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How can we relax or solve this image rejection 
problem ?

A possible solution is the use of more than one IF stage. This can 
relax the specs of the filters and other building blocks. How many 
IF stages are required ?
This depends on the design specs, a rule of thumb is to keep the ratio between 
the operating frequency before and after a downcoversion should be lower than 
10. Say for a signal at 900 MHz can be first downconverted to an IF of 250 
MHz, then filter out unwanted signal and second downconverted to 50 MHz 
and in a third downconversion the IF is 10 MHz.

How complex will be the filtering, power consumption and cost?

Analog and Mixed Signal Center- Texas A&M University (ESS)
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Multi-Stage IF Receivers

• From stage to stage the desired signal is further and further 
downconverted until the desired final IF is obtained.

• The ratio between the operating frequency before and after 
downconversion is usually kept lower than 10, say 4. For instance
a 1800 MHz signal is first downconverted to a first IF of 450 MHz,
then consecutively to 90 MHz and finally to 18 MHz.
• Note that each downconvertion stage has the same mirror frequency 
trouble than the single-stage IF receiver.
• Significant filtering between stages is required. This filtering is done 
with off chip filters to further complicate the sensitivity to parasitic 
components, also the power consumption will be high.
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How are the ωLO and ωIF selected?

– Key consideration is the so-called image frequency.

– Ideally ωIF should be high enough such that ωIMA never falls in band.

– There are two possible choices for ωLO

ωLO = ωRF + ωIF High side injection
or

ωLO = ωRF − ωIF Not a good  choice

• Regarding ωIF , one has to consider the VCO tuning range.

Assume the AM case {530 to 1,610} KHz = BW
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Aside, there is a trade-off in IF selection; low IF improves the selectivity due to a 
Lower Q requirement of the SAW filter, while  a high IF enhances the sensitivity due
to higher attenuation that can be offered by the image-rejection filter.

-Explore the case of FM VCO range.



7

IMAGE FREQUENCY PROBLEM

How to tackle this image frequency problem?
• Add a filter before and after
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The conventional receiver (RX) Architectures are:

1. Superheterodyne

2. Image Reject RX: Hartley and Weaver

3. Zero-Intermediate Frequency (IF) 

4. Low –Intermediate Frequency (IF)

These are the most used architectures in CMOS Receivers reported in the 
literature. The selection of the architecture is partially dependent on the standards.
However some standard such as the GSM/DCS/PCS/EDGE have been designed 
using  options 1, 3 and 4. Others such as Bluetooth have been dominated by low-IF
Architecture. In other cases for multi-standards for instance the 802.11a/b/g the 
Zero-IF has been the dominant architecture for their implementations.

Next we discuss these architectures and their pros and cons.
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Super Heterodyne Receiver  with Quadrature Down-conversion

• Good performance in terms of image and spurious suppression.
• A complex mixer is required.
• In the DSP a complex non-linear algorithm control the DC-level dynamically. 
• Low integration due to the use of SAW filters.
• Limited multi-standard ability.

Due to the difficulty to design broadband I/Q phase shifters an alternative solution (Weaver)
solution is  next discussed.

Analog and Mixed Signal Center, TAMU
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HARTLEY Image Rejection RX
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• Ideally the image is rejected, in practice the static gain/phase 
mismatches are 0.2 to 0.6 db/10 to 50, corresponding to an image 
rejection of roughly 30 to 40dB.
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Image Rejection Mixer Analysis
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The image input signal, for high-side injection of the LO, is vl,lm(t)=cos[(ωLO + ωIF)t].
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The Barber-Weaver Receiver
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What other receiver structures 
alternatives can be considered 

and with what properties ?

Can we make the IF very low, say to DC ?

How and at what price ?
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ω

• The LPF can be integrated. No image signal exists

• The RF spectrum is translated to the baseband in the first downconversion.

• The LO is equal to the input carrier frequency.

• This architecture operates only with double-sideband AM signals because it 
overlaps negative and positive parts of the input spectrum.

• For frequency and phase-modulated signals, the downconversion needs   
quadrature outputs. Two sides of FSK (or QPSK) carry different information. 

Direct Conversion or Zero-IF front end Receiver
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Direct Conversion Front End Receiver  With Quadrature 
Down-Conversion for FSK (digital) Demodulation

Analog and Mixed Signal Center, TAMU
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FSK Direct Conversion Receiver.-

The frequency shift keyed signals appear with opposed relative 
phase at the phase detector, giving a binary mark or space output 
according to weather the input signal  is lower or higher than the 
local oscillator frequency. Let assume these inputs (mark and space) 
signals are:
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The mixer outputs when a mark is sent are:

The quadrature oscillator signals to the mixers are:
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The double frequency components of I and Q are removed in the LPF 
of each channel, yielding: 
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Similarly when a space is sent:
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Direct-Conversion Receiver (continues)

Allow for high level integration.
Low power consumption.
Eliminate passive IF filters
Good for SSB digital modulation
Good Multi-standard ability.
DC offset problem.
Increased ADC dynamic range.

Because of limited filtering
Need of a high-Q VCO.

Analog and Mixed Signal Center, TAMU
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• Moves design efforts to baseband.
• Unprotected LO leakage into antenna.
• I/Q match required over high gain range
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Low IF Receiver Architecture

• All advantages of direct conversion.

• More difficult image rejection.

• DC spur (offset) outside the signal bandwidth.

• Digital processing includes adjacent channel image rejection.

• All weakness of direct conversion without the DC offset problem.

• In Band image rejection.
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0.35μm CMOS Bluetooth Low-IF Receiver IC:
An example of a Low-IF topology

PLL

LNA

I

Q
RF filter

Polyphase
Filter

Demodulator

Offset
Cancellation

/Decision

2.4GHz 2MHz

Authors: Wenjun Sheng, Bo Xia, Ahmed Emira, Chunyu  Xin, Ari   Valero-Lopez, Sung Tae 
Moon and Edgar  Sanchez-Sinencio.

Developed in about 1 ½ years by:
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• Publications:
– 2002 RFIC Conference, Best Student Paper Award (third place).

– Journal of Solid-State Circuits: January 2003 (Receiver) and 
August 2003 (Demodulator).

– Transactions on Circuits and Systems – II: November 2003 
(Complex Filter).

0.35μm CMOS Bluetooth Low-IF Receiver IC
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TRANSCEIVER CELLULAR RADIO BLOCK DIAGRAM
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GSM RECEIVER SYSTEM REQUIREMENTS

Gain of wanted signal > 100 dB

Noise Figure of LNA input less than 8 dB

Signal Level
(dBm)
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fo +1MHz +2MHz                      +3MHz
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Subsampling Receiver

2 digital low frequency mixers,  no noise and distortion.
Easier I&Q matching.
No DC offset and 1/f noise. Aliasing
More digital means easier integration on a CMOS process.
SNR degradation due to noise folding 
ADC & SH have to run at high clock to minimize noise 
folding.

RF=1846MHz
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RF LO
1.6 GHz
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Subsampling
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Digital Mixer
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Example: 1.8 GHz GSM Specifications: IF carrier frequency = 246 MHz,
Channel BW = 200 KHz, Input Dynamic Range = 90 dB.

246 MHz
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Sub-sampling Receiver: Basic Idea

BW

ffs 2fs
4fs

IF SignalAliased signal
to baseband
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• The sampling rate, fs, can be much less than 
the IF carrier.

• But, fs > 2×BW must be satisfied (to avoid 
destructive aliasing).
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Examples of Standards ( simplified versions)

2.4 – 2.48GHz2.401 –
2.48GHz

Frequency 
Band

DSSS-CCKFH-GFSKModulation

HigherLowerPower

1-11Mb/s1Mb/sData rate

802.11b (Wi-
Fi)   Bluetooth HomeRF

1Mb/s, 5Mb/s

Variable

FH-GFSK

2.401-2.480 GHz 
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250 KHz40 kHz250 kHzPeak bit rate

GFSK,BT=0.5OPQSK, 
BT=0.5

OPQSK, 
BT=0.5

Modulation

255255255Users per 
channel

FDDFDDFDDDuplex method

TDMACSMA/CSCSMA/CAMultiple access 
method

5 MHz5 MHz5 MHzChannel 
spacing

2412-2472 
MHZ

902-928 MHz2402-2480 
MHz

Frequency 
Range

EuropeNorth AmericaNorth AmericaParameter

IEEE 802.15.4 (“Zigbee”)
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1.2288 Mb/s1.2288 Mb/s1.2288 Mb/sChannel bit 

rate (chip rate) 

QPKK/OQPSKQPKK/OQPSKQPKK/OQPSKModulation

More than 15More than 15More than 15Users per 
channel

FDDFDDFDDDuplex method

CDMA/FDMCDMA/FDMCDMA/FDMMultiple access 
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484820Number of 
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1250 kHz1250 kHz1250 kHzChannel 
spacing
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869-894 MHzBase-to-mobile 
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824-849 MHzMobile-to-base 
frequency
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UMTS/DCS1800 Specifications

DCS1800 UMTS
Frequency Band
Channel BW
System Sensitivity
BER 

Blocking
Characteristics

1805 - 1880 MHz 2110 - 2170 MHz
200 kHz 5 MHz

-117 dBm(@32ksps)-102 dBm

1e-3 1e-3
600 - 800 kHz: -43 dBm
800 - 1600 kHz: -43 dBm
1600 - 3000 kHz: -33 dBm
> 3000 kHz: -26 dBm

Adjacent Channel
Interference

Cochannel: -9 dBc
200 kHz: 9 dBc
400 kHz: 41 dBc
600 kHz: 49 dBc

10 - 15 MHz: -56 dBm
15 - 60 MHz: -44 dBm
60 - 85 MHz: -30 dBm
>  85 MHz: -15 dBm

5  MHz: -52 dBm
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Multi-Channel, Multi-Mode Dynamic 
Range (1) DCS1800

LNA ADC

BW=2170-1805
=365 MHz

BW=max(band)
=75 MHz

-99 dBm

-15 dBm

-114 dBm

Gain: 15 dB
Input 1dB
compression: -13 dBm

-84 dBm

0 dBm

-99 dBm

Gain: 10 dB
Input 1dB
compression: 2 dBm

-77 dBm

-4 dBm

Amp

Gain: 17 dB
Input 1dB
compression: 0 dBm

-60 dBm

13 dBm

Fullscale Voltage:
2 Vpp



34

Multi-Channel, Multi-Mode Dynamic 
Range (2) DCS1800

Noise PSD

Blocker
CW carrierPB

Wanted Signal
Px

BW=200 kHz
In channel
quantization noise

PB = 13 dBm

Px = -60 dBm

To ensure that the quantization noise 
power is negligible compared to that of 
interferers and other sources of thermal 
and device noise, choose

SNRQF = 20 dB
With Fs = 150 MHz, calculated resolution of ADC is 11 bits.
The SFDR (for single blocker) can be calculated by:

SFDR = PB - Px + SNRQF = 93 dB

Required ADC Spec.:  FS >= 150 MHz, b = 11, SFDR = 93 dB 
Current State of the art ADC:

Fs = 80 MHz, b = 14, SFDR = 100 dB(AD6644) 
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Receiver Technology Trends

Traditional Superheterodyne Increasing Integration

Borrows from handset chip integration,
or new architecture like direct-conversion.

IF-Sampling/Digital I&Q
Reduces receiver size by eliminating IF stages
New architectures using more digital processing

Multi-mode, Wideband
Large reduction in receiver size
Major architectures shift to DSP-intensive radio, highly programmable
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Software Receiver
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Analog and Mixed Signal Center, TAMU
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TRADITIONAL RADIO[3]

Hardware Software

RF Modulation Coding Framing Processing

Hardware Software

RF Modulation Coding Framing Processing

SOFTWARE RADIO

Hardware
Software

RF Modulation Coding Framing Processing

Intelligence( Sense, Learn, Optimize)

COGNITIVE RADIO
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SOFTWARE RADIO

Idea introduced in 1991 by Joe Mitola
Direct RF digitization 
Single / multiple channels sets ADC BW
Reconfiguration by DSP software programs

RF
(1-2 GHz)

Antenna

BPF LNA+
VGA ADC DSP

Digital
bitstream
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SOFTWARE DEFINED RADIO

IF digitization
No specific standard for IF location
Reduced DC offset, flicker noise problems

IF
(100-200 MHz)

BPF LNA

LO1

RF
(1-2 GHz)

Antenna

VGA
IF

ADC

Digital
bit stream
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Literature survey
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