HIGHER-ORDER FILTERS

- Cascade of Biquad Filters
- Follow the Leader Feedback Filters (FLF)

CASCADE FILTER DESIGN

$$
H(s)=\Pi_{i=1}^{N} H_{i}(s)=H_{i}(s) H_{2}(s) \cdots H_{N}(s)
$$

Is the order in which sections are connected important?

- Mathematically is irrelevant
- On one hand, to avoid loss of dynamic and to avoid signal clipping in the high-Q sections use:

$$
Q_{1}<Q_{2}<\cdots Q_{N}
$$

- On the other to minimize noise, use

$$
Q_{1}>Q_{2}>\cdots Q_{N}
$$

- What is the optimal ordering to yield the best S / N ?
$H_{i}(s)=k_{i} \frac{a_{2 i} s^{2}+a_{1 i} s+a_{o i}}{s^{2}+s^{\omega_{o i}} / Q_{i}+\omega_{o i}^{2}}$
$H(s)=\prod_{i=1}^{n / 2} k_{i} t_{i}(s)$
n is even
How do we assign pole-zero pairs?
Proposition 1. Minimize the maximum value of d_{i} where

$$
d_{i}=\log \frac{G_{i}}{m}, \mathrm{G}_{\mathrm{i}} \text { and } \mathrm{m}_{\mathrm{i}} \text { are the maximum and minimum gain in the }
$$

frequency range of interest, $\omega_{L} \leq \omega \leq \omega_{H}$ Then determine the optimal
sequence of the biquad sections, such that again the maximum number d_{i} is minimized. The final step is to assign the gain constants $\left(\mathrm{k}_{\mathrm{i}}\right)$ of the biquads. To yield optimal dynamic range i.e. ,

$$
\max \left|V_{o i}(j \omega)\right|=\max V_{o, n / 2}(j \omega)|=\max | V_{\text {out }}(j \omega)
$$

Proposition 2. To jointly optimize signal gain and noise gain. Noise by itself is minimized by assigning the largest possible gain to the first-stage, then the second with the largest gain among the other stages and so on.

Realization of High Order Transfer Functions ($\mathrm{N}>2$)

- Cascade of $2^{\text {nd }}$ order sections (one $1^{\text {st }}$ order section if N is odd)
- Leapfrog
- Follow-The-Leader

	Cascade	FLF	Leap-Frog
Sensitivity	High	Medium	Low
Easy to Tune	Medium	Easy	Difficult

Primary Resonator Block

- It provides compensatory internal interactions between the different filter sections through coupling the biquad building blocks.
- F_{1} is incorporated in $B P_{1}$.

Follow-the-Leader Feedback Filter Topology

$$
\begin{aligned}
& H_{n}(s)=\frac{V_{n}}{V_{\text {in }}}=\frac{a \prod_{j=1}^{n} T_{j}(s)}{1+\sum_{k=1}^{n}\left[F_{k} \prod_{j=1}^{k} T_{j}(s)\right]} \\
& H(s)=\frac{V_{\text {out }}}{V_{\text {in }}}=a \frac{B_{o}+\sum_{k=1}^{n}\left[B_{k} \prod_{j=1}^{k} T_{j}(s)\right]}{1+\sum_{k=1}^{n}\left[F_{k} \prod_{j=1}^{k} T_{j}(s)\right]}
\end{aligned}
$$

Design Questions:

- How do we obtain the feedback coefficients F_{2} and F_{3} ?
- How do we determine the specifications for each biquadratic section?
-

ω_{0}
Gain

Design Procedure

- Start with the Lowpass equivalent system.

However Elliptic Filters need finite zeros in their lowpass equivalent transfer function.

EXAMPLE

To design a 6th order bandpass elliptic filter using the Follow-the-Leader (FLF) architecture. The specifications are:

Specification	Value
Order	6
Passband	1.9 MHz to 2.1 MHz
Passband Ripple	0.1 dB
Attenuation	$\geq 30 \mathrm{~dB}$ at 0.6 MHz

Design Procedure

Let for now $\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}_{3}=1$
and

$$
\begin{equation*}
T(s)=\frac{k}{s+k} \tag{1}
\end{equation*}
$$

Applying Mason's rule, the complete transfer function is given by:

$$
\begin{align*}
& H(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=K_{0} \frac{B_{0}+B_{1} T(s)+B_{2} T^{2}(s)+B_{3} T^{3}(s)}{1+F_{2} T^{2}(s)+F_{3} T^{3}(s)} \\
& =K_{0} \frac{B_{0}(s+k)^{3}+B_{1} k(s+k)^{2}+B_{2} k^{2}(s+k)+B_{3} k^{3}}{(s+k)^{3}+F_{2} k^{2}(s+k)+F_{3} k^{3}} \tag{2}
\end{align*}
$$

Design Procedure

- From Matlab or Fiesta, we can obtain the lowpass prototype transfer function of the desired $6{ }^{\text {th }}$ Order Elliptic Filter:

$$
\begin{equation*}
H(s)=m \frac{a_{0}}{b_{0}} \frac{b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \tag{3}
\end{equation*}
$$

- Equating the denominators of equations (2) and (3), we obtain the following set of equations from which we can solve for k, F_{2}, and F_{3}.
- Also from equations (2) and (3)

$$
\begin{align*}
& 3 k=a_{2} \tag{4}\\
& 3 k^{2}+F_{2} k^{2}=a_{1} \\
& \left(1+F_{2}+F_{3}\right) k^{3}=a_{0}
\end{align*}
$$

$$
\begin{equation*}
K_{0}=m \frac{a_{0}}{b_{0}} \tag{5}
\end{equation*}
$$

Design Procedure

To obtain the summation coefficients, we equate the numerators of equations (2) and (3). If $H(s)$ is a bandpass: $B_{0}=b_{3}=0$. Then, we obtain the following set of equations from which we can determine B_{1}, B_{2} and B_{3}.

$$
\begin{align*}
& B_{0}=b_{3}=0 \\
& B_{1} k=b_{2} \tag{6}\\
& 2 B_{1} k+B_{2} k^{2}=b_{1} \\
& \left(B_{1}+B_{2}+B_{3}\right) k^{3}=b_{0}
\end{align*}
$$

Designing for Maximum Dynamic Range

- We need to distribute the gains of each section $\mathrm{T}(\mathrm{s})$, i.e. $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} such that we maximize the Dynamic Range.
- The maximum dynamic range will be obtained if the signal spectra at the output of all sections have equal maxima, i.e.

Maximizing Dynamic Range

- To make $\mathrm{V}_{3, \max }=\mathrm{V}_{\text {out, } \max }$

$$
\begin{equation*}
K_{0} \rightarrow K_{0}^{\prime}=K_{0} q \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\frac{V_{\text {out, max }}}{V_{3, \text { max }}} \leftarrow \text { prior to scaling } \tag{8}
\end{equation*}
$$

- We also need to adjust the summation coefficients to keep the overall gain:

If we assume a flat spectrum for the $B_{i} \rightarrow B_{i}^{\prime}=\frac{B_{i}}{q}$ input, i.e. $\operatorname{Vin}(\omega)=1$

$$
\begin{align*}
& V_{\text {out }, \max }=\operatorname{Max}|H(\omega)| \tag{10}\\
& V_{3, \max }=\operatorname{Max}\left|H_{3}(\omega)\right|
\end{align*}
$$

Gain Values Determination

Where

$$
\begin{equation*}
H_{3}(s)=\frac{V_{3}(s)}{V_{\text {in }}(s)}=K_{0} \frac{k^{3}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \tag{11}
\end{equation*}
$$

To obtain $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} :

$$
\begin{equation*}
K_{i}=\frac{\operatorname{Max}\left\{\left\lvert\, H_{3}(\omega)\left(\frac{k^{2}+\omega^{2}}{\omega^{2}}\right)^{\frac{4-i}{2}}\right.\right\}}{\operatorname{Max}\left\{\left\lvert\, H_{3}(\omega)\left(\frac{k^{2}+\omega^{2}}{\omega^{2}}\right)^{\frac{3-i}{2}}\right.\right\}} \text { for } i=1,2,3 . \tag{12}
\end{equation*}
$$

Feedback Coefficients

The feedback coefficients need to be readjusted to keep the same loop gains:

$$
\begin{align*}
& F_{2} \rightarrow F_{2}^{\prime}=\frac{F_{2}}{K_{1} K_{2}} \tag{13}\\
& F_{3} \rightarrow F_{3}^{\prime}=\frac{F_{3}}{K_{1} K_{2} K_{3}}
\end{align*}
$$

- The summation coefficients also need to be readjusted again:

$$
\begin{align*}
B_{1} & \rightarrow B_{1}^{\prime}=B_{1} \frac{K_{2} K_{3}}{q} \tag{14}\\
B_{2} & \rightarrow B_{2}^{\prime}=B_{2} \frac{K_{3}}{q} \\
B_{3} & \rightarrow B_{3}^{\prime}=B_{3} \frac{1}{q}
\end{align*}
$$

Summary of Design Procedure

- Obtain from Matlab or Fiesta the lowpass prototype for the desired filter.
- From equations (4), (5) and (6), obtain K_{0}, the feedback and the summation coefficients.
To maximize dynamic range, obtain q using equation (8). Recalculate K_{0} using equation (7).
Calculate the gain of each section, i.e. $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} using equation (12). Recalculate the feedback and summation coefficients using equations (13) and (14). Finally, apply a lowpass-to-bandpass transformation to obtain the desired bandpass filter specifications:

$$
\begin{aligned}
& \omega_{0}=2 \pi \sqrt{f_{L} f_{U}} \\
& Q_{0}=\frac{Q}{k}
\end{aligned}
$$

where Q is the quality factor of the overall filter and Q_{0} is that required for each biquad section.

- Note: A Matlab program was written to automate the design procedure for an arbitrary filter specification of order N .

Summary of Results

For the required specifications, the following values were obtained:

Feedback Coefficients	$\mathrm{F} 2=0.657640$
	$\mathrm{~F} 3=0.227545$
Feedforward Coefficients	$\mathrm{B} 0=0$
	$\mathrm{~B} 1=0.169792$
	$\mathrm{~B} 2=-0.216571$
$\mathrm{~B} 3=1.129814$	
Gain for the input and each biquad	$\mathrm{K} 0=0.604488$
stage	$\mathrm{K} 1=2.349$
	$\mathrm{~K} 2=2.165$
	$\mathrm{~K} 3=2$
Center frequency and Q_{0} of each	$\mathrm{F}_{0}=1.9975 \mathrm{MHz}$
biquad stage	$\mathrm{Q}_{0}=15.7$

Simulation Results System Level

- The complete filter was simulated in Cadence at a system-level. The results are shown below:

Transistor Level Implementation

- To implement each biquadratic section, a twointegrator loop biquad OTA-C filter was used.
- Advantages with respect to Active-RC:
- Easy Tunability by changing the bias currents of the OTAs. (Active-RC needs the use of varactors).
- Lower Power Consumption and Smaller Area.
- Disadvantages with respect to Active-RC:
- Smaller Dynamic Range
- Poorer Linearity

Transistor Level Implementation of each Biquad Section

$$
H(s)=\frac{s \frac{g_{m 1}}{C_{1}}}{s^{2}+s \frac{g_{m 4}}{C_{1}}+\frac{g_{m 2} g_{m 3}}{C_{2} C_{1}}}
$$

Design of Lossless Integrator

The lossless integrator was designed to have unity gain at $\mathrm{f}_{0}=1.9975 \mathrm{MHz}$.

$$
\begin{gathered}
|H(\omega)|=\frac{g_{m 2}}{\omega C_{2}}=1 \\
g_{m 3}=376.52 \mu \mathrm{~A} / \mathrm{V} \\
C_{2}=30 \mathrm{pF}
\end{gathered}
$$

The following specifications are needed if a 5% variation in Q is allowed:

$$
\text { Excess Phase: } \phi_{E} \leq \frac{1}{2 Q}\left(1-\frac{Q}{Q_{a}}\right)=1.5 \times 10^{-3} \mathrm{rad}=0.086^{\circ}
$$

$$
D C \text { Gain: } A_{V} \geq \frac{2 Q}{\frac{Q}{Q_{a}}-1}=602=55.58 \mathrm{~dB}
$$

Design of Lossless Integrator

- Due to the relatively high DC gain required for the OTA, a folded-cascode topology was used:

Transconductance	DC Gain	GBW	Bias Current	Power Consumption	Active Area
$376.52 \mu \mathrm{~A} / \mathrm{V}$	64.1 dB	263 MHz	$40 \mu \mathrm{~A}$	$792 \mu \mathrm{~W}$	$727 \mu \mathrm{~m}^{2}$

Simulation Results of the Lossless Integrator

- The excess phase without any compensation was 1.17°.
- Passive excess phase compensation was used $\rightarrow R=55 \Omega$.

Mognitude Response

Magnitude Response
Phase Response

Design of Biquadratic Bandpass Filter

■
To reuse the designed OTA:

$$
\begin{gathered}
g_{m 3}=g_{m 2}=376.52 \mu \mathrm{~A} / \mathrm{V} \\
C_{1}=C_{2}=30 p F \\
g_{m 4}=\frac{C_{1}}{Q_{0}} \omega_{0}=23.827 \mu \mathrm{~A} / V
\end{gathered}
$$

- Transconductance $g_{m 1}$ depends on K_{i}

$$
g_{m 1}=K_{i} g_{m 4}
$$

- For demonstrations purposes, $g_{m 1}=g_{m 4}$, ie. $K=1$

Design of Biquadratic Bandpass Filter

- Due to the relatively small transconductance required, source degeneration was used. Also, a PMOS differential pair was more suitable.

Transconductance	DC Gain	GBW	Bias Current	Power Consumption	Active Area
$23.827 \mu \mathrm{~A} / \mathrm{V}_{27}$	61.15 dB	62.3 MHz	$14 \mu \mathrm{~A}$	$277.2 \mu \mathrm{~W}$	$820 \mu \mathrm{~m}^{2}$

Simulation Results of the Biquadratic Bandpass Filter

Frequency Response
Step Response

Summation Nodes

- To complete the transistor-level design, we need two summation nodes:

Summation Nodes

The summation nodes can be implemented with OTAs in the following configurations:

Summation Node for the Feedback Paths
Summation Node at the Output If $g_{m 0}$ is chosen large enough, the output resistance of each OTA does not need to be very high. Excess Phase of OTAs can be a concern.

Summation Nodes

- Due to the desired low excess phase introduced by the OTAs, it is more convenient to use a simple differential pair.

Transconductance	Bias Current	Power Consumption	Active Area
$300 \mu \mathrm{~A} / \mathrm{V}$	$40 \mu \mathrm{~A}$	$264 \mu \mathrm{~W}$	$269 \mu \mathrm{~m}^{2}$

Simulation Results of the Complete FLF Filter (Transistor vs. System Level)

Magnitude Response
Phase Response

Simulation Results of the Complete FLF Filter (Transistor vs. System Level)

Transient Response to a Sinewave

Step Response

Summary of Results

Specification	Value
Passband	1.9 MHz to 2.1 MHz
Passband Ripple	$\sim 0.2 \mathrm{~dB}$
Attenuation	$\geq 40 \mathrm{~dB}$ at 0.6 MHz
Power Consumption	8.53 mW
Active Area	$11,434 \mu \mathrm{~m}^{2}$
Total Area	$\sim 211,549 \mu \mathrm{~m}^{2}$

Problems to be considered

- Voltage Swing: The allowable input voltage swing is only 100 mV . A small voltage swing is expected, since the OTAs have a small linear range limited by \pm VDSAT of the input transistors (in case no linearization technique is used, such as source degeneration or others). Nevertheless, 100 mV is too small and is basically because the OTAs with $g_{m}=376.52 \mu \mathrm{~A} / \mathrm{V}$ use input transistors with a small VDSAT and no linearization technique is being used. I need to redesign these OTAs to increase the linear range.
- Bias Network: To design the bias network for the folded-cascode OTAs capable of effectively tracking changes of VT due to process variations.
- Sensitivity and Tunability: To characterize the complete filter in terms of sensitivity and tunability.
- Layout

Another structure for higher-order filters that can be obtained from the FLF is the inverse FLF by using a transposed signal-flow graph.

Berarences

[1] Sedra, Brackett. Filter Theory and Design: Active and Passive. Matrix Series in Circuits and Systems. pp. 589-659.
[2] Deliyannis, Sun, Fidler. Continuous-Time Active Filter Design. CRC Press 1999. pp. 151-180.
[3] G. Hurtig, III. The Primary Resonator Block Technique of Filter Synthesis Proc. Int. Filter Symposium, p.84, 1972.
[4] Barbargires. Explicit Design of General High-Order FLF OTAC Filters. Electronics Letters. 5th August 1999, Vol. 35, No. 16, pp. 1289-1290.
[5] Jie Wu, Ezz I. El-Masry. Synthesis of Follow-the-Leader Feedback Log-Domain Filters. IEEE 1998. 0-7803-5008-1/98. pp. 381-384.

References (cont.)

[6] G. S. Moschytz, "Linear Integrated Networks-Design", Van Nostrand, Reinhold, New York 1975
[7] R. Schaumann, M.S. Ghaussi, and K.R. Laker, "Design of Analog Filters: Passive, Active RC and Switched Capacitor", Prentice Hall, Englewood Cliffs, 1990.
[8] A.S. Sedra, and P.O. Brackett, "Filter Theory and Design: Active and Passive", Matrix, Portland 1978.
[9] W.M. Snelgrove, and A.S. Sedra, "Optimization of Dynamic Range in Cascade Active Filters", Proc. IEEE ISCAS, pp. 151-155, 1978.

