ECE 622 (ESS) Fall 2011

Design of Linear OTA-C Filters over Wide Frequency Ranges

Courtesy of Mohamed Mobarak Marvin Onabajo

Analog & Mixed-Signal Center Dept. of Electrical & Computer Engineering Texas A&M University

Outline

АМ

- Introduction
 - Motivation and objectives
 - Linearization Schemes
- Attenuation-Predistortion Linearization for Operational Transconducance Amplifiers (OTAs)
 - Proposed approach
 - Single-ended OTAs
 - Differential OTAs
- Application to OTA-C Filters
 - Low-pass filter example
 - Measurement results
 - Comparison with the state of the art
- Advanced Concepts
 - Excess phase compensation
 - Linearization without power budget increase
- Summary & Conclusions

Introduction

Operational Transconductance Amplifier Linearization

- Project objective
 - Improved cancellation of OTA non-linearities
 - Method: distortion created in an identical auxiliary path \rightarrow subtracted form main signal
- Motivation
 - Robustness of linearization to process variations
 - Compensation for frequency-dependent linearity degradation
- Applications with operational transconductance amplifiers (OTAs)
 - On-chip filters in the 100-200MHz frequency range
 - In high-IF stage of wireless receivers
 - •Bandpass Continuous-time $\Sigma\Delta$ A/D converters (SNDR > 70dB)
 - Transconductance-capacitor baseband filters
 - Third-order intermodulation distortion (IM3) < -60dB
 - I < 50MHz (ex. xDSL, WLAN, WCDMA, UMTS)</p>

Introduction

Linearization Schemes

- Cross coupled differential pair
 - Sensetive to PVT variations
- Source degeneration
 - Decrease the effective transconductance and the available headroom
 - Increase the noise due to lower transconductance and addition of resistors
- Signal attenuation
 - Decrease the effective transconductance
 - Increase the input referred noise

- Vdd Vdd Vbp Vbp MP1 MP1 loutlout+ **M2 M1** Vin-Vin+ **R1** Vin-**R2** ~~~ ~~~ Vd Vc
- Combination of Cross-Coupling Cancellation, Floating-Gate Attenuation, Source Degeneration

Proposed Attenuation-Predistortion Linearization

5

- Single-ended OTAs
- Effective transconductance
 - Gm_{eff} = ½ Gm of non-linearized OTA with input-attenuation factor of 0.5
 - Same dimensions & bias in both paths
- Conditions for cancellation
 - Gm×R = 1 in aux. path
 - $R_c \approx R$ for optimum cancellation
 - R_c & C_i give 1st order frequency compensation
 - \rightarrow pole frequency \thickapprox 1/R_cC_i \rightarrow phase shift
- Advantages
 - Even with the presence of 10% Mismatch 20dB cancellation can be obtained
 - In the presence of 1% mismatch the cancellation can be as much as 40dB

 * i_{non-lin}{V_m} represents the distortion components of the current generated by Gm with input voltage amplitude V_m

Single-Ended OTA for High-Frequencies

6

Topology modified from 3-current mirror OTA

- No cascode output stage
 - Stacked devices are less effective with 1.2V supply
 - Min. lengths (min. capacitance) for 100MHz operation
 - $\rightarrow r_{out}$ of transistors as low as $1.5 k\Omega$
- Modified OTA
 - Similar output resistance as cascode (0.13µm tech.)
 - More linear with large signal swings

 Basic specs → (0.13µm CMOS, 1.2V supply)

Parameter	Value
Gm	776µA/V
Excess Phase	2.6º at 100MHz
R _o	13kΩ
Gain Bandwidth Product	622MHz
Power	2.4mW

Fully-Differential OTA Linearization

- Fully differential architecture offer many advantages over single ended circuits
- Generalized conditions for attenuationpredistortion linearization
 - Non-linearity cancellation:

$$(1-k_1)G_m R = 1$$
 , $k_2 = k_1/2$
 $G_{m_eff} = k_2G_m$ $k_2G_m R \le 1$

To ensure IM3 ≈ 0 based on Volterra series:

$$R_c \approx \frac{\left(1-k_1\right)+2C_o/C}{2k_1}R$$

• This design: $k_1 = 2/3$, $k_2 = 1/3$ $\rightarrow R_c = (R/4)^* (1+6C_o/C)$

Fully-Differential OTA

Proposed Linearization Approach

(implements G_m in main and auxiliary paths)

 Error amplifier compensation with resistor R_z in CMFB improves extends the bandwidth of the common-mode rejection:

$$GBW \approx \sqrt{A_0 \cdot \omega_{p1} \cdot \omega_{p3}} \approx \sqrt{A_0 \cdot \omega_{p3} \cdot \frac{2}{R_z (C_{gs} / 2 + (g_m R_L / 2)C_{dg})}}$$

Affect of R_z on stability according to phase margin (PM):

$$PM \approx \tan^{-1} \left(\sqrt{A_0 \cdot \omega_{p3} \cdot \frac{2R_z C_{dg}^2}{(C_{gs} / 2 + (g_m R_L / 2)C_{dg})}} \right)$$

Parameter	Measurement
Transconductance (G _m)	510 μA/V
IM3 @ 50MHz (Vin = 0.2 Vp-p)	-55.3 dB
Noise (input-referred)	13.3 nV/√Hz
Power with CMFB	2.6 mW
PSRR @ 50MHz	48.9 dB
Supply	1.2 V

Error amplifier circuit in the common-mode feedback (CMFB) loop

High-Frequency Effects & Process Variation

- AM
- Theoretical IM3 higher than 70dBc with up to $\pm 10\%$ variation of Gm and $\pm 5\%$ of R_c
 - Can be ensured by matching devices in the layout
 - Robustness verified with schematic corner and component mismatch simulations
- Sensitivity of IM3 (in dBc) to component mismatches:

Simulated Fully-Diff. OTA: Mismatch of Critical Components

1.05

10

- IM3 better than 71dBc for ±7.5% Rc-variation
- IM3 better than 71dBc for ±3.3% R-variation in the presence of 10% Gm-mismatch

Reference OTA has IM3 of 51dBc ٠

Theoretical IM3:

$$\begin{split} i_{IM3} &\approx g_{m3} \left(\frac{k_1/2}{1+2C_p/C} \right)^3 \left(3V_{in1}^2 V_{in2}/4 \left(\frac{1+j\omega_1 C ((1-k_1)R - k_1R_c) + 2j\omega_1 C_o R}{1+j\omega_1 b - c\omega_1^2} \right)^2 \left(\frac{1-j\omega_1 C ((1-k_1)R - k_1R_c) - 2j\omega_1 C_o R}{1-j\omega_1 b - c\omega_1^2} \right) \\ &- g_{m3} \left(\frac{k_1/2}{1+2C_p/C} \right)^3 \left(3V_{in1}^2 V_{in2}/4 \right) \frac{1+j\omega_1 C k_1 R_c}{1+j\omega_1 b - c\omega_1^2} \end{split}$$

Variation of Resistor R & Calibration

THD vs. %-variation of resistor R

- ΔTHD < 5.4dB requires accuracy of R within 4%
- Some form of calibration is necessary
 - Digital (implemented): R can be adjusted with discrete steps until Gm×R = 1
 - Analog tuning also a possibility: comparison of Vin and Vx with an error amplifier (Vpeak, Vrms, etc. should be identical), automatic adjustment of R (transistor biased in triode region)

Total Rc = $1.28k\Omega$ in this design

Variation of Resistor Rc & Calibration

12

- ΔTHD < 6dB requires accuracy of Rc within 4%
- Requires same calibration approach as for resistor R
 - Simplest: cycling through switch combinations until optimum linearity
 - Options to assess performance in the digital domain:
 - Monitor HD3 or THD (if A/D, DSP are available)
 - In receivers: monitor bit error rate

Total Rc = $1.28k\Omega$ in this design

Measurements: Fully-Differential OTA

13

- 0.13µm CMOS Testchip
- Fully-differential reference OTAs & linearized fully-differential OTAs
 - 2nd-order low-pass filter with linearized OTAs

	Input-referred	IM3 (V _{in} = 0.2 V _{p-p})			
OTA type	Noise	50 MHz	150 MHz	350 MHz	
Reference (input attenuation = 1/3)	13.3 nV/√Hz	-55.3 dB	-60.0 dB	-58.5 dB	
Linearized (attenuation = 1/3 & compensation)	21.8 nV/√Hz	-77.3 dB	-77.7 dB	-74.2 dB	

Uncompensated OTA IM3 (input: $0.2V_{p-p}@350MHz$)

Compensated OTA IM3 (input: $0.2V_{p-p}@350MHz$)

Die micrograph Reference OTA area: 0.033mm² Linearized OTA area: 0.090mm²

Fully-Differential OTA Comparison With Previous Works

АМ

14

- Figure of Merit [1]:
 - FOM = NSNR + 10log(f/1MHz) where:
 - NSNR = $SNR_{(dB)}$ + 10log[($IM3_N / IM3$)(BW / BW_N)(P_N / P_{dis})] from [11]
 - Normalizations: SNR integrated over 1MHz, $IM3_N = 1\%$, bandwidth $BW_N = 1Hz$, power $P_N = 1mW$
- Competitive performance with respect to the state of the art
 - Effective trade-offs between linearity, power, noise
 - Proposed method can also be applied to low-frequency OTAs optimized for low power consumption

	[2]* TCAS I	[3]* JSSC 2006	[4] TCAS I 2006	[5] ISSCC 2001	[6]* ISSCC 2005	This work
IM3	-	-47 dB	-70 dB	-60 dB	-	-74.2 dB
IIP3	-12.5 dBV	-	-	-	7 dBV	14.1 dBV
f	275 MHz	10 MHz	20 MHz	40 MHz	184 MHz	350 MHz
Input voltage	-	0.2 V _{p-p}	1.0 V _{p-p}	0.9 V _{p-p}	-	0.2 V _{p-p}
Power / transconductor	4.5 mW	1.0 mW	4 mW	9.5 mW	1.26 mW	5.2 mW
Input-referred noise	7.8 nV/√Hz	7.5 nV/√Hz	70.0 nV/√Hz	23.0 nV/√Hz	53.7 nV/√Hz	21.8 nV/√Hz
Supply voltage	1.2 V	1.8 V	3.3 V	1.5 V	1.8 V	1.2 V
Technology	65 nm CMOS	0.18 µm CMOS	0.5 µm CMOS	0.18 µm CMOS	0.18 µm CMOS	0.13 µm CMOS
FOM _(dB)	87.5	92.9	96.1	99.1	100	105.6
Normalized FOM **	1.0	3.4	7.1	14.3	17.8	64.3

* Power/transconductor calculated from filter power. Individual OTA characterization results not reported in full.

** Normalized FOM magnitude relative to [12]: Normalized $|FOM| = 10^{(FOM_{(dB)}/10)} / (10^{(FOM_{(dB)}/10)} of [12])$

Application to OTA-C Filters

Measurements: Filter with Linearized OTAs

- IM3 is degraded 2-3dB due to non-linearity of output buffer
- IM3 \approx -70dB up to 150MHz for a 0.2V_{p-p} two-tone input
- Broadband linearization due to compensation with phase shifter (IM3 of -66.1dB at 200MHz, with $f_c = 194.7$ MHz)

		IM3 (V _{in} =	= 0.2 V _{p-p})	
Linearized	50 MHz	100 MHz	150 MHz	200 MHz
Filter	-73.9 dB	-69.6 dB	-69.7 dB	-66.1 dB

Frequency response of the 2nd - order low-pass filter

Parameter	Value
Corner frequency (f _{3db})	194.7 MHz
Passband gain	0 dB
Gain of output buffer (Gm _b x 50 Ω)	-34.2 dB
Gm _{1,2,3,4}	510 µA/V

2nd-order low-pass filter diagram & design parameters

AM

Application to OTA-C Filters

Measurements: Filter with Linearized OTAs

Out-of-band IIP3 (12.4 dBm)

In-band IIP2 (33.7 dBm)

Out-of-band IIP2 (30.4 dBm)

Comparison of wideband Gm-C lowpass filters A

	[2]	[6]	[26]	[27]	[28]	[29]	[30]	This work
Filter order	5	5	8	4	7	5	3	2
f _c (max.)	275 MHz	184 MHz	120 MHz	200 MHz	200 MHz	500 MHz	300 MHz	200 MHz
Signal swing	-	0.30 V _{p-p}	0.20 V _{p-p}	0.88 V _{p-p}	0.80 V _{p-p}	0.50 V _{p-p}	-	0.75 V _{p-p}
Linearity with max. Vin _{p-p}	-	HD3, HD5: < -45dB	THD: -50dB @ 120MHz	THD: -40dB @ 20MHz	THD: -42dB @ 200MHz	THD: < -40dB @ 70MHz	-	IM3: -31dB **** @ 150MHz
In-band IIP3	-12.5 dBV (0.5 dBm)	7dBV (20dBm)	-	-	-	-	3.9 dBV (16.9 dBm)	1.0 dBV (14.0 dBm)
In-band IIP2	-	-	-	-	-	-	19 dBV (32 dBm)	20.7 dBV (33.7 dBm)
Out-of-band IIP3	-8 dBV (5 dBm)	-	-	-	-	-	-	-0.6 dBV (12.4 dBm)
Out-of-band IIP2	15 dBV (28 dBm)	-	-	-	-	-	-	17.4 dBV (30.4 dBm)
Power	36 mW	12.6 mW	120 mW	48 mW	210 mW	100 mW	72 mW	20.8 mW
Power per pole	7.2 mW	2.5 mW	15 mW	12 mW	30 mW	20 mW	24 mW	10.4 mW
Input-referred noise	7.8 nV/√Hz	53.7 nV/√Hz**	-	-	-	-	5 nV/√Hz	35.4 nV/√Hz
Dynamic range	44 dB*	43.3 dB***	45 dB	58 dB	-	52 dB	-	54.5 dB***
Supply voltage	1.2 V	1.8 V	2.5 V	2 V	3 V	3.3 V	1.8 V	1.2 V
Technology	65 nm CMOS	0.18 μm CMOS	0.25 μm CMOS	0.35 μm CMOS	0.25 μm CMOS	0.35 μm CMOS	0.18 μm CMOS	0.13 μm CMOS

•Reported spurious-free dynamic range. ** Calculated from 9.3μV_{RMS} in 30kHz BW.
*** Calculated from max. V_{p-p}, f_c, and input-referred noise density. **** IM3 of -31dE

**** IM3 of -31dB measured close to f_c ensures THD < -40dB.

Excess phase compensation

AN

- Linearization introduces a pole that can cause stability problems
- The effect of the pole can be cancelled by adding a series resistance with integrating capacitors
- Poles effect can be partially cancelled in nodes where multiple OTAs are connected together

Single-ended equivalent block diagram of a bandpass biquad

Filter simulations with different Rs values for excess phase compensation

AM

19

- Linearized OTA consumes twice the power of non-linearized OTA
- Linearization can be done while keeping the power the same by dividing the power budget between the main and auxiliary OTA

OTA type	V _{DSAT} of input diff. pair (M _c)	f _{3db} with 50Ω load	Input- referred noise	Power	IM3 (V _{in} = 0.2 V _{p-p})	Normalized FOM * (at f _{max})
Reference (input attenuation = 1/3)	90 mV	2.49 GHz	9.7 nV/√Hz	2.6 mW	-53.1 dB at f _{max} = 350MHz (-53.2 dB at 100MHz)	57.2
Linearized (attenuation = 1/3 & compensation)	54 mV	1.09 GHz	14.3 nV/√Hz	2.6 mW	-77.1 dB at f _{max} = 100MHz	119.2

Simulated comparison: OTA linearization without power consumption increase

Summary & Conclusions

• Proposed attenuation-predistortion technique

- Effective over a wide frequency band and across PVT variations
- Independent of OTA circuit topology
- Allows linearity, noise, power design trade-offs with state of the art performance
- Compensation for PVT variations are based on digital adjustment of resistors

Measured performance

- IM3 improvement of up to 22dB compared to identical reference OTA w/o linearization
- IM3 as low as -74dB with $Vin_{p-p} = 0.2V$ at 350MHz
- Suitable for filter applications requiring an overall IM3 ≤ -70dB up to the cutoff frequency

- [1] A. Lewinski and J. Silva-Martinez, "A high-frequency transconductor using a robust nonlinearity cancellation," *IEEE Trans. Circuits and Systems II: Express Briefs*, vol. 53, no. 9, pp. 896-900, Sept. 2006.
- [2] V. Saari, M. Kaltiokallio, S. Lindfors, J. Ryynänen, and K. A. I. Halonen, "A 240-MHz lowpass filter with variable gain in 65-nm CMOS for a UWB radio receiver," *IEEE Trans. Circuits and Systems I: Regular Papers*, vol. 56, no. 7, pp. 1488-1499, July 2009
- [3] S. D'Amico, M. Conta, and A. Baschirotto, "A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR," *IEEE J. Solid-State Circuits*, vol. 41, no. 12, pp. 2713-2719, Dec. 2006.
- [4] J. Chen, E. Sánchez-Sinencio, and J. Silva-Martinez, "Frequency-dependent harmonicdistortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters," *IEEE Trans. Circuits and Systems I: Regular Papers*, vol. 53, no. 3, pp. 499-510, March 2006.
- [5] T. Y. Lo and C.-C. Hung, "A 40-MHz double differential-pair CMOS OTA with -60dB IM3," IEEE Trans. Circuits and Systems I: Regular Papers, vol.55, no.1, pp. 258-265, Feb. 2008.
- [6] J. C. Rudell, O. E. Erdogan, D. G. Yee, R. Brockenbrough, C. S. G. Conroy, and B. Kim, "A 5th-order continuous-time harmonic-rejection GmC filter with in-situ calibration for use in transmitter applications," in *ISSCC Dig. Tech. Papers*, pp. 322-323, Feb. 2005.

- [7] G. Bollati, S. Marchese, M. Demicheli, and R. Castello, "An eighth-order CMOS low-pass filter with 30-120 MHz tuning range and programmable boost," *IEEE J. Solid-State Circuits*, vol. 36, no. 7, pp. 1056-1066, July 2001.
- [8] A. Otin, S. Celma, and C. Aldea, "A 40–200 MHz programmable 4th-order Gm-C filter with auto-tuning system," in *Proc. 33rd Eur. Solid-State Circuits Conf. (ESSCIRC)*, pp. 214-217, Sept. 2007.
- [9] S. Dosho, T. Morie, and H. Fujiyama, "A 200-MHz seventh-order equiripple continuous-time filter by design of nonlinearity suppression in 0.25-µm CMOS process," *IEEE J. Solid-State Circuits*, vol. 37, no. 5, pp. 559-565, May 2002.
- [10] S. Pavan and T. Laxminidhi, "A 70-500MHz programmable CMOS filter compensated for MOS nonquasistatic effects," in *Proc. 32nd Eur. Solid-State Circuits Conf. (ESSCIRC)*, pp. 328-331, Sept. 2006.
- [11] K. Kwon, H.-T. Kim, and K. Lee, "A 50–300-MHz highly linear and low-noise CMOS Gm-C filter adopting multiple gated transistors for digital TV tuner ICs," IEEE Trans. Microwave Theory and Techniques, vol. 57, no. 2, pp. 306-313, Feb. 2009.

•

Linearization Basics

23

- Linearity Improvement Concepts
 - Effect of odd-order harmonics can be reduced by:
 - Signal attenuation
 - Cancellation
 - Feedback
 - Even-order harmonics are suppressed in fully-differential circuits

Spectrum for a fully-differential OTA without odd-order cancellation

Single-Ended OTA: Device Dimensions

Component	Design (W/L in µm)
(W/L) _{M1}	43.2 / 0.12
(W/L) _{M2}	38.4 / 0.24
(W/L) _{M3}	11.04 / 0.24
(W/L) _{M4}	153.6 / 0.24
(W/L) _{M5}	44.16 / 0.24
Rs	250Ω
Rd	700Ω
Vdd	1.2V

25

Comparison with $Vin_{p-p} = 200mV @ 100MHz$:

Parameter	Reference OTA	Linearized OTA
Gmeffective	Gm/2	Gm/2
THD	1.32% (-37.6dB)	0.048% (-66.8dB)
HD2 (below fundamental)	37.68dB	66.68dB
HD3 (below fundamental)	54.35dB	84.26dB
IM3, Δf=5MHz (below fundamental)	42.8dB	61.9dB
Input-referred noise	17.3nV/√Hz	27.7nV/√Hz

Comparison with $Vin_{p-p} = 200mV @ 10MHz$:

Parameter	Reference OTA	Linearized OTA
Gmeffective	Gm/2	Gm/2
THD	1.31% (-37.7dB)	0.021% (-73.6dB)
HD2 (below fundamental)	37.78 d B	73.49dB
HD3 (below fundamental)	53.88dB	93.03 dB
IM3, Δf=0.5MHz (below fundamental)	42.8dB	67.2dB
Input-referred noise	$18.7 \text{nV}/\sqrt{\text{Hz}}$	29.1nV/√Hz

Single-Ended OTA: HD3 Simulations

26

- Output current spectra from HD3 tests
 - Vin_{peak-peak} = 200mV

OTA with input-attenuation factor of 0.5

Linearized OTA

Single-Ended OTA: Noise Simulations

АМ

27

• Input-referred noise of linearized OTA is larger by a factor of ~1.6

Biquad with Single-Ended OTAs

Biquad Simulations with Single-Ended OTAs

29

Comparison with $Vin_{p-p} = 200mV$ at 100MHz:

Parameter	Reference OTA	Linearized OTA
Gm _{effective} (OTAs)	Gm/2	Gm/2
f _o	100MHz	100MHz
Q	2	~2
$Av_{passband}$	1.91 d B	1.77dB
Vo _{p-p}	232mV	241mV
THD	3.144% (-30.1dB)	0.212% (-53.5dB)
HD2 (below fundamental)	30.08dB	53.85dB
HD3 (below fundamental)	53.45dB	64.57dB