SWITCHED-CAPACITOR FUNDAMENTALS AND CIRCUITS

- Mathematical Background
- Basic Building Blocks
- SC Filters
- SC Oscillators

Edgar Sánchez-Sinencio, ECEN 622

Analog and Mixed-Signal Center, TAMU

FUNDAMENTALS ON SC CIRCUITS

•
$$\tau = RC = R_{eq}C = \frac{T}{C_{eq}}C = \frac{1}{f_c}\left(\frac{C}{C_{eq}}\right)$$
 very accurate!

- Bottlenecks: Switches and High-Speed Op Amps. Non-idealities 🗁 enemies!
- The best approach in audio applications.
- Design is carried-out in the Z domain, same domain as for digital circuits.
- Conventional Programming is done via capacitor banks. Spread?
- New non-uniform sampling techniques opens practical application possibilities.

ECEN 622 (ESS)

Examples of Analog and Digital Signals

Analog and Digital Signals and Systems Concepts

Types of signals	Mathematical Description
 Continuous-Time (CT) Continuous values in time Continuous values in magnitude 	Laplace
• Sampled Data (SD) Continuous values in magnitude Discrete values in time	Z-Transform
 Digital -Discrete values in magnitude -Discrete values in time 	Z-Transform

OPERATOR $Z^{-1} \Longrightarrow$ UNIT DELAY

$$Z^{-1}Y(Z) = Z^{-1}\sum_{n=0}^{\infty} y(n)Z^{-n}$$

$$= \sum_{n=0}^{\infty} y(n) Z^{-(n+1)} = \sum_{n=1}^{\infty} y(n-1) Z^{-n}$$

$$Z^{-1}Y(Z) = \sum_{n=0}^{\infty} y(n-1)Z^{-n} - y(-1) = Y[y(n-1)] - y(-1)$$

If $y(nT) = 0$ for $t < 0$, $y(-1) = 0$

$$Z^{-1}Y(Z) = Z^{-1}[y(nT)] = Y[y(n-1)T]$$

In general

$$Z^{-m}Y(Z) = Y[y(n-m)T]$$

STABILITY OF A SECOND-ORDER HOMOGENEOUS DIFFERENCE EQUATION

y(n) +
$$a_1 y(n-1) + a_2 y(n-2) = 0$$

 $Y(Z)(1 + a_1 Z^{-1} + a_2 Z^{-2}) = 0$
The C.E. $Z^2 + a_1 Z + a_2 = (Z - Z_1)(Z - Z_2) = 0$

COMPLEX ROOTS

$$Z_1, Z_2 = \frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_2}, \text{ if } \frac{a_1^2}{4} - a_2 < 0, Z_1, Z_2 = re^{\pm j\theta} = x \pm jy$$
$$r = \sqrt{x^2 + y^2} = \sqrt{a_2}, \ \cos \theta = \frac{x}{r} = -\frac{a_1}{2\sqrt{a_2}}$$
The C. E. yields

$$Z^2 - 2r\cos\theta Z + r^2 = 0$$

Natural Response

$$y(n) = Kr^{n} \cos\left(2\pi \frac{nf}{fs} + \phi\right)$$
$$a_{1}, \quad a_{2} \leftrightarrow r, \quad \theta$$
$$k, \quad \phi \leftarrow \text{Inital Conditions}$$

Relationship between the poles in the Z-Plane and coefficients a_1 and a_2 .

MAPPING BETWEEN THE S- AND THE Z-PLANES FOR HIGH SAMPLING

Backward

$$Z_{p_1} = \frac{1}{1 - s_p T}$$

Forward

$$Z_{p2} = 1 + s_p T$$

Bilinear

$$Z_{p3} = \frac{1 + s_p T / 2}{1 - s_p T / 2}$$

Impulse Invariant

$$Z_{p4} = e^{S_p T}$$

For small
$$s_p T$$
, $s_p T \ll 1$.
 $Z_{p1} \cong 1 + s_p T + (s_p T)^2 + (s_p T)^3 + \cdots$
 $Z_{p2} = 1 + s_p T$
 $Z_{p3} \cong 1 + (s_p T) + \frac{(s_p T)^2}{2} + \frac{(s_p T)^3}{4} + \cdots$
 $Z_{p4} \cong 1 + s_p T + \frac{(s_p T)^2}{2} + \frac{(s_p T)^3}{6} + \cdots$

Ignoring higher order effects

$$Z_{p_1} \cong Z_{p_2} \cong Z_{p_3} \cong Z_{p_4} \cong 1 + s_p T$$

For Very High Sampling Rate The Approximation For The Mapping is the Same!

$$Z_p \cong 1 + s_p T$$

$$r = \sqrt{\left(1 - \frac{\omega_n T}{2Q}\right)^2 + (\omega_n T)^2} \cong \sqrt{1 - \frac{\omega_n T}{Q} + (\omega_n T)^2}$$

OR

$$Q = \frac{\omega_n T}{1 - r^2 + (\omega_n T)^2} = \frac{\omega_n T}{(1 + r)(1 - r) + (\omega_n T)^2}$$

High Q's

$$\mathbf{Q}\Big|_{\mathbf{r}\to\mathbf{1}} \cong \frac{\omega_n T}{2(1-r) + (\omega_n T)^2}\Big|_{\omega_n T <<1} \cong \frac{\omega_n T}{2(1-r)}$$

then

$$r = \frac{2Q - \theta}{2Q} = 1 - \frac{\theta}{2Q}$$

Also by a series expansion

$$\cos\theta \cong 1 - \frac{\theta^2}{2}$$

Thus

Also see Table of mappings.

In fact if we let,

$$b_2 \cong 1 - \frac{\theta}{Q}$$

then

$$b_1 = (b_2 + 1) + \theta^2$$

Recall that high Q and high sampling rate conditions have been used. Thus

and

$$\theta^2 = 1 + b_2 + b_1$$

$$Q \cong \frac{\theta}{1 - b_2}$$

$$b_1 = 2r\cos\theta$$
$$b_2 = r^2$$

(See Table of Quadratic Mappings)

Type of Integrator	Magnitude, $ H(e^{j\omega T})$	Phase, Arg H(e ^{jωT})	Mapping (Equivalent)	Transfer Function
	$\frac{\omega_o}{\omega}$	$\frac{\pi}{2}$	In the S-Plane	i.e. $H(s) = -\frac{1}{sR_1C_2} = -\frac{\omega_o}{s}$
$V_1^{\circ} \xrightarrow{\phi_1} \phi_2$ $C_1 \xrightarrow{\phi_2} \phi_2$ $+ \phi_2 \\ + \phi_2 $	For V_o at ϕ_2 $\frac{\omega_o}{\omega} \frac{\omega T/2}{sin(\omega T/2)}$	$\frac{\pi}{2}$	LDI	$H(z) = -\frac{C_1}{C_2} \frac{z^{-\frac{1}{2}}}{1 - z^{-1}}$
$ \begin{array}{c c} $	For V_o at ϕ_1 $\frac{\omega_o}{\omega} \frac{\omega T/2}{sin(\omega T/2)}$	$\frac{\pi}{2} - \frac{\omega T}{2}$	Forward	$H(z) = -\frac{C_1}{C_2} \frac{z^{-1}}{1 - z^{-1}}$
ϕ_1 C_1 ϕ_2 C_2 C_2 V_0 V_0	For V_o at ϕ_2 $\frac{\omega_o}{\omega} \frac{\omega T/2}{\sin(\omega T/2)}$	$\frac{-\pi}{2}$	LDI	$H(z) = \frac{C_1}{C_2} \frac{z^{-\frac{1}{2}}}{1 - z^{-1}}$
Non-Inverting	For V_o at ϕ_1 $\frac{\omega_o}{\omega} \frac{\omega T/2}{\sin(\omega T/2)}$	$\frac{-\pi}{2} - \frac{\omega T}{2}$	Forward	$H(z) = \frac{C_1}{C_2} \frac{z^{-1}}{1 - z^{-1}}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	For V_o at ϕ_1 $\frac{\omega_o}{\omega} \frac{\omega T/2}{sin(\omega T/2)}$	$\frac{\pi}{2} + \frac{\omega T}{2}$	Backward	$H(z) = -\frac{C_1}{C_2} \frac{z^{-\frac{1}{2}}}{1 - z^{-1}}$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} $	For V_o at ϕ_2 $\frac{\omega_o}{\omega} \frac{\omega T/2}{\sin(\omega T/2)}$	$\frac{\pi}{2}$	LDI	$H(z) = -\frac{C_1}{C_2} \frac{z^{-\frac{1}{2}}}{1 - z^{-1}}$

Type of Filters in the Z-Domain

Apply: A backward transformation

$$s \rightarrow (1 - Z^{-1})/T$$
, then
 $H(z) = \frac{\pm K_o Z^2}{r^2 - 2r \cos \theta Z + Z^2}$

: A forward Transformation

$$H(z) = \frac{\pm K_o}{r^2 - 2r\cos\theta Z + Z^2}$$

: A Bilinear Transformation

$$H(z) = \frac{K_o (1+Z)^2}{r^2 - 2r \cos \theta Z + Z^2}$$

Another Example.

BACKWARD

i) Backward Tansformation

FORWARD

TYPE OF FILTER	NUMERATOR			
LP 20 (bilinear)	$K_o (1 + z^{-1})^2$			
LP 02 (forward	$K_o z^{-2}$			
LP11	$K_o z^{-1} (1 + z^{-1})$			
LP 10	$K_{o}(1+z^{-1})$			
LP 01	$K_o z^{-1}$			
BP 20 (bilinear)	$K_o(1-z^{-1})(1+z^{-1})$			
BP 01 (forward)	$K_{o}z^{-1}(1-z^{-1})$			
BP 00 (backward)	$K_o(1-z^{-1})$			
HP	$K_o (1 - z^{-1})^2$			
Notch (symmetric)	$K_o \left[1 + 2(1 - \cos \Theta_o) z^{-1} + z^{-2} \right]$			
Low pass Notch	where $\cos \theta_O = \frac{2r \cos \theta}{1+r^2}$			
	θ_O and θ are the angles of the zero			
	and pole locations, respectively			
High pass Notch	Same as above with $\cos \theta_O > \frac{2r \cos \theta}{1+r^2}$			
	Same as above with $\cos \theta_O < \frac{2r \cos \theta}{1+r^2}$			
All pass	$K_O\left(r^2 - 2r\cos\theta z^{-1} + z^{-2}\right)$			
TableNumerators of second-order transfer functions in the z-plane				

 $D(s) = 1 - 2r\cos\theta z^{-1} + r^2 z^{-2}$

Examples of Basic Implementations

• First-order Low Pass (Continuous-Time)

$$H(s) = \frac{K}{1 + s/\omega_{p}} \quad ; \quad \frac{V_{o}(s)}{V_{in}(s)} = \frac{K\omega_{p}}{s + \omega_{p}} \quad ; \quad \frac{dv_{o}(t)}{dt} + \omega_{p}v_{o}(t) = K\omega_{p}v_{in}(t)$$

Stability implies to have poles in the left-half plane (LHP)

Frequency Response

Impulse Response

Taking the inverse z-transform $\omega_{p1}v_o(nT) - v_o(n-1)T = K_1\omega_{p1}v_{in}(nT)$

$$\mathbf{v}_{o}(n-1)\mathbf{T} - \boldsymbol{\omega}_{p}\mathbf{v}_{o}(n\mathbf{T}) = -\mathbf{K}_{1}\boldsymbol{\omega}_{p1}\mathbf{v}_{in}(n\mathbf{T})$$

This difference equation represents the first-order low pass in the Z-domain.

Note that

$$\begin{split} & Z^{^{-1}}X_{_{o}}(z) \! \Rightarrow \! x_{_{o}}(n-1)T \\ & Z^{^{-b}}X_{_{o}}(z) \! \Rightarrow \! x_{_{o}}(n-b)T \end{split}$$

Frequency Response (A periodic transfer function!)

What are the relationships between the s-plane and z-plane?

- There are a number of mappings between the two planes
- The most popular and exact is the bilinear mapping.

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} = \frac{2}{T} \frac{z - 1}{z + 1}$$
 or $z = \frac{1 + (T/2)s}{1 - (T/2)s}$

• The commonly used for high-sampling rate is:

$$s = \frac{1}{T} \frac{1 - z^{-1}}{z^{-1}} = \frac{1}{T} \frac{z - 1}{1}$$

$$z = sT + 1$$

Example. Approximate a first-order low-pass continuous-time to a discrete-time low-pass under high-sampling conditions. (fs/f >> 1)

$$H(s) = \frac{K}{1 + s/\omega_{p}} = \frac{K\omega_{p}}{s + \omega_{p}} \left| s = \frac{1}{T}(z - 1) \right|$$

$$H(z) = \frac{K\omega_{p}T}{z - 1 + \omega_{p}T} = \frac{K\omega_{p}T}{z - (1 - \omega_{p}T)}$$

What is the 3dB cut-off frequency in both domains?

$$f_{3dB} = \omega_p$$
 CT

For H(z) is more complex than the computation of f_{3dB} .

$$H(e^{j\omega T}) = \frac{K\omega_{p}T}{\cos \omega T + j\sin \omega T - (1 - \omega_{p}T)}$$
$$H(e^{j\omega T}) = |H(e^{j\omega_{3dB}T})|/\sqrt{2}$$
$$\omega = \omega_{3dB}$$

$$\omega_{3dB} = \frac{1}{T} \cos^{-1} \frac{2 - 2\omega_{p}T - (\omega_{p}T)^{2}}{2(1 - \omega_{p}T)}$$

Numerical example. Low-Pass (First Order)

$$\omega_{p} = 2\pi \times 10^{3} \text{ r/s}$$

 $f_{c} = f_{s} = 20 \text{ KHz}$; $T = 1/f_{s}$; $\omega_{p}T = \frac{2\pi \times 10^{3}}{20 \times 10^{3}} = 0.1\pi$
 $K = 2$

For the continuous-time

$$f_{3dB} = 1 \text{KHz}$$

 $H(j\omega) \bigg|_{\omega = \omega_{3dB}} = 1.4142$

For the sample-data

$$f_{3dB} = \frac{f_s}{2\pi} \cos^{-1} \frac{2 - 2\omega_p T - (\omega_p T)^2}{2(1 - \omega_p T)}$$
$$f_{3dB} \approx 1.16 \text{KHz}$$

Switched - Capacitor Filters

- Use Z-transform mathematics
- Are described by difference equations
- Time constants are proportional to capacitor ratios
- Best implementation for audio applications
- Originally the basic goal was to replace resistors by switches and capacitors
- This design approach is one of the most popular in the industry

SC Advantages

- Reduced silicon area
- Good accuracy. Time constants are implemented with capacitor ratios (~0.1%)
- Don't require a low-impedance output stage (OTA's could be used)
- Could be implemented using digital circuit process technology
- Very useful in the audio range

PHASE PERIODS OF A CONVENTIONAL CLOCK SEQUENCE

S/H and its respective odd and even components

$$y_{\rm H}(t) = y_{\rm H}^{\rm o}(t) + y_{\rm H}^{\rm e}(t)$$

or

$$Y_{\rm H}(Z) = Y_{\rm H}^{\rm o}(Z) + Y_{\rm H}^{\rm e}(Z)$$

$$V_{in}(Z) = V_{in}^{e}(Z) + V_{in}^{o}(Z)$$
$$V_{o}(Z) = V_{o}^{e}(Z) + V_{o}^{o}(Z)$$
$$H(Z) = \frac{V_{o}(Z)}{V_{in}(Z)}$$

CONVENTIONAL NOTATION FOR TRANSFER FUNCTION IS:

$$H^{ij}(Z) = \frac{V_o^j(Z)}{V_{in}^i(Z)}$$

i and *j* can be either "e" or "o". i,e.,

$$\mathrm{H}^{\mathrm{eo}}(\mathrm{Z}) = \frac{\mathrm{V}_{\mathrm{o}}^{\mathrm{o}}(\mathrm{Z})}{\mathrm{V}_{\mathrm{in}}^{\mathrm{e}}(\mathrm{Z})}$$

TWO-PHASE CLOCK GENERATOR

SINGLE PHASE

SWITCHED-CAPACITOR EQUIVALENT RESISTOR

At time $t = t_0$ we apply the clocks.

$$Q(t_o + T/2) = CV_1$$

$$Q(t_o + T) = CV_2 - CV_1$$

 $Q(t_o + T) = C(V_2 - V_1)$

For the next period, at ϕ_1

$$Q_{1} = \int_{t_{o}+T}^{t_{o}+3T/2} i_{1}(t)dt = \int_{t_{o}+T/2}^{t_{o}+3T/2} i_{1}(t)dt$$

ACCURACY OF TIME CONSTANTS

\odot Continuous Time:

 $\tau = R_1 C_2$

$$\frac{\mathrm{d}\tau}{\tau} = \frac{\mathrm{d}R_1}{R_1} + \frac{\mathrm{d}C_2}{C_2} \to \pm 40\% \to \pm 65\%$$

where $\frac{d\tau}{\tau}$ is interpreted as the accuracy of τ .

TEMPERATURE DEPENDANT!

• DISCRETE TIME:

$$\tau = \frac{1}{f_C C_1} \cdot C_2 = T(\frac{C_2}{C_1})$$
$$\frac{d\tau}{\tau} = \frac{dT}{T} + \frac{dC_2}{C_2} - \frac{dC_1}{C_1}$$
$$\frac{d\tau}{\tau} \cong \frac{dC_2}{C_2} - \frac{dC_1}{C_1} \rightarrow 0.1\%$$

at $t = t_2$

$$V_{C_1} = V_x(t_2) - V_y(t_2) - (V_x(t_1) - V_y(t_1))$$

Voltage across the capacitor V_{C_j} = voltage difference (at present time) across the capacitor minus initial condition (at past time).

CHARGE CONSERVATION

ANALYSIS METHOD

for
$$\phi_2$$

 $C_2[V_2^e(n) - V_2^o(n - \frac{1}{2})] + C_1[V_2^e(n) - V_1^o(n - \frac{1}{2})] = 0$
for ϕ_1
 $C_2[V_2^o(n - \frac{1}{2}) - V_2^e(n - 1)] = 0 \Rightarrow V_2^o(n - \frac{1}{2}) = V_2^e(n - 1)$

THEN

$$V_{2}^{e}(n) = V_{2}^{e}(n + \frac{1}{2})$$

$$C_{2}[V_{2}^{o}(n + \frac{1}{2}) - V_{2}^{o}(n - \frac{1}{2})] + C_{1}[V_{2}^{o}(n + \frac{1}{2}) - V_{1}^{o}(n - \frac{1}{2})]$$

$$C_{2}[V_{2}^{o}(Z)][Z^{1/2} - Z^{-1/2}] + C_{1}V_{2}^{o}(Z)Z^{1/2} = C_{1}V_{1}^{o}(Z)Z^{-1/2}$$

$$C_{2}(1 - Z^{-1})V_{2}^{o}(Z) + C_{1}V_{2}^{o}(Z) = C_{1}V_{1}^{o}(Z)Z^{-1/2}$$

$$\frac{V_{2}^{o}(Z)}{V_{1}^{o}(Z)} = \frac{C_{1}Z^{-1}}{C_{2}(1 - Z^{-1}) + C_{1}} = \frac{C_{1}Z^{-1}}{C_{2} + C_{1} - C_{2}Z^{-1}}$$

$$\frac{V_{2}^{o}(Z)}{V_{1}^{o}(Z)} = \frac{C_{1}}{(C_{2} + C_{1})Z - C_{2}} = \frac{C_{1}}{(C_{2} + C_{1}) + (C_{2} + C_{1})ST - C_{2}}$$
For high-sampling rate ${}^{oT} <<1$

For high-sampling rate

$$\frac{V_{2}^{0}(Z)}{V_{1}^{0}(Z)} = \frac{C_{1}}{C_{1} + (C_{2} + C_{1})5T} = \frac{1}{1 + (\frac{C_{2} + C_{1}}{C_{1}})5T} = \frac{1}{1 + \frac{5}{C_{1}}}$$

$$Z \cong 1 + ST$$

$$f_{3d\beta} \cong \frac{1}{2\pi} \cdot \frac{C_{1}}{(C_{2} + C_{1})T} = \frac{1}{2\pi} \cdot \frac{f_{c}}{1 + \frac{C_{2}}{C_{1}}}$$
Aside:
$$f_{3d\beta} \cong \frac{1}{2\pi} \cdot \frac{1}{R_{1}C_{2}} \cong \frac{1}{2\pi} \cdot \frac{1}{\frac{TC_{2}}{C_{1}}} = \frac{1}{2\pi} \cdot \frac{f_{c}}{\frac{C_{2}}{C_{1}}}$$

Switched-Capacitor (SC) Filters

How to design SC Filters ?

- Two basic approaches

Systematic SC Filter Design

What are the advantages and disadvantages of the two filter design procedures ?

•Mapping Techniques

+ Systematic and well documented (see Matlab)

+ It can use any sampling rate, including the (minimum) Nyquist rate.

- Difficult to implement by hand calculation

•Transforming R to SC resistors

+ It is, conceptually, easier to follow for analog designer

+ Its design is straightforward

- Yields not an optimal design for area, imposed high sampling rate involves larger capacitor ratios.

Switched-Capacitor Filters Components

Basic Elements

Capacitors

- polysilicon
- metal1-metal2
- parasitics, clock-feedthrough

Switches

- N-MOS
- Transmission gates
- Noise and on-resistance

OTAS

- DC-gain
- settling time (GBW, phase margin)
- noise

Non-overlapping clock phases

Typical switched-capacitor integrator

Switched-Capacitor Filters: CAPACITORS

CP1, CP2" are very small (1-5 % of C1) CP2' is around 10-30 % of C1

metal1-metal2

SWITCHES

MOS transistors biased in triode region, ~100-100 k Ω

•V₁, V₂ < V_G-V_T (V_T ~ 1 V) • Resistance Rs $\cong \frac{L}{\mu_n C_{ox} W (V_{GS} - V_T)}$

• Small resistance for low voltages but high resistance for large voltages

• Rail to rail operation, provided that VDD and IVSSI > VT

- Smaller resistance (fast response)
- 2 clock phases
- More parasitics

Switched-Capacitor Filters: SWITCHES

Switches (continues)

$$C_{GS,GD} = C_{OX}WL_D + \frac{1}{2}C_{OX}WL$$
$$C_{BS,BD} = \frac{1}{2}\frac{C_{j0}WL}{\sqrt{1 + \frac{2\phi_F}{VSB}}} + C_{jBS}$$

 $mobile - charge = C_{OX}WL(V_{GS} - V_T)$

•CGS and CGD are Linear polysilicon capacitors, introduce offset voltage.

 $\bullet C_{SB,DB}$ are non-linear capacitors, introduce harmonic distortion components.

•Mobile charge introduces gain errors and harmonic distortion components.

Operational Transconductance Amplifier

PRACTICAL CONSIDERATIONS:

- **DC-gain**. The inverting input is not a real virtual ground. $v_{invert}=v_0/A_{dc}$
- Settling time. C1 must be discharged during phase 1. The main limitation is due to limited output current and phase margin.
- •Clock feedthrough. Can be alleviated by using especial clocking schemes.
- Noise. In most of the practical cases the dominant noise components are due to the Switches!!!

Switched-Capacitor Integrator Analysis

Phase 1 $t_0 < t \le t_0 + T/2$

Phase 2 $t_0 + T/2 < t \le t_0 + T$

t

Switched-Capacitor Stray-Sensitive Integrator Analysis

 $\left[(0-0)C_1 - (v_i(t_0 + T/2) - 0)C_1 \right] + \left[(0-v_0(t))C_f - (0-v_0(t_0 + T/2))C_f \right] = 0$

Solving for phase 2 (t=t0+T)

$$H(z) = -\frac{C_1}{C_f} \frac{z^{-1/2}}{1 - z^{-1}}$$

Switched-Capacitor Integrators : Stray-Insensitive Integrators

Backward Integrator

Forward Integrator

Charge conservation ==> Phase 1
$$(v_i(nT)-0)C_{in} + [(v_0(nT)-0)C_f - (v_0(nT-T/2)-0)C_f] = 0$$

Phase 2

$$0 = (v_0(nT - T/2) - 0)C_f - (v_0(nT - T) - 0)C_f$$

Solving for phase 1

$$v_i(nT)C_{in} - [v_0(nT) - v_0(nT - T)]C_f = 0$$

$$H(z) = -\frac{C_{in}}{C_f} \frac{1}{1 - z^{-1}}$$

Charge conservation ==> Phase 1 $(0-v_i(NT-T/2))C_{in} + [(v_0(nT))C_f - (v_0(nT-T/2))C_f] = 0$

Phase 2

$$0 = C_{f} v_{0}(nT - T/2) - C_{f} v_{0}(nT - T)$$
$$v_{cin}(NT - T/2) = v_{i}(NT - T/2)$$

$$v_i(nT - T/2)C_{in} - [v_0(nT) - v_0(nT - T)]C_f = 0$$

 $H(z) = \frac{C_{in}}{C_f} \frac{z^{-1/2}}{1 - z^{-1}}$