
1 1 

Nonlinear Macromodeling  
of Amplifiers and  

Applications to Filter Design.  
 

Thanks to Heng Zhang for part of the material 

ECEN  622  

By Edgar Sánchez-Sinencio 



2 

http://www.national.com/analog/amplifiers/spice_models 

OP AMP MACROMODELS 

http://www.analog.com/static/imported-files/application_notes/48136144500269408631801016AN138.pdf 

Systems containing a significant number of Op Amps  can take a lot of time of  
simulation when Op Amps are described at the transistor level. For instance  
 a 5th order filter might involve  7 Op Amps and if each Op Amps contains say 
12 to 15 transistors, the SPICE analysis of a circuit containing  60 to 75  
Transistors can be too long and tricky in particular for time domain simulations. 
Therefore the use of a macromodel representing the Op Amp behavior 
reduces the simulation time and  the complexity of the analysis. 
 
The simplicity of the analysis of Op Amps containing macromodels is because  
macromodels can be implemented using SPICE primitive components. Some examples of 
macromodels are discussed next. 
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FUNDAMENTAL ON MACROMODELING 
USING ONLY PRIMITIVE SPICE COMPONENTS 

1.  Low Pass First Order 
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Option 3 
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2.  Higher Order Low Pass 
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Note.- If you need to isolate the output use  

a final  VCVS with a gain of one 

Le us consider a second-order case: 
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Resonator (one zero, two complex poles) 
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Active RC Filter Design with 
Nonlinear Opamp Macromodel 
 Design a two stage Miller CMOS Op Amp in 

0.35 μm and propose a macromodel containing 
up to the seventh-harmonic component 

 Compare actual transistor model versus the 
proposed non-linear macromodel 

 Use both macromodel and transistor level to 
design a LP filter with H(o) =10dB, f3dB=5 MHz 

 Result comparison 
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1st order Active-RC LP filter 
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Filter transfer function with Ideal 
Opamp  
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Choose R1, R2 and C from equations (1) ~ (3). To minimize loading effect,  
R2 should be large enough. Here we choose R2 = 31.6kΩ, R1 = 10kΩ, and C = 1pF. 



Filter transfer function with finite 
Opamp gain and GBW 
 One pole approximation for Opamp Modeling: Av = 

GB/s.(it holds when GBW >> f3dB and Av(0) >>1) 
 
 
 

 A two stage Miller Op amp is designed. GBW is 
chosen ~20 times the f3dB to minimize the finite 
GBW effect; GBW = 100MHz is also easy to 
achieve in 0.35μm CMOS technology.   
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Non-Linear Macro-Model for 
a source-degenerated OTA 
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Linear Transistor Model: 
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Non-Linear OTA model: 

Vin-
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Let: 

We can easily get: 

Which can be expanded to: 

To determine Odd Harmonic effects for an ideal OTA !! 



How to Extract the Coefficients: 

•    By Sweeping the input voltage and integrating the output                                                                         

      current, we can these coefficients. 

Generally if we have: 

We can extract the coefficients by differentiation, where: 

•     a2 is ideally zero. 

•     Getting the first 3 coefficients only is a valid approximation. 



A source degenerated OTA as an example: 

OTA 

Output current of one branch versus 
input differential voltage. 

1st derivative 2nd derivative 3rd derivative 



Coefficients: 

a0=206.777 µA 

a1=1.69094mA/v 

a2=9.07µA/v2  

a3= - 1.764mA/v3 

The accuracy of these numbers depends on the number of points used in the 
  

DC sweep. 
 
By taking more points, even harmonics reduce to zero. 



Macromodel used: 

1. Non-linear transfer function. 

2.    non-dominant pole . 

3.    Feed-forward path leads to Right half plane zero. (Cgd of the driver trans.) 

4.    Output Resistance and Load Capacitance. 

(1) 

(2) 

(3) 

(4) 



DC sweep of Macromodel: 

Changes due to measurement accuracy and number of points 



AC response comparison: 

Transistor level Macro-model 



Two stage Miller Amplifier Design 
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Opamp Design parameters 
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Power 278uA @ 3V 

1st Stage PMOS(W/L) 30u/0.4u 

NMOS(W/L) 15u/0.4u 

2nd Stage PMOS(W/L) 120u/0.4u 

NMOS(W/L) 60u/0.4u 

Miller 
Compensation 

Cm 800fF 

Rm 400 Ω 



OPAMP Frequency response  
 

 DC Gain: 53 dB, GBW: 86.6 MHz, phase margin: 69.7 deg.  
 Dominant pole:154KHz,  Second pole: 197MHz 
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Output Spectrum of Open loop OPAMP 
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1mVpp input @ 1KHz (THD= -49.2dB) 



 a1~a7 can be extracted from PSS simulation results: 
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Similarly, we can obtain:  a4 = 6e7, a5 = 5.6e11, a6 = 1e13, a7 = 7e16 



Opamp Macro model 

 Modeled: input capacitance, two poles, one RHP zero, 
nonlinearity, finite output resistance, and capacitance 

 Nonlinearity model should be placed before the poles to 
avoid poles multiplication 
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Nonlinearity Model 

 uses mixer blocks to generate nonlinear terms 
 model up to 7th order non-linearity 
 set each VCCS Gain as the nonlinear coefficients.  
 set the gain for 1st VCCS = gm1 = 512uA/V, gain for 2nd VCCS = gm2 = 

2.85mA/V, and scale all the nonlinear coefficients derived above by a1.   
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Opamp AC response:  
Transistor-level vs. Macromodel 

 Macro-model mimic the transistor level very well at frequencies below 10MHz 
 discrepancy at higher frequency due to the higher order poles and zeros not modeled 

in the Macromodel 
26 



Filter AC response:  
Transistor-level vs. Macromodel 
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Output Spectrum (0dBm input @ 1KHz) 

 Macromodel(THD=-63dB) 
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 Transistor Level 
 (THD = -66.4dB) 



Performance Comparison 
Transistor Level Macro-model 

-3dB BW 154KHz 180KHz 
GBW 86.6MHz 90MHz 

DC Gain 53 dB 51.3 dB 
Phase Margin 69.7 degree 74.9 degree 

THD: -50dBm @ 1KHz -49.2 dB -49.6 dB 
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Table I. Open loop Opamp Performance Comparison 

Table II. LPF Performance Comparison 

Transistor Level Macro-model 
BW of LPF 4.9MHz 4.86MHz 

DC Gain of LPF 9.95 dB 10.19 dB 
THD: 0dBm @ 1KHz -66.4 dB -63dB 



Observation 
 THD of the LPF at 0dBm input is better than that of the 

open loop Opamp with a small input at -50dBm. This is 
because OPAMP gain is ~50 dB, when configured as a 
LPF, OPAMP input is attenuated by the feedback loop 
better linearity.  

 when keep increasing the input amplitude, the THD of the 
transistor-level degrades dramatically. This is because 
large swing activates more nonlinearity and even cause 
transistors operating out of saturation region; however, the 
THD of Macro-model doesn’t reflect this because we didn’t 
implement the limiter block.  
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Gm-C Filter Design with Nonlinear 
Opamp Macromodel 
 Use a three current mirror Transconductance 

Amplifier. 
 Compare actual transistor model versus the 

non-linear macromodel 
 Use both macromodel and transistor level to 

design a LP filter with H(o) =10dB, f3dB=5 MHz 
 Result Comparison 
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1st order Gm-C LP filter 
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Filter transfer function  
 
 With Ideal OTA: 
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Three Current mirrors OTA Design 
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OTA Design parameters 
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Power 240uA @ + 1.5V 

Input NMOS 4u/0.6u 

PMOS current mirror 12u/0.4u 

NMOS current mirror 1u/0.4u 



AC simulation of Gm: Transistor Level 
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gm = 0.4mA/V, which is our desired value 

its frequency response is good enough for a LPF with 5MHz cutoff frequency 



OTA Output resistance: Transistor Level 

37 

output resistance of the OTA >>1/gm2 



Gm-C LPF Output spectrum: Transistor level 

 THD = -26dB for 0dBm input@1kHz 
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OTA Macro model 

 Since the internal poles and zeros are at much higher 
frequency than 5MHz, only the important ones are 
included in the macro-model 

 Nonlinearity model is the same as the Opamp in Active-
RC filter 
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AC simulation of Gm: Macro-model 
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OTA Output resistance: Macro-model 
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output resistance of the OTA >>1/gm2 



Gm-C LPF Frequency response 
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Gm-C LPF Output spectrum: Macromodel 

 THD = -33dB for 0dBm input@1kHz 
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Performance Comparison 
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Table I. Gm-C Filter Performance Comparison 

Table II. Comparison between Transistor Level Active-RC and Gm-C LPF 

Transistor Level Macro-model 
Gm 409uA/V 412uA/V 

BW of LPF 5.05MHz 5.05MHz 
DC Gain of LPF 10 dB 10 dB 

THD: 0dBm @ 1KHz -26 dB -33dB 

Active RC Gm-C 
DC gain 9.95dB 10dB 

BW  4.9MHz 5.05MHz 
THD: 0dBm @ 1KHz -66.4 dB -26 dB 

Noise Level 0.048µV/ @1kHz 0.05µV/ @1kHz 
Power 0.83mW 0.72mW 

HzHz



Discussion 
 With comparable DC gain, BW, Noise level and 

Power consumption, Gm-C filter has much worse 
linearity than Active RC because: 
  Active RC: feedback configuration improves linearity; 
Gm-C filter: open loop operation, the gm stage sees 

large signal swing, thus linearization technique is 
needed, which adds power consumption.  

 Active RC is preferable for low frequency 
applications if linearity is a key issue 
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Note that SPICE allows you to describe non-linear components: 
 
Nonlinear capacitor and inductors 
CXXXXXXXX   N+    N-  POLY C0 C1 C2 …….<IC=INCOND> 
LYYYYYYYY    N+    N-  POLY L0 L1 L2 ……..< IC=INCOND> 
 
Nonlinear dependent sources  E, G, F and H type 
A two-dimensional polynomial function is expressed as 
f(x1,x2) = po +p1x1 +p2x2 +p3(x1)*2 + p4x1x2 + p5 (x2)*2 + p6( xi)*3 
                 + p7(x1)*2 x2  + p8x1(x2)*2 + p9(x2)*3 
 
Ename                  N+   N- <POLY(ndim)>   nc1+nc1 -<nc2+ nc2-….>   
 + p0<p1<p2….>> <IC=vnc1,nc1-, vc2+,nc2-,…> 
E1 3   4  POLY(1)   7  10  10.5  2.0 1.95 

Which means  VE1 = 10.5 +2.0V7,10  + 1.95(V7,10)*2  
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