Follow The Leader Architecture

$6^{\text {th }}$ Order Elliptic Bandpass Filter

A numerical example

Objective

」 To design a 6th order bandpass elliptic filter using the Follow-the-Leader (FLF) architecture. The specifications are:

Specification	Value
Order	6
Passband	$1,9 \mathrm{MHz}$ to 2.1 MHz
Passband Ripple	0.1 dB
Attenuation	$\geq 30 \mathrm{~dB}$ at 0.6 MHz

Realization of High Order Transfer Functions ($\mathrm{N}>2$)

\lrcorner Cascade of $2^{\text {nd }}$ order sections (one $1^{\text {st }}$ order section if N is odd)

- Leapfirog

」 Follow-The-Leader

	Cascade	FLF	Leap-Frog
Sensitivity	High	Medium	Low
Easy to Tune	Medium	Easy	Difficult

Primary Resonator Block

」It provides compensatory internal interactions between the different filter sections through coupling the biquad building blocks.

Design Questions:

\lrcorner How do we obtain the feedloack coefficients F_{2} and F_{3} ?
\lrcorner How do we determine the specifications for each biquadratic section?

- Q
$-\omega_{0}$
- Gain

Design Procedure

\lrcorner Start with the Lowpass equivalent sytem.

- Bad News: Elliptic Filters need finite zeros in their lowpass equivalent transfer function.

Implementation of Finite Zeros by

 the Summation Technique

Design Procedure

Let for now $K_{1}=K_{2}=K_{3}=1$

and

$$
\begin{equation*}
T(s)=\frac{k}{s+k} \tag{1}
\end{equation*}
$$

Applying Mason's rule, the complete transfer function is given by:

$$
\begin{align*}
H(s) & =\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=K_{0} \frac{B_{0}+B_{1} T(s)+B_{2} T^{2}(s)+B_{3} T^{3}(s)}{1+F_{2} T^{2}(s)+F_{3} T^{3}(s)} \\
& =K_{0} \frac{B_{0}(s+k)^{3}+B_{1} k(s+k)^{2}+B_{2} k^{2}(s+k)+B_{3} k^{3}}{(s+k)^{3}+F_{2} k^{2}(s+k)+F_{3} k^{3}} \tag{2}
\end{align*}
$$

Design Procedure

- From Matlab or Fiesta, we can obtain the lowpass prototype transfer function of the desired $6^{\text {th }}$ Order Elliptic Filter:

$$
\begin{equation*}
H(s)=m \frac{a_{0}}{b_{0}} \frac{b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \tag{3}
\end{equation*}
$$

- Equating the denominators of equations (2) and (3), we obtain the following set of equations from which we can solve for k, F_{2}, and F_{3}.

$$
\begin{align*}
& 3 k=a_{2} \\
& 3 k^{2}+F_{2} k^{2}=a_{1} \tag{4}\\
& \left(1+F_{2}+F_{3}\right) k^{3}=a_{0}
\end{align*}
$$

- Also from equations (2) and (3)

$$
\begin{equation*}
K_{0}=m \frac{a_{0}}{b_{0}} \tag{5}
\end{equation*}
$$

Design Procedure

- To obtain the summation coefficients, we equate the numerators of equations (2) and (3). If $H(s)$ is a bandpass: $B_{0}=b_{3}=0$. Then, we obtain the following set of equations from which we can determine B_{1}, B_{2} and B_{3}.

$$
\begin{align*}
& B_{0}=b_{3}=0 \\
& B_{1} k=b_{2} \tag{6}\\
& 2 B_{1} k+B_{2} k^{2}=b_{1} \\
& \left(B_{1}+B_{2}+B_{3}\right) k^{3}=b_{0}
\end{align*}
$$

Designing for Maximum Dynamic Range

\lrcorner We need to distribute the gains of each section $T(s)$, i,e, K_{1}, K_{2} and K_{3} such that we maximize the Dynamic Range,
IThe maximum dynamic range will be obtained if the signal spectra at the output of all sections have equal maxima, i.e.

$$
V_{\text {out }, \max }=V_{3, \max }=V_{2, \max }=V_{1, \max }=V_{0, \max }
$$

Maximizing Dynamic Range

- To make $\mathrm{V}_{3, \max }=\mathrm{V}_{\text {out, } \max }$

$$
\begin{equation*}
K_{0} \rightarrow K_{0}^{\prime}=K_{0} q \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\frac{V_{\text {out }, \text { max }}}{V_{3, \text { max }}} \leftarrow \text { prior to scaling } \tag{8}
\end{equation*}
$$

- We also need to adjust the summation coefficients to keep the overall gain:

$$
\begin{equation*}
B_{i} \rightarrow B_{i}^{\prime}=\frac{B_{i}}{q} \tag{9}
\end{equation*}
$$

If we assume a flat spectrum for the input, i.e. Vin $(\omega)=1$

$$
\begin{align*}
& V_{o u t, \max }=\operatorname{Max}|H(\omega)| \tag{10}\\
& V_{3, \max }=\operatorname{Max}\left|H_{3}(\omega)\right|
\end{align*}
$$

Maximizing Dynamic Range

Where

$$
\begin{equation*}
H_{3}(s)=\frac{V_{3}(s)}{V_{i n}(s)}=K_{0} \frac{k^{3}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}} \tag{11}
\end{equation*}
$$

- To obtain K_{1}, K_{2} and K_{3} :

$$
\begin{equation*}
K_{i}=\frac{\operatorname{Max}\left\{\left\lvert\, H_{3}(\omega)\left(\frac{k^{2}+\omega^{2}}{\omega^{2}}\right)^{\frac{4-i}{2}}\right.\right\}}{\operatorname{Max}\left\{\left\lvert\, H_{3}(\omega)\left(\frac{k^{2}+\omega^{2}}{\omega^{2}}\right)^{\frac{3-i}{2}}\right.\right\}} \text { for } i=1,2,3 \tag{12}
\end{equation*}
$$

Desion proceruse

- The feedback coefficients need to be readjusted to keep the same loop gains:

$$
\begin{align*}
& F_{2} \rightarrow F_{2}^{\prime}=\frac{F_{2}}{K_{1} K_{2}} \tag{13}\\
& F_{3} \rightarrow F_{3}^{\prime}=\frac{F_{3}}{K_{1} K_{2} K_{3}}
\end{align*}
$$

- The summation coefficients also need to be readjusted again:

$$
\begin{align*}
& B_{1} \rightarrow B_{1}^{\prime}=B_{1} \frac{K_{2} K_{3}}{q} \\
& B_{2} \rightarrow B_{2}^{\prime}=B_{2} \frac{K_{3}}{q} \tag{14}\\
& B_{3} \rightarrow B_{3}^{\prime}=B_{3} \frac{1}{q}
\end{align*}
$$

Summary of Design Procedure

- Obtain from Matlab or Fiesta the lowpass prototype for the desired filter.
- From equations (4), (5) and (6), obtain K_{0}, the feedback and the summation coefficients.
- To maximize dynamic range, obtain qusing equation (8). Recalculate K_{0} using equation (7).
- Calculate the gain of each section, i.e. K_{1}, K_{2} and K_{3} using equation (12).
- Recalculate the feedback and summation coefficients using equations (13) and (14).
- Finally, apply a lowpass-to-bandpass transformation to obtain the desired bandpass filter specifications:

$$
\begin{aligned}
& \omega_{0}=2 \pi \sqrt{f_{L} f_{U}} \\
& Q_{0}=\frac{Q}{k}
\end{aligned}
$$

where Q is the quality factor of the overall filter and Q_{0} is that required for each biquad section.

- Note: A Matlab program was written to automate the design procedure for an arbitrary filter specification of order N .

Summary of Results

」 For the required specifications, the following values were obtained:

Feedback Coefficients	$\mathrm{F} 2=0.657640$
	$\mathrm{~F} 3=0.227545$
Feedforward Coefficients	$\mathrm{B} 0=0$
	$\mathrm{~B} 1=0.169792$
	$\mathrm{~B} 2=-0.216571$
	$\mathrm{~B} 3=1.129814$
Gain for the input and each biquad	$\mathrm{K} 0=0.604488$
stage	$\mathrm{K} 1=2.349$
	$\mathrm{~K} 2=2.165$
	$\mathrm{~K} 3=2$
Center frequency and Q_{0} of each	$\mathrm{F}_{0}=1.9975 \mathrm{MHz}$
biquad stage	$\mathrm{Q}_{0}=15.7$

Simulation Results System Level

\lrcorner The complete filter was simulated in Cadence at a system-level. The results are shown below:

Magnitude Response
Phase Response

Transistor Level Implementation

」To implement each biquadratic section, a two-integrator loop biquad OTA-C fillter was used.
\lrcorner Advantages with respect to Active-RC:

- Easy Tunability by changing the bias currents of the OTAs. (Active-RC needs the use of varactors).
- Lower Power Consumption and Smaller Area.
- Disadvantages with respect to Active-RC:
- Smaller Dynamic Range
- Poorer Linearity

Transistor Level Implementation of each Biquad Section

Design of Lossless Integrator

- The lossless integrator was designed to have unity gain at $\mathrm{f}_{0}=1.9975 \mathrm{MHz}$.

$$
\begin{gathered}
|H(\omega)|=\frac{g_{m 2}}{\omega C_{2}}=1 \\
g_{m 3}=376.52 \mu \mathrm{~A} / V \\
C_{2}=30 p F
\end{gathered}
$$

The following specifications are needed if a 5% variation in Q is allowed:

$$
\text { Excess Phase: } \phi_{E} \leq \frac{1}{2 Q}\left(1-\frac{Q}{Q_{a}}\right)=1.5 \times 10^{-3} \mathrm{rad}=0.086^{\circ}
$$

$$
D C \text { Gain: } A_{V} \geq \frac{2 Q}{\frac{Q}{Q_{a}}-1}=602=55.58 \mathrm{~dB}
$$

Design of Lossless Integrator

- Due to the relatively high DC gain required for the OTA, a foldedcascode topology was used:

Transconductance	DC Gain	GBW	Bias Current	Power Consumption	Active Area
$376.52 \mu \mathrm{~A} / \mathrm{V}$	64.1 dB	263 MHz	$40 \mu \mathrm{~A}$	$792 \mu \mathrm{~W}$	$727 \mu \mathrm{~m}^{2}$

Simulation Results of the Lossless Integrator

」The excess phase without any compensation was 1.17°.
」 Passive excess phase compensation was used $\rightarrow R=55 \Omega$.

Magnitude Response

Phase Response

Design of Biquadratic Bandpass Filter

- To reuse the designed OTA:

$$
\begin{gathered}
g_{m 3}=g_{m 2}=376.52 \mu \mathrm{~A} / \mathrm{V} \\
C_{1}=C_{2}=30 p F \\
g_{m 4}=\frac{C_{1}}{Q_{0}} \omega_{0}=23.827 \mu \mathrm{~A} / \mathrm{V}
\end{gathered}
$$

- Transconductance $\mathrm{g}_{\mathrm{m} 1}$ depends on K_{i}

$$
g_{m 1}=K_{i} g_{m 4}
$$

- For demonstrations purposes, $g_{m 1}=g_{m 4}$, i.e. $K=1$

Design of Biquadratic Bandpass

Filter

- Due to the relatively small transconductance required, source degeneration was used. Also, a PMOS differential pair was more suitable.

Transconductance	DC Gain	GBW	Bias Current	Power Consumption	Active Area
$23.827 \mu \mathrm{~A} / \mathrm{V}$	61.15 dB	62.3 MHz	$14 \mu \mathrm{~A}$	$277.2 \mu \mathrm{~W}$	$820 \mu \mathrm{~m}^{2}$

Simulation Results of the Biquadratic Bandpass Filter

Frequency Response

Step Response

Summation Nodes

」To complete the transistor-level design, we need two summation nodes:

Summation Nodes

」The summation nodes can be implemented with OTAs in the following configurations:

Summation Node for the Feedback Paths

Summation Node at the Output
\lrcorner If $g_{m 0}$ is chosen large enough, the output resistance of each OTA does not need to be very high. Excess Phase of OTAs can be a concern.

Summation Nodes

- Due to the desired low excess phase introduced by the OTAs, it is more convenient to use a simple differential pair.

Transconductance	Bias Current	Power Consumption	Active Area
$300 \mu \mathrm{~A} / \mathrm{V}$	$40 \mu \mathrm{~A}$	$264 \mu \mathrm{~W}$	$269 \mu \mathrm{~m}^{2}$

Simulation Results of the Complete FLF Filter (Transistor vs, System Level)

Ripple $\sim 0.2 \mathrm{~dB}$

Magnitude Response

Phase Response

Simulation Results of the Complete FLF Filter (Transistor vs, System Level)

Transient Response to a Sinewave

Step Response

Summary of Results

Specification	Value		
Passband	1.9 MHz to 2.1 MHz		
Passband Ripple	$\sim 0.2 \mathrm{~dB}$		
Attenuation	$\geq 40 \mathrm{~dB}$ at 0.6 MHz		
Power Consumption	8.53 mW		
Active Area	$11,434, \mu \mathrm{~m}^{2}$		
Total Area	$\sim 211,549 \mathrm{um}^{2}$		

Problems to be solved

- Voltage Swings The allowable input voltage swing is only 100 mV . A small voltage swing is expected, since the OTAs have a small linear range linited by \pm VDSAT of the input transistors (in case no linearization technique is used, such as source degeneration or others). Nevertheless, 100 mV is too small and is basically because the OTAs with $g_{m}=376.52 \mu \mathrm{~A} / \mathrm{V}$ use input transistors with a small VDSAT and no linearization technique is being used. I need to redesign these OTAs to increase the linear range.
\lrcorner BJas Networks To design the bias network for the folded-cascode OTAs capable of effectively tracking changes of VI due to process variations.
\lrcorner Sensitivity and Tunabilfty: To characterize the complete filter in terms of sensitivity and tunability.

」 Layout

References

[1] Sedra, Brackett, Filter Theory and Design: Active and Passive, Matrix Series in Circuits and Systems, pp. 589-659.
[2] Deliyannis, Sun, Fidler. Continuous-Time Active Filter Design. CRC Press 1999. pp. 151-180.
[3] G. Hurtig, III. The Primary Resonator Block Technique of Filter Synthesis Proc. Int. Filter Symposium, p.84, 1972.
[4] Barbargires, Explicit Design of General High-Order FLF OTA-C Filters, Electronics Letters. 5th August 1999, Vol. 35, No. 16, pp. 1289-1290.
[5] Jie Wu, Ezz I. EJ-Masry, Synthesis of Follow-the-Leader Feedloack LogDomain Filters. IEEE 1998, 0-7803-5008-1/98, pp. 381-384.

