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Volterra Series: History
In 1887, Vito Volterra : “Volterra Series” as a model for 
nonlinear behavior
In 1942, Norbert Wiener: applied Volterra Series to 
nonlinear circuit analysis 
In 1957, J. F. Barrett: systematically applied Volterra 
series to nonlinear system; Later, D.A. George: used the 
multidimensional Laplace transformation to study 
Volterra operators
Nowadays: extensively used to calculate small, but 
nevertheless troublesome, distortion terms in transistor
amplifiers and systems.



4

Why do we need Volterra Series?
At high enough frequency, the assumption there’s no 
memory effect due to capacitors and inductors – NOT 
CORRECT!
Taylor series analysis: NO memory effect, cannot 
calculate distortion at high frequency 
Low frequency analysis: high-frequency effect can 
degrade distortion performance by 100% more than 
predicted.
eg. Fully differential circuits without mismatch: 

Low-frequency analysis predicts the HD2 to be zero
Volterra series reveals an HD2 as high as -32dB (see the numerical   

example later)
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When Volterra Series Are Good?
Can calculate the high-frequency-low-
distortion terms for weakly non-linear time-
invariant (NLTI) system with memory 
effect

“Weakly nonlinear” assumption:
Input excitation is “small” use polynomials 
to model nonlinearities

When small inputs, the 1st term dominates



When Volterra Series Are Bad?
Results are a sum of infinite numbers of terms, possible 
to diverge

Define: “weak enough” system (G1>>G3>>G5; G1, G3, 
G5 = 1st order, 3rd order, and 5th order Volterra kernels; 
G5 is small to be negligible), the infinite sums will 
converge and converge rapidly 

“Strongly nonlinear” system: sum will diverge, Volterra 
series becomes invalid Volterra series are impractical 
in strongly nonlinear problems
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Volterra Series: basic

Linear, discrete, causal and time-invariant system with memory 
(described by summing all the effects of past inputs with proper “weights”):

0
( ) ( ) ( )

t
y t h x t dτ τ τ= −∫

0
( ) ( ) ( )

n

i i
i

y n h x nτ τ
=

= ⋅ −∑

continuous time domain (the convolution sum becomes a convolution integral):

n: time index       h(τ): impulse response

Linear system without memory :
( ) ( )y t h x t= ⋅

Output y at instant t only depends on input x at that instant only. 
h: linear gain
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Volterra Series: basic

Continuous time domain (the convolution sum becomes a convolution integral) :

System with 2nd order nonlinearity:
2

2 2( ) ( )y t h x t= ⋅Memory-less system:

System with memory: (firstly: discrete and assume all the terms sum with equal weights)

0 0 0 0

( ) ( ) ( ) ( ) ( 1) ... ( ) (0)
( 1) ( 1) ( 1) ( 2) ... ( 1) (0)

... (0) (0) ( ) ( ) ( 1) ( ) ... ( ) ( )
n n n n

i i j i

y n x n x n x n x n x n x
x n x n x n x n x n x

x x x n x j x n x j x i x j
= = = =

= ⋅ + ⋅ − + + ⋅
+ − ⋅ − + − ⋅ − + + − ⋅

+ + ⋅ = ⋅ + − ⋅ + = ⋅∑ ∑ ∑∑
Next: Add proper weights to make it a weighed double sum:

( )2
0 0

( ) , ( ) ( )
n n

i j i j
j i

y n h p p x n p x n p
= =

= − ⋅ −∑∑
h2: a function of time index pi , pj (2nd order impulse response)

2 2 1 2 1 2 1 20
( ) ( , ) ( ) ( )

t
y t h x t x t d dτ τ τ τ τ τ= − −∫ ∫
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Volterra Series: basic

2
1 2( ) ( ) ( ) ... ( )n

ny t h x t h x t h x t= ⋅ + ⋅ + + ⋅

nth-order nonlinear system :

Memory-less system:

System with memory:

1 1 1 10

2 1 2 1 2 1 20

3 1 2 3 1 2 3 1 2 30

1 2 1 2 1 20

( ) ( ) ( )

( , ) ( ) ( )

( , , ) ( ) ( ) ( )

... ( , ... ) ( ) ( )... ( ) ...

t

t

t

t

n n n n

y t h x t d

h x t x t d d

h x t x t x t d d d

h x t x t x t d d d

τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ

= −

+ − −

+ − − −

+ + − − −

∫
∫ ∫
∫∫ ∫

∫ ∫L

1( , , )n nh τ τL :nth order Volterra Kernels (nth order impulse response of the system)

Volterra Series expansion: an infinite sum of multidimensional convolution integrals



Volterra Series vs. Taylor Series
Nonlinear memory-less system represented using Taylor 
series:

10

Nonlinear system with memory represented using 
Volterra series:

1 2 1 2 1 2[ ( )] ... ( , ... ) ( ) ( )... ( ) ...n n n n nH x t h x t x t x t d d dτ τ τ τ τ τ τ τ τ= − − −∫ ∫
: nth order Volterra operator.

in which

1( , , )n nh τ τL : nth order Volterra Kernels

2 3
1 2 3( ) ( ) ( ) ( ) ... ( ) ...n

ny t K x t K x t K x t K x t= ⋅ + ⋅ + ⋅ + + ⋅ +



Volterra kernel
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1( , , )n nh τ τL : nth order Volterra Kernels

1( , , ) 0n nh τ τ =L : for any τj < 0, j = 1,2, …,n

1( , , )n nh τ τL is not necessarily symmetrical to its variables

Always possible to construct a symmetrical kernel from the asymmetrical kernel

( ) ( )
1 1

1( , , ) ( , , )
!

s a
n n n n

p

h h
n

τ τ τ τ= ∑L L

Summation runs through all possible permutations
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Volterra series in frequency domain

1 1

1 1

1 1

( , , ) { ( , , )}

( , , ) ...n n

n n n n

jj
n n n

H F h

h e e d dω τω τ

ω ω τ τ

τ τ τ τ−−

=

= ∫ ∫
L L

L L L

Hn is the frequency domain Volterra kernel.

Why study the nonlinear  system in frequency domain? 

Frequency domain Volterra kernels are needed to calculate the 
distortion. eg. HD2, HD3, IM3,…

1( , , )n nh τ τL is:
eg. the n-dimensional Fourier transform for an nth order Volterra kernel

Fourier transform: time domain Volterra frequency domain Volterra



Volterra series in frequency domain
An input with m frequency components:
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The output of the nth order nonlinear system can be denoted as:

where                           can be chosen from

The operator 〇 means:
1) Multiply each frequency component in Xn by:
2) Shift phase by: 

1 2(cos cos ... cos )mX A t t tω ω ω= + + +

1 2, ,...p p pnω ω ω
They can be equal or different, and have both the + and – combination

(analogy to filtering operation)

For each term, the frequency components in Hn are the same as in Xn

2
1 1 2 1 2 1 2( ) ( , ) ... ( , ,... ) n

p p p n p p pnY H j X H j j X H j j j Xω ω ω ω ω ω= + + +o o o



Volterra series in frequency domain
eg, input with two frequency components: 1 2(cos cos )X A w t w t= +

1 2, ,...p p pnw w w can be chosen from: 1 2,w w+ +
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2
2 1 2( , )p pH jw jw Xo represents the following terms (eliminates all the overlap terms):

2 2
2 1 1 2 1 1 2 1 1 1 2 1

1( , ) ( , ) ( , ) cos(2 ( 2 ))
2

H jw jw X H jw jw H jw jw A w t H j w∠ = +∠

( )2 2
2 1 2 2 1 2 2 1 2 1 2 2 1 2( , ) ( , ) ( , ) cos( ( ( )))H jw jw X H jw jw H jw jw A w w t H j w w− ∠ − = − − +∠ −

2 2
2 2 2 2 2 2 2 2 2 2 2 2

1( , ) ( , ) ( , ) cos(2 ( 2 ))
2

H jw jw X H jw jw H jw jw A w t H j w∠ = +∠

( )2 2
2 1 2 2 1 2 2 1 2 1 2 2 1 2( , ) ( , ) ( , ) cos( ( ( )))H jw jw X H jw jw H jw jw A w w t H j w w∠ = + +∠ +

2 2
2 1 1 2 1 1 2 1 1

1( , ) ( , ) ( , )
2

H jw jw X H jw jw H jw jw A− ∠ − = −
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Definition of HD2, HD3 and IM3

1 1 23 1

1 1

, , )(1
4 ( )

H j j j
A

H j
ω ωω
ω

1 2 23 1

1 1

, , )(3
4 ( )

H j j j
A

H j
ω ωω
ω
−

( )
( )

2 1 1

1 1

,1
2

H jw jw
A

H jw

Volterra Series Taylor Series

HD2

HD3

IM3

2

1

1
2

a A
a

23

1

1
4

a A
a

23

1

3
4

a A
a

Observation:
1. Volterra series incorporates the frequency dependent effects

2. 3 33IM HD≠3 1 1 1 3 1 1 2( , , ) ( , , )H jw jw jw H jw jw jw≠ −



Example 1: Common Source Amplifier

vi

vo

M1 RL CL

MOS transistor: nonlinearity mainly introduced by transconductance;   
output impedance also contributes to distortion.

At high frequency, load impedance dominated by CL memory effect 
cannot be neglected, need to use Volterra series to analyze nonlinearity.
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Procedure:
1. Express output voltage Vout using Volterra series:

(1)

2. Large signal transfer function using long channel device model:

(2)

where

(3)

, ZL : impedance of R and C in parallel

3. Substitute (1) into (3):

(4)

where
17



Procedure:
4. To  find the Volterra kernel Hk, equate same order terms of vi in 

both sides of (4) and use the following relationships:

0
1 1

0

1( )
1

HH w D
D

λ
λ

+
= ≈

−

(5)

(6)

(7)

(8)

It can be found that: (9)
0

0
01

DH
Dλ

= ≈
−

(10)

( )2 1 1 2 0
2 1 2

0

( , )
1

D D H D H
H w w

D
λ

λ
+ +

= ≈
−

(11)

( )1 2 2 1
3 1 2 3

0

( , , )
1

D H D H
H w w w

D
λ

λ
+

= ≈
− (12)

where:
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Verification of Volterra Series
M1=5um/0.6um, K = 130uA/V2, go =100uA/V , gm = 500uA/V, 
Vod = 1.92V. Input at 0dBm(0.316V), f1 = 1GHz, f2 = 1.1GHz

Volterra
Analysis

Cadence
Simulation

HD2 -33.7dB -38dB

HD3 -49dB -58dB

IM3 -34dB -42.9dB



Simulation Results
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Example 2: Differential Pair

Assume the only memory effect is introduced by the parasitic   
capacitance (Cs) at node Vs, all other capacitance are ignored.

DC bias current:                                               (1a)

The small signal voltages applied to the gates of M1 and M2 are Vd/2  
and –Vd/2 respectively

The goal is to obtain the Volterra series expansion for the small 
signal drain current id of M1 (or M2) in terms of input differential 
voltage vd up to 3rd order
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Procedure:
1. Determine the Volterra series expansion of vs:

2. Apply KCL law at the common source node:

is the k-th order term of the Volterra series of vs

(1b)

(2a)

where Vs, Vgs1 and Vgs2 can be written into DC and signal small signal terms:

(2b)



Procedure:
3. Combining equations (1) & (2) yields:

where

(3)

Substituting (1b) into (3) and taking phasor form of : 

(4)

23
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Procedure:
4. Keeping only the 1st  order terms of (4):

5. Substituting (6) into (4), keeping only the 2nd order terms:

(5)

(6)

(7)

(8)

Notice that w becomes w1+w2 because we are interested in the 2nd order terms

Because of the operator    , (8) consists of four equations for four different cases:

Where w1 and w2 are symbols and wa, wb are the 
frequency components of input.
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Procedure:
6. For the 3rd order term:

So:

7. Higher order kernels can be calculated by repeating the 
above steps.

(9)

Replace jw by j(w1+w2+w3) since we are interested in the 3rd order terms
Notice that G1 always consists of one frequency component (w); G2 always 
consists of two (w1, w2), and G3 consists of three(w1, w2, w3).
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Procedure:
8. Our final goal is to obtain the Volterra series 
expansion for id in terms of vd:

Using the MOS device equation containing DC and time varying components:

Volterra series expansion of id becomes:

(11)

( ) ( )
2 2

2

2 2 2 2 2 2
d d d

d d GS s t GS t s s GS t
v v vK K KI i V v V K V V v v V V⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + − − = − ⋅ − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
2

2 2 2
d d

d m s s
v vKi g v v⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

( ) ( )22
1 2 3 2 2 2

1... ... ... ...
2 8 2 2d d d m d s d s d s

K K Ki i i g v v v v v v⎛ ⎞+ + + = − − + + + − +⎜ ⎟
⎝ ⎠
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Procedure:
9. Keeping the 1st order term of vd coefficients in (11):

10. Isolating the 2nd order terms of vd coefficients in (11):

11. Separating the 3rd order terms of vd coefficients from (11):



Summary of steps to determine 
Volterra Series: 

Step1. Determine the Volterra series expansion of the 
intermediate variable vs in terms of input signal vd

(1)

Step2. Using KCL and MOS device equation to express 
output signal id in terms of vd and vs

(2)

Step3. Substitute vs determined in(1) into (2) and derive:

28

Hn becomes a function of Gn, and Gn has been determined in step1.
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Volterra series versus Taylor series
of a MOS differential pair

Note that for Taylor expansion, second order 
distortion is 0, while Volterra series reveals the 
high frequency second order distortion for a 
differential pair.
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Verification of Volterra Series

-50

-45

-40

-35

-30

-25

0 1 2 3 4 5

Frequency (GHz)

H
D

3 
(d

B
)

Simulation
Volterra

For MOS transistors with W/L=50um/0.6um, Volterra 
series and simulated HD3 result comparison.

1

3
2

4
3

H
HV

HD d=



Example 3: Current Mirror

At high frequency, the parasitic capacitance of the transistors cannot be neglected. 
Therefore, Volterra Series is used to model this non-linear system with memory.
The parasitic capacitance Cp seen at the gate of M1, M2 affects the Vgs, 
which is related to the current mirror accuracy. 
The goal is to obtain the Volterra series expansion for the small signal drain
current io of M2 in terms of input current Iin up to 3rd order. 
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Follow the same steps as described in Example 1:
1. Determine the Volterra series of the gate voltage vi first:

vi = G1〇 Iin + G2 〇 I2in + G3 〇 I3in + … = vi1 + vi2 + vi3 + … (1)

where vik = Gk 〇 Ikin is the k-th order term of the Volterra series of vi

2. Appling KCL at the gate node of M1:

BIASinti
i

p IIVVK
dt

dVC +=−+ 2)(
2

(2)

where Vi can be written into DC and small signal term: 
Vi = VI + vi                                                               (3)

Also,
BIAStI IVVK

=− 2)(
2

(4)

Procedure:
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Procedure:
3. Substituting (3) and (4) into (2) and simplifying it:

iniim
i

p IvKvg
dt
dvC =++ 2

2

where gm = K(VI – Vt) is the transconductance of M1

dt
dvi

( ) iniiiiiimp IvvvKvvvgjwC =++++++++ 2
321321 ...

2
...))((

Substituting (5) into (1) and taking the phasor form of

(5)

(6)

33



Procedure:
4. The Volterra kernel Gk can be obtained by equating the same order 

term of Iin at both sides of (6). Keeping only the first order terms: 

)()( 1 wGgjwC mp + 〇 Iin = Iin (7)

mp gjwC
wG

+
=

1)(1 (8)

5. Substituting into (6), and keeping only the second order terms:

),(])([ 21221 wwGgCwwj mp ++ )(
2

2
1 wGK

〇 I2in + 〇 I2in = 0 (9)

)
2

1]()(1[
2

)(
)(

1
2

)(

)(
2),(

1
213

21

2

21

2
1

212

m

p

m

p

m

mp

mp

mp

g
Cjw

g
C

wwj
g
K

gCwwj
gjwC

K

gCwwj

wGK

wwG

−+−−≈

++

+
−=

++
−=

(10)
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Procedure:
6. Factoring out the third order terms from (6):

),,(])([ 3213321 wwwGgCwwwj mp +++ 〇 I3in + K )(),( 11212 wGwwG 〇 I3in = 0 

2 1 2 1 1
3 1 2 3

1 2 3

2
1

1 2 1 2 34

( , ) ( )( , , )
( )

2
[1 ( ) ](1 )[1 ( ) ]

2

p m

p p p

m m m m

KG w w G wG w w w
j w w w C g

C jw C CK j w w j w w w
g g g g

= −
+ + +

≈ − + − − + +

7. Now, vi has been expanded into Volterra series up to the third order. 
Our final goal is to obtain the Volterra series expansion for io in terms of 
Iin:

io = H1〇 Iin + H2 〇 I2in + H3 〇 I3in + … = io1 + io2 + io3 + …

(11)

(12)
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Procedure:
8. The small signal output current io can be related to vi as:

io = gm2vi                                                              (13)

Substituting (1) and  (12) into (13):

io1 + io2 + io3 = gm2G1 (w1) o Iin + gm2G2(w1,w2)  o I2in + gm2G3(w1,w2,w3) o I3in

)1()()(
1

1
1

2
1121

m

p

m

m
m g

C
jw

g
gwGgwH −≈=

)
2

1]()(1[
2

),(),(
1

1

1
21

1
3

2
2122212

m

p

m

p

m

m
m g

Cjw
g
C

wwj
g

KgwwGgwwH −+−−≈=

3 1 2 3 2 3 1 2 3
2

12
1 2 1 2 34

1 1 1 1

( , , ) ( , , )
2

[1 ( ) ](1 )[1 ( ) ]
2

m

p p pm

m m m m

H w w w g G w w w
C jw C CK g j w w j w w w

g g g g

=

≈ − + − − + +
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Verification of Volterra Series
Assume a current gain of 4, use long channel length to minimize channel 
length modulation effect. Choose M1 = 2um/1um, M2 = 4*2um/1um, IBIAS = 
84.4uA, Cp~90fF, gm1 = 176μA/V, gm2 = 705μA/V, Iin = A1cosw1t + 
A2cosw2t , while w1 = 910 * 2pi MHz, w2 = 900 * 2pi MHz, A1 = A2 = IBIAS/10 
= 8.441μA, we can get: 

2
3 1 2 22

1 1

( , , )33 62
4 ( )

H jw jw jwAIM dB
H jw
− −

= =

IIP3 = Pin + IM3/2 = -91.5dBm + 62/2 = - 60.5dBm
1-dB compression point = IIP3 – 10dB = -70.5dBm



Simulation Results
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Comparison between Volterra analytical 
results and Cadence simulation

Volterra analysis Cadence simulation

IIP3 -60.5dBm -53.7dBm

IM3 62dB 76dB

1-dB point -70.5dBm -74.7dBm
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Example 4:Gilbert Mixer
The high frequency 

linearity of  Gilbert mixer
is dominated by the V-I 
conversion.

Transistors M3-M6 
works as large signal 
current switches and are 
not limiting factor for 
linearity.

Assume VLO is not 
switching ans so the 
mixer is a NLTI system
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Volterra kernels:
The Volterra series analysis of Gilbert mixer follows the Volterra 
series analysis of a differential pair
The Volterra kernels for the V-I conversion transistors are:
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Finding IM3 and HD3
the linearity expression for Gilbert mixer cell is:

1 1 23 1
3

1 1

, , )(1
4 ( ) rf

H j j j
HD A

H j
ω ωω
ω

=

1 2 23 1
3

1 1

, , )(3
4 ( ) rf

H j j j
IM A

H j
ω ωω
ω

=

IM3 is caused by adjacent channel interference
w2 is defined to be at –w1-∆w such that the 3rd order 
nonlinearity term 2w1+w2 will generate a term at w1-∆w
Arf should be replaced by Ainterference



Low frequency approximation

16( )GS t

K
V V
−

=
−

2
1 1 23 1

3
1 1

, , )(1
4 ( ) 32

rf
rf

SS

AH KHD A
H j I

ω ωω
ω

= =

( )
2 GS t
K V V= −

For low frequency (no memory), HD3 agrees with Taylor series expansion
Do the same for IM3 and it would agree with Taylor series expansion

43
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IM3 and HD3
For intermediate frequency: j(w1+w2)Cs << 2K(VGS-Vt)

( )
( )
( )

2
12

3 1
32 2

rf

SS GS t GS t

A j w CsKHD
I V V K V V

= −
⋅ − −

( ) ( )

2
int 1

2

3 ( )23 1
3 232

erference

GS tGS t

A j w CsIM
K V VV V

⎡ ⎤
= −⎢ ⎥

−− ⎢ ⎥⎣ ⎦

3 33IM HD≠
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When VLO is switching…

The mixer is no longer a time-invariant system
The high-frequency distortion still dominated by V-I 
conversion
To incorporate switching effect, multiply the output by the 
Fourier series representation of a square wave
Frequency of the 1st and 3rd order products is shifted by 
fLO, Amplitude are reduced by 1/pi.
HD3 and IM3 remain unchanged
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Gilbert Mixer IM3 Verification
Assume a Gilbert Mixer has V-I conversion transistor 
M1=M2=50um/0.6um. Let frf=2GHz, two interference 
signal with 0dBm power (0.316V) at 2GHz(w1) and 
2.001GHz(w2). Cs ~= 0.1pF. Make VGS-Vt = 0.387V, 
K=6250 uA/V2, thus gm = 2.42mA/V

Theoretically: 1 2 23 1
3

1 1

, , )(3 24.0
4 ( ) rf

H
IM A dB

H j
ω ωω
ω

= = −
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Simulation result
Gilbert cell simulation result: with two tones at 2GHz and 2.001GHz, 
the input amplitude of each tone is 0dBm.

IM3 is around -25.5 dB from simulation. The deviation error is 1.5dB(5.9%)



HD2

2
2

1

32
2
rfA H

HD dB
H

= = −

Ignoring memory: 2
2

1

0
2
rfA a

HD
a

= =

Incorporating Memory:

Volterra series analysis predicts that RF feedthrough will still be 
Present in a balance mixer with zero mismatch!
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Conclusions
Taylor series analysis cannot calculate the distortion 
correctly at high frequency due to memory effect.

Volterra series can calculate the high-frequency-low-
distortion terms for any weakly non-linear time-invariant 
system with memory effect.

Volterra series may diverge when nonlinearity is strong

Volterra series are applied to four basic circuit examples 
and theoretical results agrees with simulation 
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