

Follow The Leader Architecture 6th Order Elliptic Bandpass Filter

A numerical example

Objective

To design a 6th order bandpass elliptic filter using the Follow-the-Leader (FLF) architecture. The specifications are:

Specification	Value
Order	6
Passband	1.9MHz to 2.1MHz
Passband Ripple	0.1dB
Attenuation	≥30dB at 0.6MHz

Realization of High Order Transfer Functions (N>2)

- Cascade of 2nd order sections (one 1st order section if N is odd)
- Leapfrog
- Follow-The-Leader

	Cascade	FLF	Leap-Frog
Sensitivity	High	Medium	Low
Easy to Tune	Medium	Easy	Difficult

Primary Resonator Block

 It provides compensatory internal interactions between the different filter sections through coupling the biquad building blocks.

Design Questions:

How do we obtain the feedback coefficients F₂ and F₃?
How do we determine the specifications for each biquadratic section?

Q
0₀
Gain

Start with the Lowpass equivalent sytem.

 Bad News: Elliptic Filters need finite zeros in their lowpass equivalent transfer function.

Implementation of Finite Zeros by the Summation Technique

Let for now $K_1 = K_2 = K_3 = 1$

and

$$T(s) = \frac{k}{s+k} \tag{1}$$

Applying Mason's rule, the complete transfer function is given by:

$$H(s) = \frac{V_{out}(s)}{V_{in}(s)} = K_0 \frac{B_0 + B_1 T(s) + B_2 T^2(s) + B_3 T^3(s)}{1 + F_2 T^2(s) + F_3 T^3(s)}$$
$$= K_0 \frac{B_0 (s+k)^3 + B_1 k (s+k)^2 + B_2 k^2 (s+k) + B_3 k^3}{(s+k)^3 + F_2 k^2 (s+k) + F_3 k^3}$$
(2)

 From Matlab or Fiesta, we can obtain the lowpass prototype transfer function of the desired 6th Order Elliptic Filter:

$$H(s) = m \frac{a_0}{b_0} \frac{b_3 s^3 + b_2 s^2 + b_1 s + b_0}{s^3 + a_2 s^2 + a_1 s + a_0}$$
(3)

Equating the denominators of equations (2) and (3), we obtain the following set of equations from which we can solve for k, F₂, and F₃.

$$3k = a_{2}$$

$$3k^{2} + F_{2}k^{2} = a_{1}$$

$$(1 + F_{2} + F_{3})k^{3} = a_{0}$$
(4)

Also from equations (2) and (3)

$$K_0 = m \frac{a_0}{b_0} \tag{5}$$

To obtain the summation coefficients, we equate the numerators of equations (2) and (3). If H(s) is a bandpass: B₀=b₃=0. Then, we obtain the following set of equations from which we can determine B₁, B₂ and B₃.

$$B_{0} = b_{3} = 0$$

$$B_{1}k = b_{2}$$

$$2B_{1}k + B_{2}k^{2} = b_{1}$$

$$(B_{1} + B_{2} + B_{3})k^{3} = b_{0}$$
(6)

Designing for Maximum Dynamic Range

We need to distribute the gains of each section T(s), i.e. K₁, K₂ and K₃ such that we maximize the Dynamic Range. The maximum dynamic range will be obtained if the signal spectra at the output of all sections have equal maxima, i.e. $V_{out,max} = V_{3,max} = V_{2,max} = V_{1,max} = V_{0,max}$

Maximizing Dynamic Range

To make V_{3,max} = V_{out,max}

$$K_0 \to K_0' = K_0 q \tag{7}$$

where

$$q = \frac{V_{out, \max}}{V_{3, \max}} \leftarrow prior \ to \ scaling \\ \leftarrow prior \ to \ scaling$$
(8)

We also need to adjust the summation coefficients to keep the overall gain:

$$B_i \to B_i' = \frac{B_i}{q} \tag{9}$$

If we assume a flat spectrum for the input, i.e. $Vin(\omega)=1$

$$V_{out,\max} = Max |H(\omega)|$$

$$V_{3,\max} = Max |H_3(\omega)|$$
(10)

Maximizing Dynamic Range

Where

$$H_3(s) = \frac{V_3(s)}{V_{in}(s)} = K_0 \frac{k^3}{s^3 + a_2 s^2 + a_1 s + a_0}$$
(11)

• To obtain K_1 , K_2 and K_3 :

$$K_{i} = \frac{Max \left\{ \left| H_{3}(\omega) \right| \left(\frac{k^{2} + \omega^{2}}{\omega^{2}} \right)^{\frac{4-i}{2}} \right\}}{Max \left\{ \left| H_{3}(\omega) \right| \left(\frac{k^{2} + \omega^{2}}{\omega^{2}} \right)^{\frac{3-i}{2}} \right\}} \quad for \ i = 1, 2, 3.$$
(12)

The feedback coefficients need to be readjusted to keep the same loop gains:

$$F_2 \to F_2' = \frac{F_2}{K_1 K_2}$$
 (13)
 $F_3 \to F_3' = \frac{F_3}{K_1 K_2 K_3}$

The summation coefficients also need to be readjusted again:

$$B_{1} \rightarrow B_{1}' = B_{1} \frac{K_{2}K_{3}}{q}$$

$$B_{2} \rightarrow B_{2}' = B_{2} \frac{K_{3}}{q}$$

$$B_{3} \rightarrow B_{3}' = B_{3} \frac{1}{q}$$
(14)

Summary of Design Procedure

- Obtain from Matlab or Fiesta the lowpass prototype for the desired filter.
- From equations (4), (5) and (6), obtain K₀, the feedback and the summation coefficients.
- To maximize dynamic range, obtain q using equation (8). Recalculate K₀ using equation (7).
- Calculate the gain of each section, i.e. K₁, K₂ and K₃ using equation (12).
- Recalculate the feedback and summation coefficients using equations (13) and (14).
- Finally, apply a lowpass-to-bandpass transformation to obtain the desired bandpass filter specifications:

$$\omega_0 = 2\pi \sqrt{f_L f_U}$$
$$Q_0 = \frac{Q}{k}$$

where Q is the quality factor of the overall filter and Q_0 is that required for each biquad section.

 Note: A Matlab program was written to automate the design procedure for an arbitrary filter specification of order N.

Summary of Results

For the required specifications, the following values were obtained:

Feedback Coefficients	F2 = 0.657640 F3 = 0.227545
Feedforward Coefficients	B0 = 0 B1 = 0.169792 B2 = -0.216571 B3 = 1.129814
Gain for the input and each biquad stage	K0 = 0.604488 K1 = 2.349 K2 = 2.165 K3 = 2
Center frequency and Q_0 of each biquad stage	$f_0 = 1.9975MHz$ $Q_0 = 15.7$

Simulation Results System Level

The complete filter was simulated in Cadence at a system-level. The results are shown below:

1.0

-1.Ø -2.Ø -3.Ø

Ripple ≤ 0.1 dB

Magnitude Response

Phase Response

Transistor Level Implementation

 To implement each biquadratic section, a two-integrator loop biquad OTA-C filter was used.

 Advantages with respect to Active-RC:
 Easy Tunability by changing the bias currents of the OTAs. (Active-RC needs the use of varactors).
 Lower Power Consumption and Smaller Area.

Disadvantages with respect to Active-RC:

- Smaller Dynamic Range
- Poorer Linearity

Transistor Level Implementation of each Biquad Section

Design of Lossless Integrator

The lossless integrator was designed to have unity gain at f₀=1.9975MHz.

$$|H(\omega)| = \frac{g_{m2}}{\omega C_2} = 1$$
$$g_{m3} = 376.52 \,\mu A/V$$
$$C_2 = 30 \,pF$$

The following specifications are needed if a 5% variation in Q is allowed:

Excess Phase:
$$\phi_E \leq \frac{1}{2Q} \left(1 - \frac{Q}{Q_a} \right) = 1.5 \times 10^{-3} \, rad = 0.086^{\circ}$$

DC Gain:
$$A_V \ge \frac{2Q}{\frac{Q}{Q_a} - 1} = 602 = 55.58 dB$$

Design of Lossless Integrator

Due to the relatively high DC gain required for the OTA, a foldedcascode topology was used:

Simulation Results of the Lossless Integrator

The excess phase without any compensation was 1.17°.
 Passive excess phase compensation was used →R=55Ω.

Magnitude Response

Phase Response

Design of Biquadratic Bandpass Filter

To reuse the designed OTA:

$$g_{m3} = g_{m2} = 376.52 \,\mu A/V$$

$$C_1 = C_2 = 30 \, pF$$

$$g_{m4} = \frac{C_1}{Q_0} \omega_0 = 23.827 \,\mu\text{A/V}$$

Transconductance g_{m1} depends on K_i

$$g_{m1} = K_i g_{m4}$$

For demonstrations purposes, g_{m1}=g_{m4}, i.e. K=1

Design of Biquadratic Bandpass Filter

 Due to the relatively small transconductance required, source degeneration was used. Also, a PMOS differential pair was more suitable.

Transconductance	DC Gain	GBW	Bias Current	Power Consumption	Active Area
23.827µA/V	61.15dB	62.3MHz	14µA	277.2µW	820µm²

Simulation Results of the Biquadratic Bandpass Filter

Frequency Response

Step Response

Summation Nodes

To complete the transistor-level design, we need two summation nodes:

Summation Nodes

The summation nodes can be implemented with OTAs in the following configurations:

Summation Node for the Feedback Paths

Summation Node at the Output

If g_{m0} is chosen large enough, the output resistance of each OTA does not need to be very high. Excess Phase of OTAs can be a concern.

Summation Nodes

 Due to the desired low excess phase introduced by the OTAs, it is more convenient to use a simple differential pair.

Transconductance	Bias Current	Power Consumption	Active Area
300µA/V	40μΑ	264µW	269µm²

Simulation Results of the Complete FLF Filter (Transistor vs. System Level)

Ripple ~0.2dB

Magnitude Response

Phase Response

Simulation Results of the Complete FLF Filter (Transistor vs. System Level)

Transient Response to a Sinewave

Step Response

Summary of Results

Specification	Value
Passband	1.9MHz to 2.1MHz
Passband Ripple	~0.2dB
Attenuation	≥40dB at 0.6MHz
Power Consumption	8.53mW
Active Area	11,434µm²
Total Area	~ 211,549µm²

Problems to be solved

- **Voltage Swing:** The allowable input voltage swing is only 100mV. A small voltage swing is expected, since the OTAs have a small linear range limited by \pm VDSAT of the input transistors (in case no linearization technique is used, such as source degeneration or others). Nevertheless, 100mV is too small and is basically because the OTAs with $g_m = 376.52\mu$ A/V use input transistors with a small VDSAT and no linearization technique is being used. I need to redesign these OTAs to increase the linear range.
- Bias Network: To design the bias network for the folded-cascode OTAs capable of effectively tracking changes of VT due to process variations.
- Sensitivity and Tunability: To characterize the complete filter in terms of sensitivity and tunability.
- Layout

References

[1] Sedra, Brackett. Filter Theory and Design: Active and Passive. Matrix Series in Circuits and Systems. pp. 589-659.

[2] Deliyannis, Sun, Fidler. <u>Continuous-Time Active Filter Design</u>. CRC Press 1999. pp. 151-180.

[3] G. Hurtig, III. <u>The Primary Resonator Block Technique of Filter Synthesis</u> Proc. Int. Filter Symposium, p.84, 1972.

[4] Barbargires. Explicit Design of General High-Order FLF OTA-C Filters. Electronics Letters. 5th August 1999, Vol. 35, No. 16, pp. 1289-1290.

[5] Jie Wu, Ezz I. El-Masry. <u>Synthesis of Follow-the-Leader Feedback Log-Domain Filters</u>. IEEE 1998. 0-7803-5008-1/98. pp. 381-384.