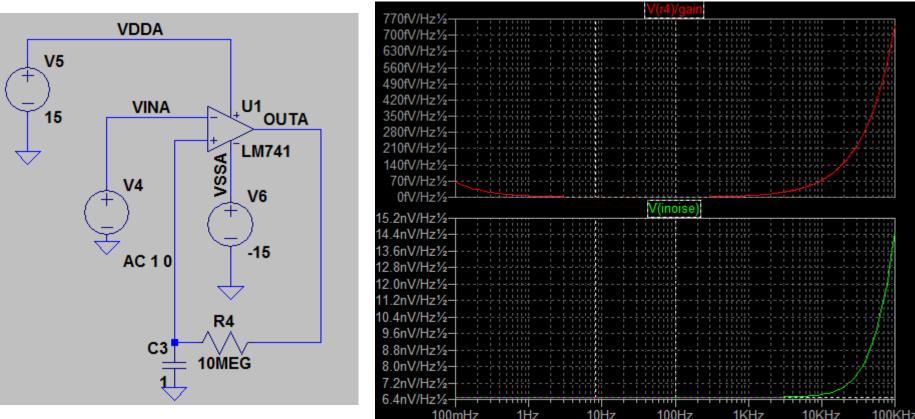
- Noise is associated with AC analysis
- Noise V(N) VIN
- AC DEC FI FSTEP FFINAL

Reader.


Simulate an example dealing with first-order active RC filter, plot frequency responses and noise spectrum, as well as the total noise at each frequency (total rms noise) Obtain the signal to noise ratio

$$\frac{S_{N}}{N} = 20 \log \frac{\text{signal for \% THD (rms)}}{\text{Total Noise (rms)}}$$

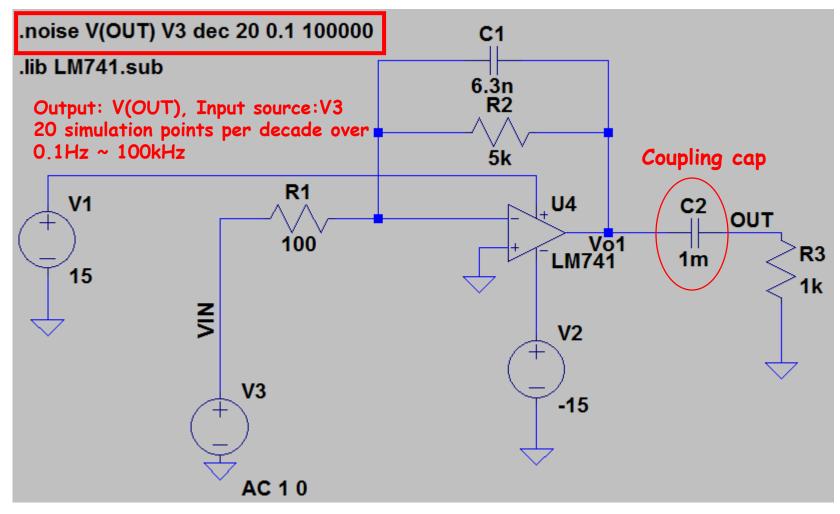
LTSPICE Noise: Analysis & Simulation


Contributed by Kyoohyun Noh

LM741's open loop ac response

LM741's DC gain : 106dB LM741's -3dB frequency: 5Hz LM741's unity gain frequency: 1MHz

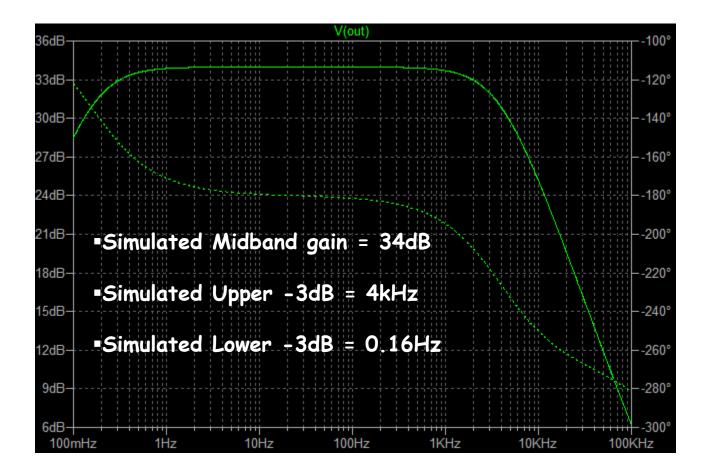
LM741's noise simulation

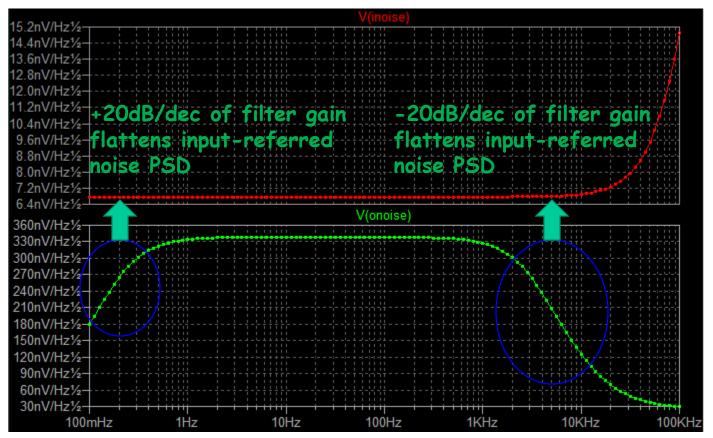


•LM741's input-referred noise PSD is simulated: R4's noise contribution is small enough to be neglected.

$$\sqrt{v_{n,LM741,open,input}^2}/\Delta f = 6.51 nV/\sqrt{Hz}$$

$$\sqrt{\overline{v_{n,R4,input}^2}/\Delta f} = 0.67 \, fV / \sqrt{Hz}$$

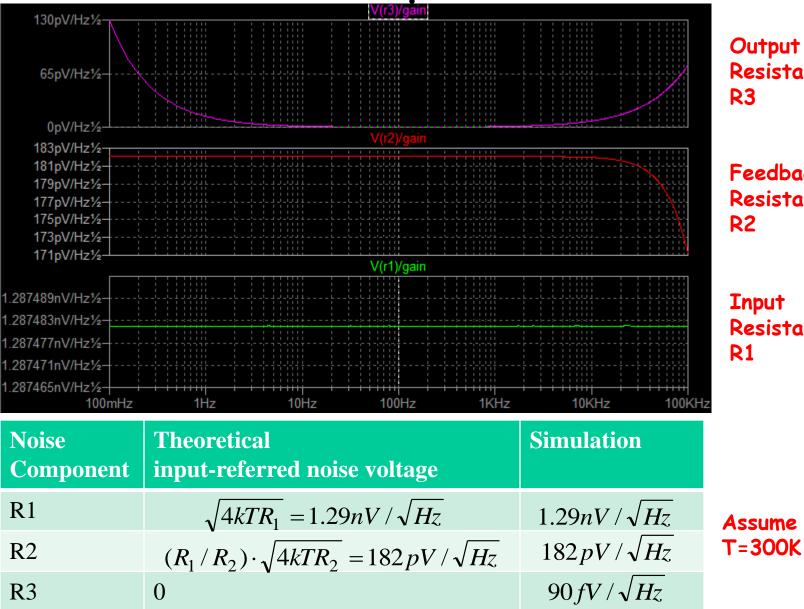

Filter Schematic for .noise simulation


•Filter's midband gain : 50 (34dB) from R₂/R₁

- **•**Expected upper -3dB bandwidth : about 5kHz (from 1/R₂C₁)
- **•**Expected lower -3dB bandwidth : about 0.16Hz (from 1/R₃C₂)

Filter Transfer Function

Input/Output-referred noise PSD



Midband input-referred noise PSD

$$\sqrt{v_{n,input}^2} / \Delta f = 6.77 nV / \sqrt{Hz}$$

•Midband output-referred noise PSD $\sqrt{v_{n output}^2 / \Delta f} = 338 nV / \sqrt{Hz}$

Noise contribution to Input-referred

Output Resistance **R3**

Feedback Resistance **R2**

Input Resistance **R1**

Input-referred noise contribution in the filter

•LM741's noise contribution cannot be obtained directly in the filter simulation. Instead, it should be estimated from the other noise values

 $\sqrt{v_{n,LM741,filter,input}^2 / \Delta f} = \sqrt{(6.77nV)^2 - (1.29nV)^2 - (182pV)^2 - (90fV)^2} = 6.64nV / \sqrt{Hz}$

•The input-referred noise voltage of the LM741 was obtained in the open loop simulation.

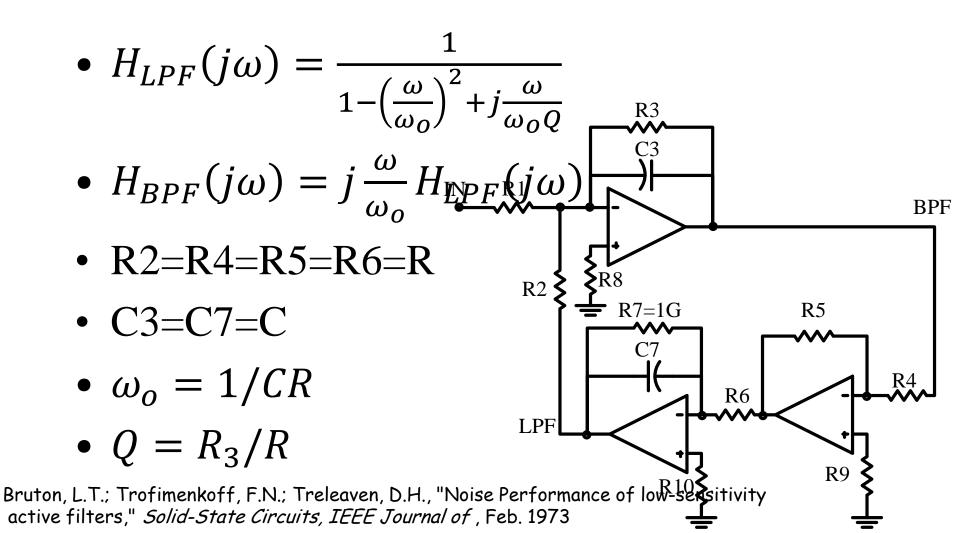
$$\sqrt{v_{n,LM741,open,input}^2}/\Delta f = 6.51 nV/\sqrt{Hz}$$

 Theoretical LM741's input-referred noise contribution agrees well with the simulation result

$$\sqrt{v_{n,LM741,filter,input}^2 / \Delta f} = (1 + \frac{R_1}{R_2}) \cdot \sqrt{v_{n,LM741,open,input}^2 / \Delta f}$$
$$= 1.02 * 6.51 nV / \sqrt{Hz} = 6.64 nV / \sqrt{Hz}$$

Summary

Noise components	Midband input-referred noise voltage [nV/sqrt(Hz)]	Midband input- referred noise PSD [V ² /Hz]	Contributio n [%]
R1	1.29	1.66x10 ⁻¹⁸	3.63
R2	0.182	3.31x10 ⁻²⁰	0.07
R3	0.00009	8.10x10 ⁻²⁷	~0
LM741	6.64	4.41x10 ⁻¹⁷	96.3
Total		4.58x10 ⁻¹⁷	100


•A dominant contributor to the filter noise is LM741

Theoretical noise analysis agrees well with simulation results

Biquad Filter Noise

Courtesy of Mohamed Abuzaid

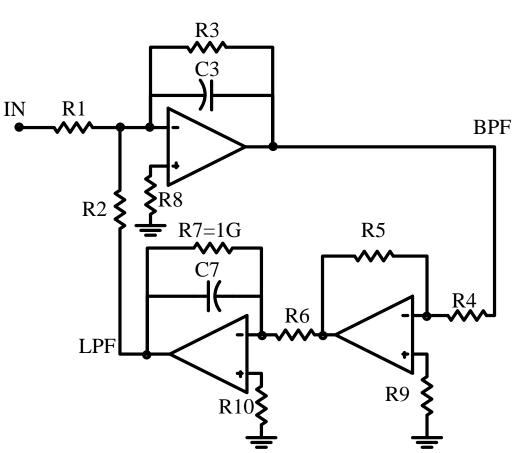
Biquad Filter

Noise Analysis

- Power Spectral Density of output noise:
- $\epsilon_{OR}^2(f) = 4KT \sum_{i=1}^6 R_i |H_{io}(jf)|^2 \left(\frac{V^2}{Hz}\right) \frac{\text{Divide b}}{2\pi}$
- Power Spectral Density of output noise:

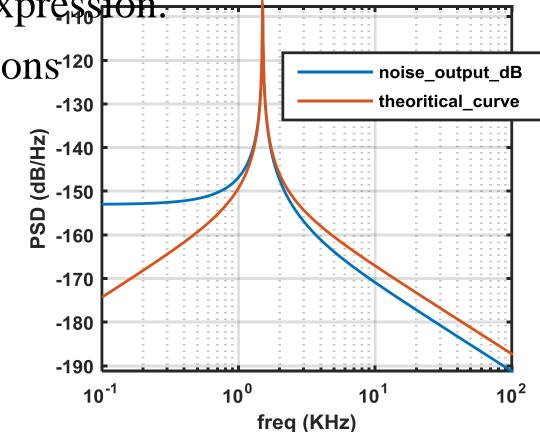
•
$$\epsilon_{OR}^2(\omega) = \frac{2KT}{\pi} \sum_{i=1}^6 R_i |H_{io}(j\omega)|^2 \left(\frac{V^2}{rad/s}\right)$$

- Integrated output noise:
- $E_{OR} = KTR(5Q+1)\omega_o (V^2)$

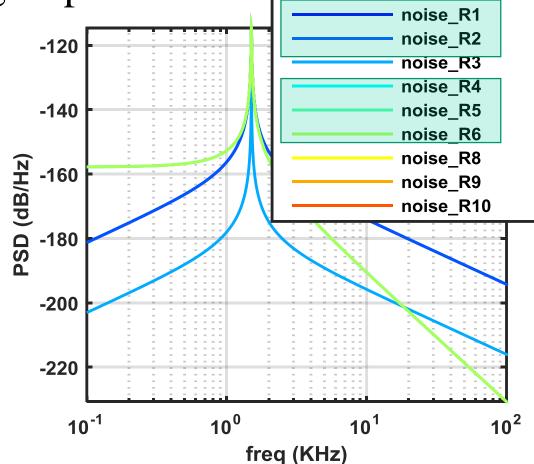

Continue Noise Analysis

- Assumptions for next results:
 - In band, $H_{BPF}(j\omega) = H_{LPF}(j\omega)$
 - Assume Q >> 1
- Power Spectral Density of output noise:
- $\epsilon_{OR}^2(f) \approx 20KT.H_{BPF}(j\omega) \left(\frac{V^2}{Hz}\right)$
- At the center frequency
- $\epsilon_{OR}^2(f) \approx 20 KT.Q \left(\frac{V^2}{Hz}\right)$

- "this is not correct in paper (12), they put an extra ω term"


Simulation Ideal Opamp

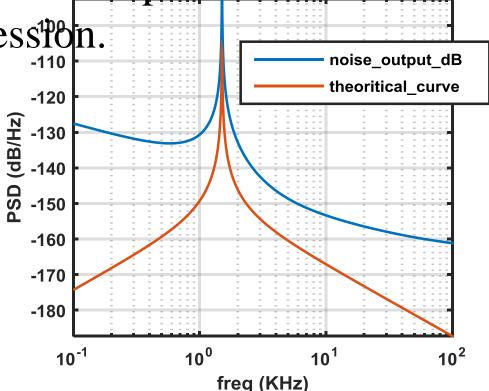
- Biquad with the specs:
- $f_o = 1.5 \ kHz$
- *Q* = 150
- So, the values:
- $R = 10 K\Omega$
- $R_3 = 1.5 M\Omega$
- $C = 10.6 \, nF$



Simulation Ideal Opamp

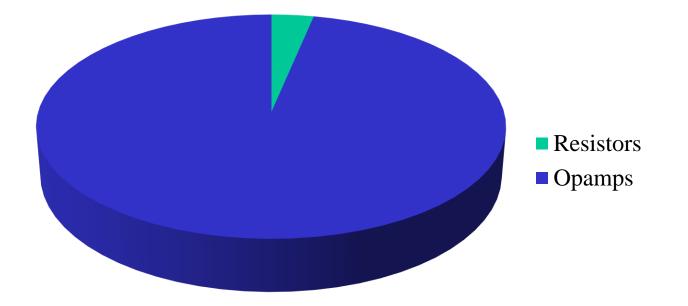
- Compare the PSD of the output noise and the theoretical expression.
- Inband, expressions¹²⁰ are identical. $\widehat{\mathbb{N}}_{140}^{-130}$

Noise Contribution

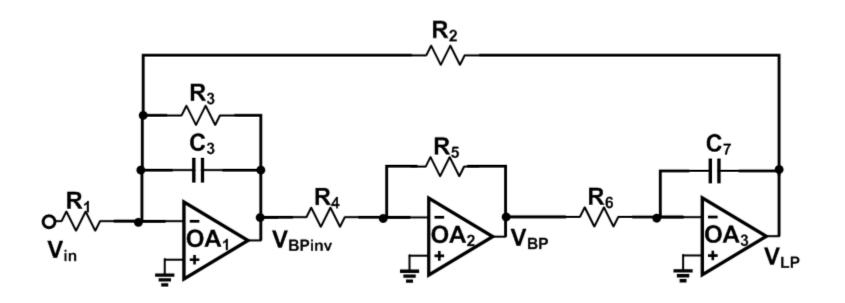


Noise Comparison

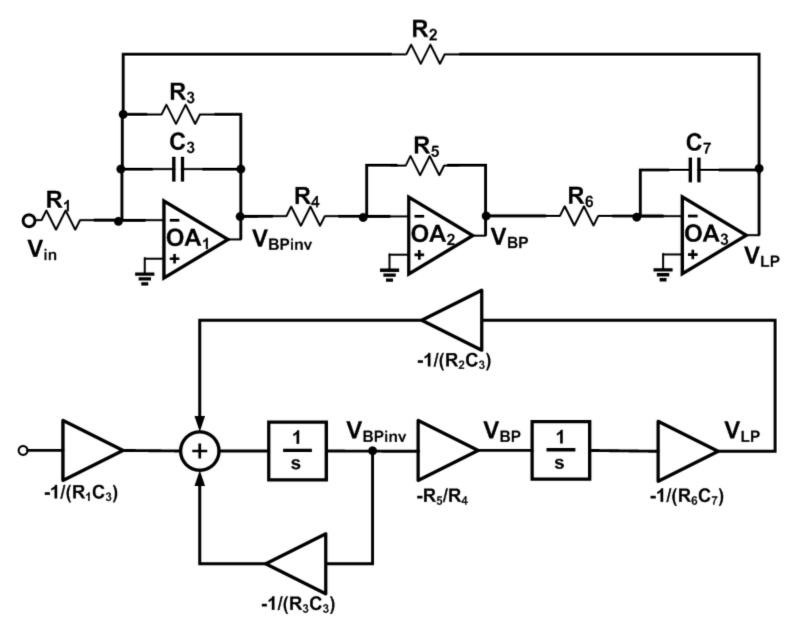
	Theoretical	Spice Simulation
Integrated Noise	-95.33 dB	-95.33 dB
Noise at peak	-107 dB/Hz	-107 dB/Hz

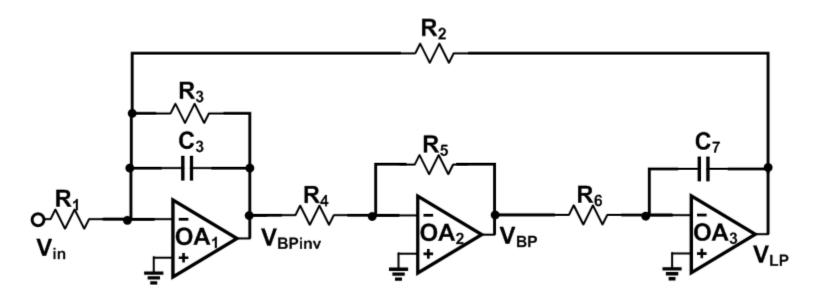

Using Actual Opamp

- Opamp noise: 6.3 nV/\sqrt{Hz}
- Compare the PSD of the <u>output noise and</u> the theoretical express¹⁷⁶n.
- In band, there is extra contribution due to opamp
 (15 dB higher)


Noise Comparison

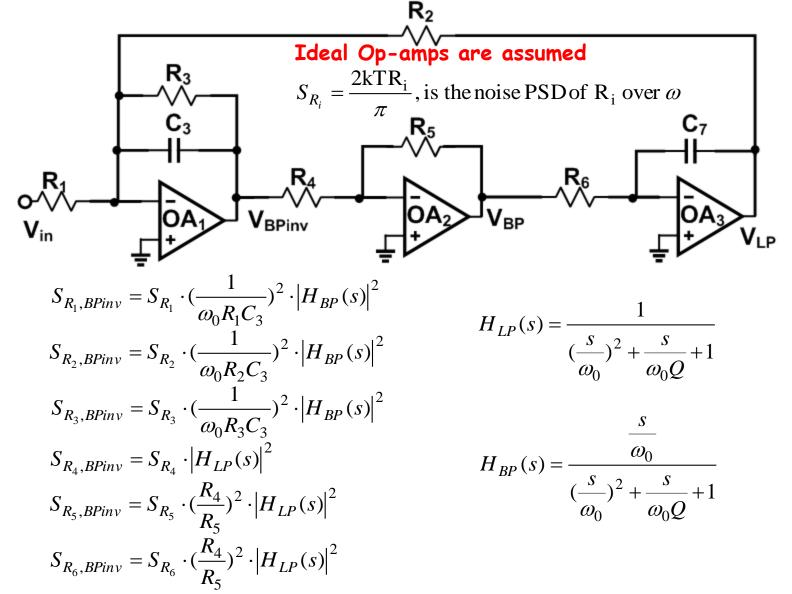
	Theoretical	Spice Simulation
Integrated Noise	-95.33 dB	-80.17 dB
Noise at peak	-107 dB/Hz	-92 dB/Hz


Biquad Tow-Thomas Filter Noise Analysis & Simulation


Courtesy of Kyoohyun Noh

Simultaneous Biquad Filter Implementations
 Low-pass(LP), Band-pass(BP) output

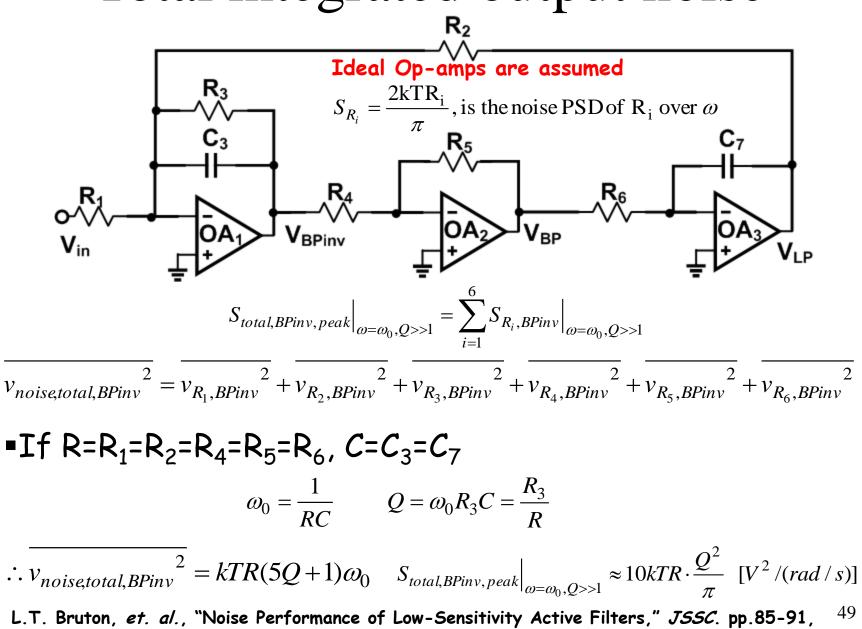
Independent tuning of Q and filter
 frequency



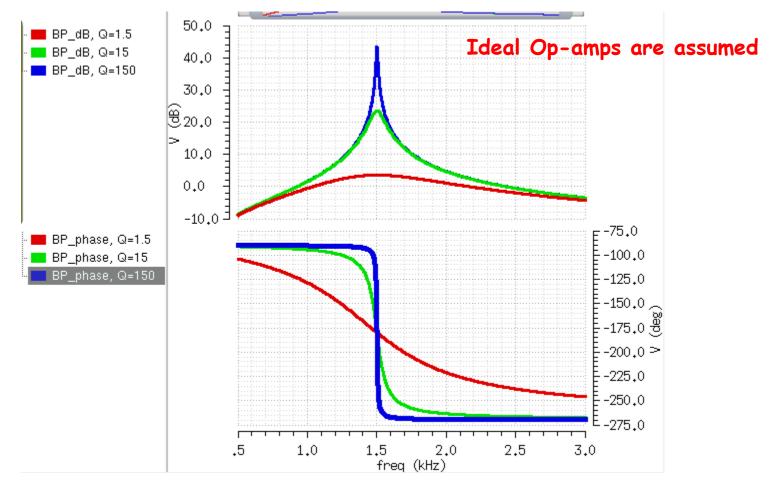
$$T_{BPinv}(s) = -\frac{R_3}{R_1} \cdot \frac{\frac{\omega_0}{Q}s}{s^2 + \frac{\omega_0}{Q}s + {\omega_0}^2}$$


$$\omega_0 = \sqrt{\frac{R_5}{C_3 C_7 R_2 R_4 R_6}} \qquad \qquad Q = \omega_0 R_3 C_3 = \sqrt{\frac{C_3 R_3 \cdot R_3 R_5}{C_7 R_6 \cdot R_2 R_4}}$$

Output Noise PSD from passive components


L.T. Bruton, et. al., "Noise Performance of Low-Sensitivity Active Filters," JSSC. pp.85-91, 47

Integrated output noise components



L.T. Bruton, *et. al.*, "Noise Performance of Low-Sensitivity Active Filters," *JSSC*. pp.85-91, 48

Total integrated output noise

BPF Simulation

 BPF with different Qs are implemented with ideal opamps

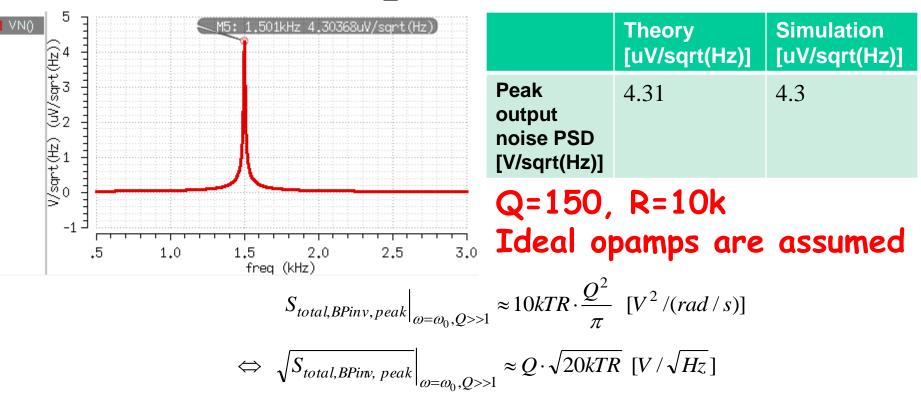
- •C=10.6nF is assumed
- Fach R is listed in the next slide

Simulated total integrated output

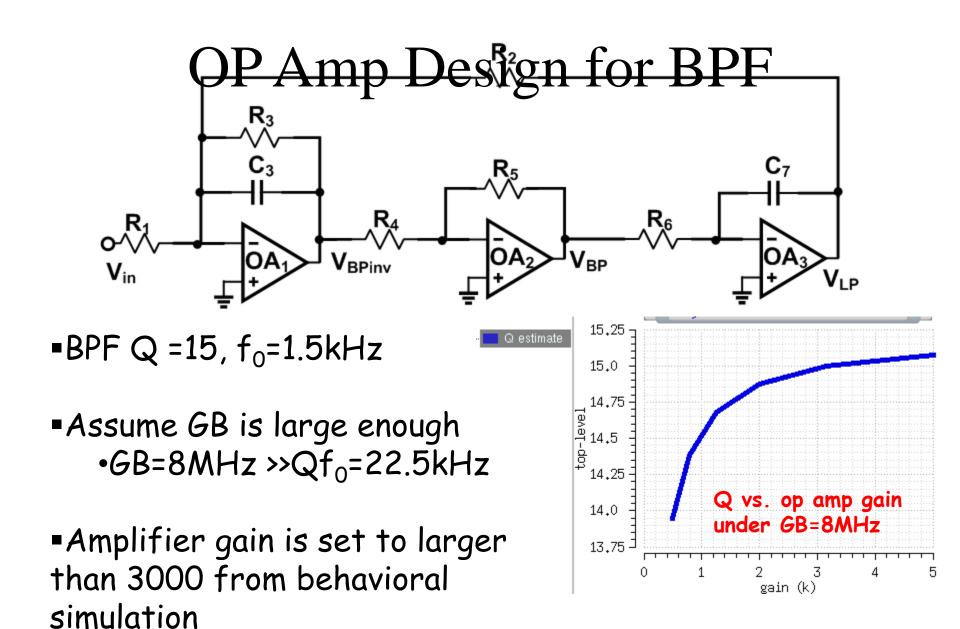
							•					
	Q=150				Q=15				Q=1.5			
	Resistance [Ohm]	Theory [V^2]	Simulation [V^2]	Contribution [%]	Resistance [Ohm]	Theory [V^2]	Simulation [V^2]	Contribution [%]	Resistance [Ohm]	Theory [V^2]	Simulation [V^2]	Contribution [%]
R1	1.00E+04	5.85E-11	5.84E-11	19.96	1.00E+04	5.85E-12	5.71E-12	19.63	1.00E+04	5.85E-13	5.50E-13	17.3
R2	1.00E+04	5.85E-11	5.84E-11	19.96	1.00E+04	5.85E-12	5.71E-12	19.63	1.00E+04	5.85E-13	5.50E-13	17.3
R3	1.50E+06	3.90E-13	3.90E-13	0.13	1.50E+05	3.90E-13	3.81E-13	1.31	1.50E+04	3.90E-13	3.66E-13	11.53
R4	1.00E+04	5.85E-11	5.85E-11	19.99	1.00E+04	5.85E-12	5.76E-12	19.81	1.00E+04	5.85E-13	5.70E-13	17.96
R5	1.00E+04	5.85E-11	5.85E-11	19.99	1.00E+04	5.85E-12	5.76E-12	19.81	1.00E+04	5.85E-13	5.70E-13	17.96
R6	1.00E+04	5.85E-11	5.85E-11	19.99	1.00E+04	5.85E-12	5.76E-12	19.81	1.00E+04	5.85E-13	5.70E-13	17.96
Total		2.93E-10	2.93E-10	100		2.97E-11	2.91E-11	100		3.32E-12	3.17E-12	100

$$\overline{\frac{v_{R_i,BPinv}^2}{v_{R_3,BPinv}^2}} = 4kTR \cdot (\frac{Q\omega_0}{4}) \text{ for } i = 1,2,4,5,6$$

$$\overline{\frac{v_{R_3,BPinv}^2}{v_{R_3,BPinv}^2}} = 4kTR \cdot \frac{R}{R_3} \cdot (\frac{Q\omega_0}{4})$$


$$\overline{\frac{v_{R_3,BPinv}^2}{v_{noise,total,BPinv}^2}} = kTR(5Q+1)\omega_0$$

Ideal Op-amps are assumed

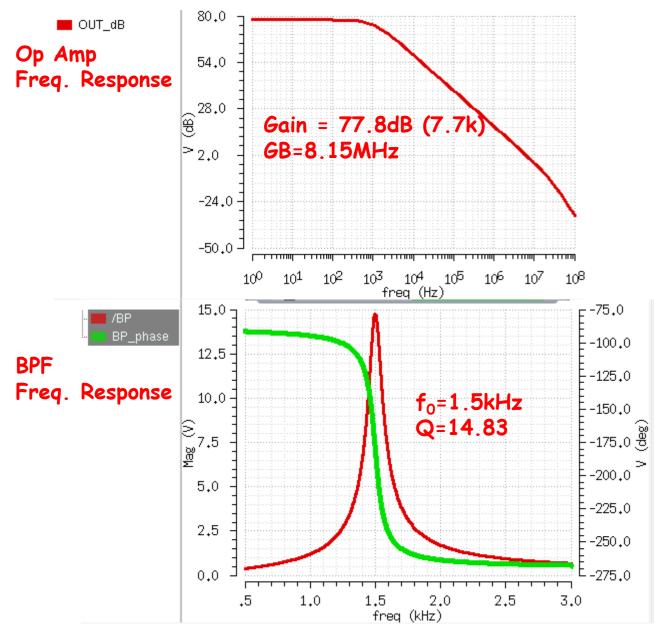

Theoretical estimation agrees well with the simulation results

 Feedback resistor R₃ of the lossy integrator makes the least contribution to the High-Q High-gain BPF output noise among passive components

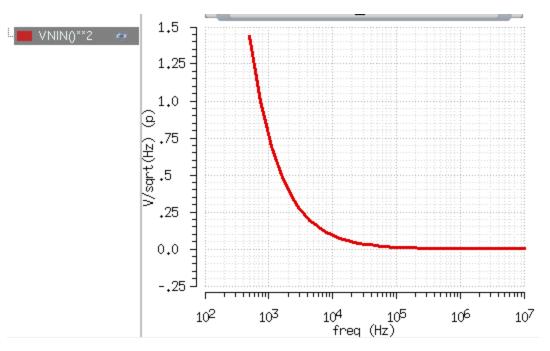
BPF Output Noise PSD

Theoretical estimation agrees well with the simulation results

		≣ .	
	5. (<u>w</u> .) 5	ļ v _{€ →} <u>o</u> tini i i i i i i i i	
	· · · · · · · · · · · · · · · · · · ·	'€ ⊣	
	Gain Stage1	Gain Stage2 B	uffer Stage
VDD 🔶 🕴 🕴		• • •	
	· · · · · · · · · · · · · · · · · · ·		
· · · · · • · · · · · · • · · · · · · ·		ÝDD ^I ÝS • vde−0	vooi vooi vooi vooi vooi vooi vooi vooi
	Q <mark> </mark>		🖓
тра, уро с с с с с с		net028. <mark>.</mark>	. n=1027.
	bias bias Valiage		
ldg=0 bias	nat15 (<mark>120)-0</mark>		
		• · · · · · · · · · · · · · · · · · · ·	. . .
		· · · · · · · · · · · · · · · · · · ·	.net827 TN4
· · · · · · · · · · · · · · · · · · ·	net15 TPg	<mark>. <mark></mark></mark>	- ven [169.20 7
		· · · · · · · · · · · · · · · · · · ·	our 1 20 50
	et028 10g=0 10g=0 net025	VON (TN3 vt=(wfn2*2)	
· · · · · · · · · · · · · · · · · · ·			
v≈s= • • • • • • • • • • • • • • • • • • •		+ net032 dg=0	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·			3
·····································	dg-0 mirmr_n out1 t kig-0		
	mirror_n		
		vo≓ idg≓ø	
· · · · · · · · · · · · · · · · · · ·	TNS mirror_n out1 TN6		
· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • •	+net821 0 0 - 5 +
· · · · · · · · · · · · · · · · · · ·		🎖 🛛	<mark> </mark>
· · · · · · · · · · · · · · · · · · ·	dğ≑å net833 net836 läg≕0		
			netø21. 🔨
	TN1 net833 net836 TN0 n±2) vt=(wfo1*2).	VCP (TN2 vt=(1*yfn1*4)	wic=0
			· · · · · · · · · · · · · · · ·
·····			VSS 🖕
· · · · · · · · · · · · · · · · · · ·		• · · · · · · · · · · · · · · · · · · ·	
· · · · <mark>7</mark> · · · · · <mark>7</mark> · · · · · <u>·</u> · · <mark>·</mark> ·			
· · · VSS · · · · VSS 🔶 🔶	• •	• •	

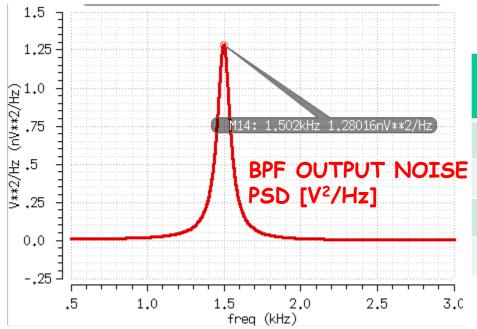

OP Amp details

	Specification
Process	CMOS 180nm
VDD [V]	1.8


Bias Current Generation ibias = 20uA	W/L
Diode connected PMOS	14/0.6
Current source	14/0.6

1 st Stage VBP=0.85, VBN=0.7	W/L	2 nd Stage	W/L	Buffer Stage Cm=2pF	W/L
PMOS input	10/0.36	PMOS current source	14/0.6	NMOS	20/0.18
PMOS cascode	10/0.36	NMOS battery	20/0.18	PMOS	20/0.18
NMOS cascode	2/0.36	PMOS battery	80/0.18		
NMOS Mirror	2/0.36	NMOS Gm	40/0.36		

OP Amp/BPF AC response


Op Amp input-referred noise PSD

 Op Amp's flicker noise is dominant below about 100kHz

•BPF output noise is expected to be dominated by flicker noise of the Op amps

BPF output noise

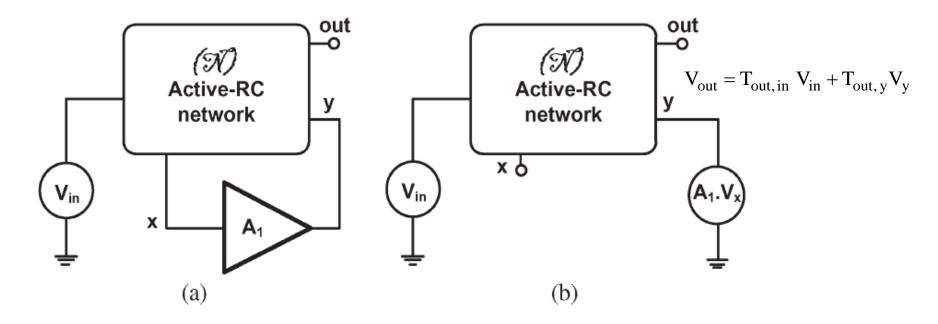
BPF OUTPUT Integrated NOISE

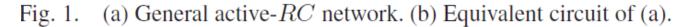
Noise Components	Simulation [V ²]	Contribution [%]
OA1	9.35e-8	45.9
OA2	7.39e-8	36.3
OA3	3.61e-8	17.8
Total	2.04e-7	100

Major noise contributors

•Op	Amp's noise is dominant	in
this	example	

•Flicker noise of each amp's 1st stage current mirror is dominant in this design due to low BPF frequency


Device	Param	Noise Contribution	% Of Total
/120/TN0	Sfl	4.27968e-08	21.03
/I20/TN1 /I22/TN0	Sfl Sfl	4.26169e-08 3.37571e-08	20.94 16.59
/I22/TN1	Sfl	3.36152e-08	16.52
/I21/TN0 /I21/TN1	Sfl Sfl	1.65274e-08 1.64579e-08	8.12 8.09
/I20/TP1	Sfl	3.76278e-09	1.85
/I20/TP0 /I22/TP1	Sfl Sfl	3.7604e-09 2.99979e-09	1.85 1.47
/I22/TP0	sfl	2.9979e-09	1.47


/I20: lossy Integ., /I22: Inverting amp, /I21: Integ.

Noise from passive components are negligible

ECEN 622 (ESS) TAMU

Noise Reduction In Active-RC Filters*

^{*} K.Gharib Doust and M. S. Bakhiar, "A Method for Noise Reduction in Active-RC Circuits", *IEEE Trans. on Circuits and Systems – II*, Vol. 58, pp. 906-910, December 2011.

Introduce A_f to reduce noise without modifying the original transfer function.

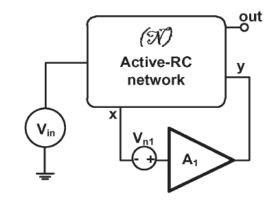


Fig. 2. Circuit with the equivalent input noise source of A_1 .

$$\begin{split} T_{\text{out, in}} &= \frac{V_{\text{out}}}{V_{\text{in}}} \bigg|_{V_y = 0} \\ T_{\text{out, y}} &= \frac{V_{\text{out}}}{V_y} \bigg|_{V_{\text{in}} = 0} \\ \frac{V_{\text{out}}}{V_{\text{in}}} &= \frac{T_{\text{out, in}} - A_1 (T_{\text{out, in}} T_{x, y} T_{\text{out, y}})}{1 - A_1 T_{x, y}} \\ \overline{V}_{\text{out}}^2 &= \frac{A_1^2 |T_{\text{out, y}}|^2}{\left|1 - A_1 T_{x, y}\right|^2} \overline{V}_{n_1}^2 \end{split}$$

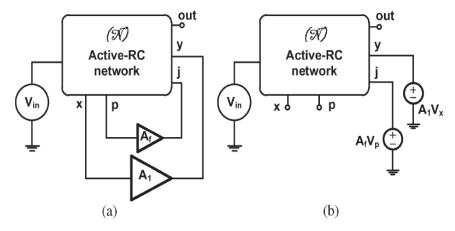
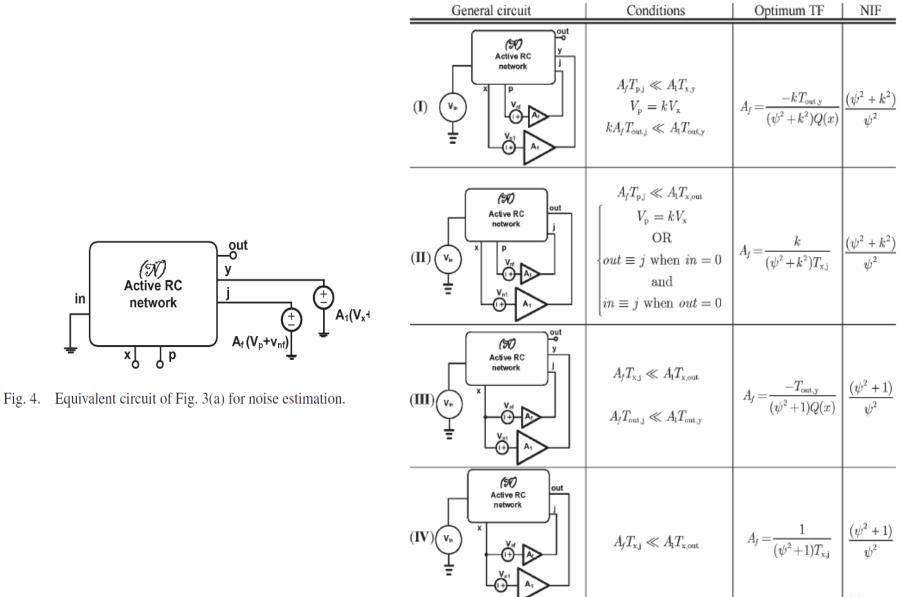
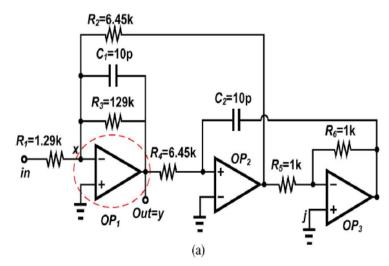



Fig. 3. (a) General active-RC circuit with new inserted amplifier A_f . (b) Equivalent circuit of (a).


Node j must be a ground before inserting A_j

$$\begin{split} & \text{Make } V_p = k \ V_x \ \text{and} \\ & A_1 T_{x, \, y} >> k \ A_f \ T_{v, \, j} \\ & A_1 T_{out, \, y} >> k A_f \ T_{out, \, j} \\ & \text{That is } A_1 >> A_f \\ & \text{To keep original frequency response} \\ & T_{out, \, in} T_{xy} \cong T_{x, \, in} T_{out, \, j} \end{split}$$

TABLE I DESIGN SUMMARY FOR VARIOUS CIRCUIT CONFIGURATIONS

Design Example: $f_o = 2.5 \text{ MHz}$, Q = 20, $\overline{V}_{out, n}$ @ $f_o = 1.34 \mu V_{rms}$, $\overline{V}_{out, n}$ integrated noise = $524 \mu V_{rms}$

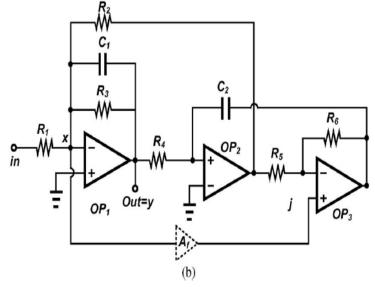
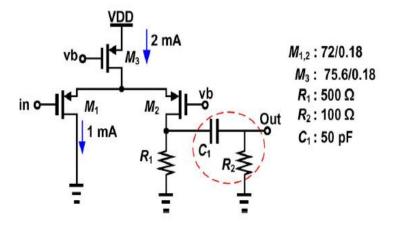
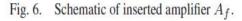




Fig. 5. (a) Ackerberg–Mossberg active-RC bandpass filter. (b) Bandpass filter with the noise cancellation path.

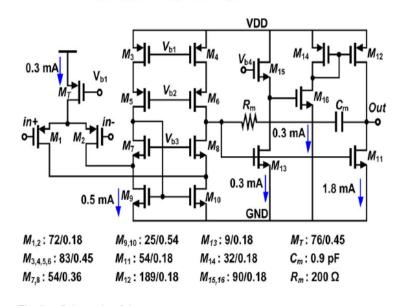


Fig. 9. Schematic of the opamp. Class - AB

$$\begin{split} V_{p} &= V_{x} \quad , \quad k = 1 \\ T_{out, y} &= 1 \\ Q(x) &= \frac{-2}{1/Q + R_{2}/R_{1} + 1 + s/\omega_{o}} = \frac{-2}{6.05 + s/\omega_{o}} \\ \text{Then} \\ A_{f} &\cong \frac{-kT_{out, y}}{Q(x)(\psi^{2} + k^{2})} = \frac{6.05 + s/\omega_{o}}{2(1 + \psi^{2})} \\ A_{f} &|_{\psi^{2} < 1}^{\Xi} 3.025 + j0.5 \cong 3.025 \end{split}$$

Note that in order to obtain the noise reduction without A_f , A_1 would have to increase its power by 150%. The A_f power added is about 60% of A_1 . Also note that a simple short circuit of x to node j also reduce the output noise by 2.4dB.

Noise Reduction Comparison Plots

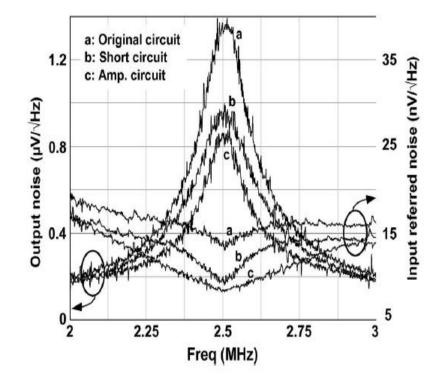


Fig. 8. Measured output noise and input referred noise of the original and the modified circuits.

Conclusions

Noise reduction can be done by inserting one or more reduction paths without affecting original transfer function. These paths can be active or passive when power is limited.

	Original	Amp	Short
	circuit	circuit	circuit
f_0 (MHz)	2.5	2.5	2.5
Q	20	20.2	20.1
$V_{\text{out}_n,tot}(\text{in BW})$ (μ V)	432	272	325
$\overline{V_{\text{out}_n,\text{tot}}}$ (in 2×BW) (μ V)	524	322	370
MAX (V_{out_n}) (μV)	1.34	0.85	1.06
Gain (dB)	40	40	40

TABLE II
COMPARISON OF THE ORIGINAL CIRCUIT AND THE MODIFIED CIRCUITS

References

- B. Razavi, <u>"Design of Analog CMOS Integrated Circuits</u>", Preview Edition, Mcgraw Hill, 2000.
- D.A. Johns and K. Martin, *Analog Integrated Circuit Design*, New York; Wiley, 1997.
- M.S. Gupta, "Selected papers on Noise in Circuits and Systems", IEEE Press 1998.