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 Harold S. Black, 1927  Negative feedback concept
 Negative feedback provides:

• Gain stabilization
• Reduction of nonlinearity
• Impedance transformation

 But also brings:
• Potential stability problems
• Causes accuracy errors for low dc gain

 Here we will discuss frequency – compensation 
techniques

Stability of Linear Systems
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 Feedback forces xd to become smaller
 It takes time to detect xo and feedback to the input
 xd could be overcorrected (diverge and create instability)
 How to find the optimal (practical) xd will be based on 

frequency compensation techniques

Stability Problem
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 GM is the number of dBs by 
which                  can increase 
until it becomes 0 dB

 Phase margin ϕm is the number 
of degrees by which               
can be reduced until it reaches  
–π (-180º)

or

Gain Margin & Phase Margin

Conceptual Gain Margin GM
and Phase Margin ϕm
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* ωx is the crossover frequency
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 At the crossover point, 

 The non-ideal closed loop transfer function becomes

Gain Margin & Phase Margin

      mj
mxx ejTjT   18011

   
 

 
   

 mm

ideal
j

ideal

x

ideal

x

x

x

x
xCL

j
A

e
A

jT
A

jT
jA

jA
jAjH

x 







 sincos11

/1111


















 
  

 1,
sincos1

1
2





 Ideal

mm

IdealxCL AAjH

5



 Observe that different ϕm yield different errors. i.e.

Gain Margin & Phase Margin

• In practical systems,
ϕm = 60º is required

• A worst case ϕm = 45º
for a typical lower limit

• For ϕm < 60º, we have

indicating a peaked closed-
loop response. 

ϕm

90º 0.707

60º 1.00

45º 1.31

30º 1.93

15º 3.83

0º ∞ (oscillatory 
behavior)
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 A good Opamp design implies:
(i)                    over as wide a band of frequencies as possible
(ii) The zeroes of                    must be all in the left-hand plane

These two conditions often conflict with each other. These 
trade-offs should be carefully considered. Let’s consider a 
practical amplifier characterized with these poles,

The characteristic equation becomes

Why a dominant pole is required for a stable amplifier?
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Note that βA0 is the critical parameter that determines the pole 
locations for a given α1, α2 and α3 (0≤ β ≤1). Furthermore, when 
βA0 = 0, the roots are at -α1, -α2 and -α3. Therefore, for small βA0, 
the roots should be in the left-hand plane (LHP). However, for 
βA0>>1, two of the roots might be forced to move to the right-
hand plane (RHP). This can be verified by applying Routh’s
stability criterion. Let us write the polynomial as

In order to have, in the above equation, left half plane roots, all 
the coefficients must be positive and satisfy

Critical Value of βA0
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The condition for imaginary-axis roots become

Now, for s=jω being a root, both real and imaginary parts must 
be zero. That is,

Then the two roots are placed at

Critical Value of βA0
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Then

Thus, the critical value of βA0 becomes

Thus when βA0 becomes (βA0)C, the amplifier will oscillate at

Also when βA0 > (βA0)C, the amplifier has RHP poles, therefore is 
unstable. 

Critical Value of βA0
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 Let us consider some numerical examples. Let A0 = 105, 
(i) Three equal poles α1=α2=α3=107rad/s. 
The amplifier oscillates at

(ii)                           then the critical loop gains yields

thus the amplifier is stable if

Since                                      causes                   ,
which means that for an inverting (non-inverting) configuration, 
the gain must be greater than -4 (5) to keep the amplifier stable.

Critical Value of βA0
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(iii) Let us determine A0C under the most stringent condition β=1. 
Then from previous equation,

In order to have a large A0, the poles must be widely separated. 
i.e. α1<<α2<<α3, then the A0 inequality can be approximated as

To obtain a conservative A0, let α2=α3, which yields

This inequality bounds the DC gain to provide a stable closed 
loop configuration.

Critical Value of βA0
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 Peaking in the frequency domain usually implies ringing in the 
time domain

 Normalized second-order all-pole (low pass) system

Peaking and Ringing
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 GP: Peak gain – We have the error function,

To find out the maximum value of |E(jω)|, calculate the 
derivative of D(ω) and make it equal to zero

For             , use ω* in Eq. (1) and we get the peak gain

Peaking and Ringing
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 OS: Overshoot – Inverse Laplace transform 

For a 2nd order all pole error function, the impulse response is

Consider the normalized step response of this system,

Use the damping factor    to represent,

Peaking and Ringing
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Usually, the damping factor ξ=1/2Q is used to characterize a 
physical 2nd order system. Thus, we rewrite the normalized 
time-domain equation (3)

For under damped case ξ < 1 (Q > 0.5), the overshoot is the 
peak value of y(t). To find the peak value, we first calculate 
the derivative of y(t), and make it equal to 0.

Peaking and Ringing
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Peaking and Ringing
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Time t

n=1 n=2 n=3 n=4 n=5 n=6n=0

Peaking and Ringing
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Peaking and Ringing
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Therefore, the global peak value of y(t) is achieved when n=1.

Thus, the overshoot is defined as
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 ϕm : Phase Margin
For a 2nd order all-pole error function

Therefore, the loop gain ܶ ݏ is given by 
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Solve the equation and get the crossover frequency,

And thus the phase margin is

 Study the relationship between phase margin and gain peaking 
(Eq.2) or overshoot (Eq.5), we have

Peaking and Ringing
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Peaking and Ringing
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 One effective method of assessing
stability for minimum phase systems
from the magnitude Bode plots is by determining the ROC.

 The Rate of Closure (ROC)
Determining the ROC is done by observing the slopes of ܣ
and 1 ⁄ߚ at their intersection point (cross-over frequency ௫݂) 
and deciding the magnitude of their difference.

The ROC is used to estimate the phase margin and therefore the 
stability (How ?)

The Rate of Closure (ROC)
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The Rate of Closure (ROC)

 Observing a single-root transfer function

 Empirical Equation

This correlation holds also if H(s) has more than one root, 
provided the roots are real negative, and well separated, say, at 
least a decade apart.
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 In a feedback system, suppose both |A|
and |1/β| have been graphed.

∠ܶ ݆ ௫݂ ൌ ܣ∠ ݆ ௫݂ െ ଵିߚ∠ ݆ ௫݂

≅ െ4.5 ൈ ܥܱܴ
Thus, the ROC can be used to estimate the phase margin (Page 4)

 Cases

The Rate of Closure (ROC)
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The Rate of Closure (ROC)
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 Constant-GBP OpAmp (i.e.                     )
• Unconditionally stable with frequency-independent 

feedback, or            . (e.g. in a non-inverting or inverting 
amplifier, the feedback network contains only resistors)

• Stable for any β≤1.
• In feedback systems, since now we have 

these circuits enjoy

• Typically, due to additional high-order poles in OpAmps,

Stability in Constant-GBP OpAmp
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 Feedback Pole 
Feedback network includes reactive elements  Stability may 
no longer be unconditional

 A pole fp (or a zero) of β
becomes a zero fz (or a 
pole) for 1/β.

 For the case 

Feedback Pole
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The effect of a pole within the feedback loop
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 Examine the error function 

ܧ ݏ ൌ ு಴ಽ ௦
஺೔೏೐ೌ೗

ൌ ଵ
ଵାଵ ்⁄

,         ܶ	 ൌ ߚܣ	 ௜ௗ௘௔௟ܣ   , ൌ
ଵ
ఉ

Using OpAmp high-frequency approximation: ܣ ݆߱ ൌ ீ஻
௝ఠ

ൌ ௙೟
௝௙

Refer to page 14, and we have s=j2πf. The peak value of E(s) can 
be obtained. For Q >> 1, the approximate result is

Feedback Pole
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 The lower fz compared to β0ft, the higher the Q and, hence, the 
more pronounced the peaking and ringing.

 Derive the phase margin

 As                  ,                          and ROC = 40dB/dec
The circuit is on the verge of oscillation!

Feedback Pole
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 Feedback pole example:
differentiator

 Assume constant-GBP OpAmp

 To stabilize the differentiator,
add a series resistance Rs.

Differentiator

Uncompensated
Differentiator

a

C R

Vi

Vo

Cj
Z

fjfRZ
Z

C
zC

C


 1,

/1
1









  jffjGBjfA t //  

a

C R

Vi

Vo

RS

Compensated
Differentiator
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 At low frequency, RS has little effect because RS<<|1/jωC|
 At high frequency, C acts as a short compared to RS, The 

feedback network becomes |1/β| = 1+R/RS.

Differentiator

Uncompensated Compensated
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 Assume RS << RC, the series resistor RS introduces an extra 
pole frequency fe

 Choose                          ,  we have                   

Therefore, ROC = 30 dB/dec, ϕm ≈ 45º

Differentiator
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 All practical OpAmps exhibit stray input capacitance. The net 
capacitance Cn of the inverting input toward ground is

Cd is the diffrential Cap between input pins, Cc/2 is the 
common-mode cap of each input to ground, and Cext is the 
external parasitic cap.

 In the absence of Cf , 
there’s a pole in feedback

ROC ≈ 40 dB/dec
(See page 29)

Stray Input Capacitance Compensation

extCdn CCCC  2/

     nCRRjfRR 2112 //21/11 


 a

Cf

R2

Vi

Vo

R1

Cn

34



 Solution: Introduce a feedback capacitance Cf to create feedback phase 
lead.

 In the presence of ܥ௙ we have 
1
ߚ ൌ 1 ൅

ܴଶ
ܴଵ

1 ൅ ݆݂ ௭݂⁄
1 ൅ ݆݂ ௣݂⁄

௭݂ ൌ
ଵ

ଶగ ஼೙ା஼೑ ோభฮோమ
,   ௣݂ ൌ

ଵ
ଶగ஼೑ோమ

 To have ߶௠ ൌ 45° (i.e. ROC=30 dB/dec): 
Make the cross-over frequency exactly at ௣݂

ܣ ݆ ௣݂ ൌ ଵ
ఉ ௝௙೛

≅ ଵ
ఉಮ
				→ ܣ ݆ ௣݂ ≅ 1 ൅ ஼೙

஼೑

Since 

ܣ ݆ ௣݂ ൌ ௙೟
௙೛
			→ 		 ଵ

௙೛
ൌ ௙ܴଶܥߨ2 ൌ

ଵ
௙೟

1 ൅ ஼೙
஼೑

Solve the equation to get ܥ௙

௙ܥ ൌ
ଵା ଵା଼గோమ஼೙௙೟

ସగோమ௙೟

Stray Input Capacitance Compensation
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 To have ߶௠ ൌ 90° (i.e. ROC=20 dB/dec): 
Place ௣݂ exactly on the top of ௭݂ to cause a pole-zero cancellation

௭݂ ൌ ௣݂
௡ܥ ൅ ௙ܥ ܴଵฮܴଶ ൌ ௙ܴଶܥ

Thus using simple algebra

௙ܥ ൌ
Rଵ
ܴଶ

௡ܥ

Stray Input Capacitance Compensation

(Neutral Compensation)
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 There’re applications in which the external load is heavily 
capacitive.

 Load capacitance CL

• A new pole is formed with 
output resistance ro and CL

• Ignore loading by the feedback 
network

• The loaded gain is
• ROC is increased and thus invite instability

 Solution: Add a small series resistance RS to decouple the 
output from CL

Capacitive-Load Isolation

    11 2,/1   Lopploaded CrffjfAA 
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Capacitive-Load Isolation
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R
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 The poles of the uncompensated OpAmp are located close
together thus accumulating about 180° of phase shift before
the 0-dB crossover frequency ௫݂.

 Unstable device, thus efforts must be done to stabilize it.
 Example of uncompensated OpAmps is 748 , which is the

uncompensated version of 741.
 They can be approximated as a three-pole system

ܽ ݆݂ ൌ
ܽ଴

1 ൅ ݆݂ ଵ݂⁄ 1 ൅ ݆݂ ଶ݂⁄ 1 ൅ ݆݂ ଷ݂⁄

Uncompensated OpAmp

ଵ݂ ൌ
1

ଵܥଵܴߨ2 ଶ݂ ൌ
1

ଶܥଶܴߨ2 ଷ݂ ൌ
1

ଷܥଷܴߨ2

Three-pole OpAmp model
39



 With a frequency-independent feedback (i.e. 1 ⁄ߚ 	curve is flat) 
around an uncompensated OpAmp, we have

ܶ ൌ ܽ ߚ
ܶ curve can be visualized as the |ܽ| curve with the1 ⁄ߚ

line is the new 0-dB axis
• For 1 ߚ ൒ ܽሺ݆݂ି ଵଷହ°ሻ⁄

ROC ≤ 30 dB/dec
߶௠ ൒ 45°

• For ܽሺ݆݂ି ଵ଼଴°ሻ ൑ 1 ⁄ߚ ൏ ܽ ݆݂ି ଵଷହ°

30 dB/dec ≤ ROC ≤ 40 dB/dec
0° ൑ ߶௠ ൑ 45°

• For 1 ⁄ߚ ൑ ܽሺ݆݂ି ଵ଼଴°ሻ
ROC < 40 dB/dec
߶௠ ൏ 0°

Stability of Uncompensated OpAmp

Three-pole open-loop response
40



 The uncompensated OpAmp provides only adequate phase 
margin only in high-gain applications (i.e. high 1 ⁄ߚ )

 To provide adequate phase margin in low-gain application, 
frequency compensation is needed.
• Internal compensation  Achieved by changing ܽ ݆݂
• External compensation  Achieved by changing ߚ ݆݂

Stability of Uncompensated OpAmp

41



 How to stabilize the circuit by modifying the open loop 
response ܽሺ݆݂ሻ?
• Dominant-Pole Compensation
• Shunt-Capacitance Compensation
• Miller Compensation
• Pole-Zero Compensation
• Feedforward Compensation

Internal Frequency Compensation

42



 An additional pole at sufficiently low frequency is created to
insure a roll-off rate of -20 dB/dec all the way up to the
crossover frequency.

 Cases:
• ௫݂ሺ௡௘௪ሻ ൌ ଵ݂:
ROC = 30 dB/dec ߶௠ ൌ 45°
• ௫݂ሺ௡௘௪ሻ ൏ ଵ݂:
ROC = 20 dB/dec ߶௠ ≅ 90°

 This technique causes a drastic
gain reduction above ௗ݂

Dominant-Pole Compensation

43



 Numerical example:
• rd=∞, ro=0
• g1=2 mA/V, R1=100 kΩ, g2=10 mA/V, R2=50 kΩ
• ଵ݂ ൌ ,ݖܪ݇	100 ଶ݂ ൌ ,ݖܪܯ	1 ଷ݂ ൌ ݖܪܯ	10
• Find the required value of ௗ݂ for ߶௠ ൌ 45° with ߚ ൌ 1

For ϕm=45º, we have
௫݂ ൌ ଵ݂

Draw a straight line of slope -20 dB/dec until it intercepts with the DC gain
asymptote at point D and get ௗ݂.

௔ሺ௝௙ೣሺ೙೐ೢሻሻ
௔ሺ௝௙೏ሻ

ൌ ௙೏
௙ೣ ೙೐ೢ

Thus:

ௗ݂ ൌ
௙ೣ ೙೐ೢ
ఉ௔బ

ൌ ௙భ
ఉൈ ௚భோభ௚మோమ

ൌ ݖܪ	1

Dominant-Pole Compensation

44
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 The dominant-pole technique adds a fourth pole  Extra cost
and less bandwidth.

 This technique rearranges the existing rather than creating a
new pole.

 It decreases the first (dominant) pole to sufficiently low
frequency to insure a roll-off rate of -20 dB/dec all the way up
to the crossover frequency.

Shunt-Capacitance Compensation

45

ଵ݂ ൌ
1

ଵܴߨ2 ଵܥ ൅ ௖ܥ ଶ݂ ൌ
1

ଶܥଶܴߨ2 ଷ݂ ൌ
1

ଷܥଷܴߨ2



 Cases:
• ௫݂ሺ௡௘௪ሻ ൌ ଶ݂:
ROC = 30 dB/dec ߶௠ ൌ 45°
• ௫݂ሺ௡௘௪ሻ ൏ ଶ݂:
ROC = 20 dB/dec ߶௠ ≅ 90°

 Since ଵ݂ሺ௡௘௪ሻ is chosen to insure roll-off rate of -20 dB/dec all
the way up to the crossover frequency.

Thus:
௔ ௝௙ೣ ೙೐ೢ
௔ ௝௙భ ೙೐ೢ

ൌ ௙భ ೙೐ೢ
௙ೣ ௡௘௪ ଵ݂ ௡௘௪ ൌ ௙ೣ ௡௘௪

ఉ௔బ

Shunt-Capacitance Compensation

46



 The first pole is decreased by adding an extra capacitance to
the internal node causing it.

 Given the value of ଵ݂ሺ௡௘௪ሻ from the desired value of ߶௠, we
can find ௖ܥ

ଵ݂ ௡௘௪ ൌ ௫݂
଴ܽߚ

ൌ
1

ଵܴߨ2 ଵܥ ൅ ௖ܥ
			→ 				 ௖ܥ ≅

଴ܽߚ
ଵܴߨ2 ௫݂

Shunt-Capacitance Compensation
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 Numerical example:
• rd=∞, ro=0
• g1=2 mA/V, R1=100 kΩ
• g2=10 mA/V, R2=50 kΩ
• ଵ݂ ൌ ,ݖܪ݇	100 ଶ݂ ൌ ,ݖܪܯ	1 ଷ݂ ൌ ݖܪܯ	10
• Find the required value of ௖ܥ for ߶௠ ൌ 45° with ߚ ൌ 1

For ߶௠ ൌ 45° , ௫݂ ൌ ଶ݂ ൌ ݖܪܯ	1

Then, ଵ݂ ௡௘௪ ൌ ௙మ
௔బఉ

ൌ ௙మ
௚భோభ௚మோమ

ൌ 				ݖܪ	10 → 			 ௖ܥ ൌ
ଵ

ଶగோభ௙భ ೙೐ೢ
ൌ 159	݂݊

Shunt-Capacitance Compensation

EXTREMELY LARGE
Unsuitable for monolithic fabrication
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 Miller’s Theorem
If Av is the voltage gain from node 1 to 2, then a floating
impedance ZF can be converted to two grounded impedances Z1
and Z2:

Miller Compensation
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 Applying Miller’s theorem to a floating capacitance connected 
between the input and output nodes of an amplifier. 

 The floating capacitance is converted to two grounded 
capacitances at the input and output of the amplifier. 

 The capacitance at the input node is larger than the original 
floating capacitance (Miller multiplication effect)

Miller Compensation

  Fvv

F

v

F

CAjA
Cj

A
ZZ










1
1

1

1

11 


F
vv

F

v

F

CAjA

Cj

A

ZZ





 








11

1
11

1

112





[Liu]

50



 This technique places a capacitor ௖ܥ in the feedback path of
one of the internal stages to take advantage of Miller
multiplication of capacitors.

 The reflected capacitances due to ௖ܥ and the DC voltage gain
between ଶܸ and ଵܸ (ܽଶ ൌ െ݃ଶܴଶ) yields

ଵ,௖ܥ ൌ ௖ܥ 1 ൅ ݃ଶܴଶ and    ܥଶ,௖ ൌ ௖ܥ 	1 ൅ ଵ
௚మோమ

ଵ,௖ܥ ≅ ܽଶ ௖ܥ and ଶ,௖ܥ ≅ ௖ܥ
 A low-frequency dominant pole can be created with a

moderate capacitor value.

Miller Compensation
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 Accurate transfer function
௏మ
௏೏
≅ ݃ଵܴଵ݃ଶܴଶ

ଵି௝௙ ௙೥⁄
ଵି௝௙ ௙భ ೙೐ೢ⁄ ଵି௝௙ ௙మ ೙೐ೢ⁄

 Pole/zero locations

Miller Compensation

߱௭ 		ൌ
௚మ
஼೎ RHP zero

߱ଵሺ௡௘௪ሻ 		ൌ
ଵ

ோభ஼భା௚మோమோభ஼೎ାோమ஼మ
≅ ଵ

ோభ௚మோమ஼೎
ൌ ଵ

௔మ ஼೎ோభ
Dominant Pole

߱ଶሺ௡௘௪ሻ 		ൌ
ோభ஼భାோభ௚మோమ஼೎ାோమ஼మ
ோభோమ ஼భ஼೎ା஼భ஼మା஼೎஼మ

≅ ௚మ஼೎
஼భ஼೎ା஼భ஼మା஼೎஼మ

Second Pole
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 Right-half plane zero:
• The RHP zero is a result of the feedforward path through ௖ܥ

• The circuit is no longer a minimum-phase system.
• It introduces excessive phase shift, thus reduces the phase margin.
• In bipolar OpAmps, it is usually at much higher frequency than the

poles → 1 െ ݂ ௭݂⁄ ≅ 1

Miller Compensation
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 Pole Splitting
• Increasing ௖ܥ lowers ଵ݂ሺ௡௘௪ሻ and raises ଶ݂ ௡௘௪

• The shift in ଶ݂ eases the amount of shift required by ଵ݂ → Higher
bandwidth

• Increasing ௖ܥ above a certain limit makes ଶ݂ stops to increase.

߱ଶ ௡௘௪ ൌ ߨ2 ଶ݂ ௡௘௪ ൌ
݃ଶ

ଵܥ ൅
ଶܥଵܥ
௖ܥ

൅ ଶܥ
≅

݃ଶ
ଵܥ ൅ ଶܥ

ቤ
஼೎≫஼భ,஼మ

Miller Compensation
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 Numerical example:
• rd=∞, ro=0 , g1=2 mA/V, R1=100 kΩ, g2=10 mA/V, R2=50 kΩ
• ଵ݂ ൌ ,ݖܪ݇	100 ଶ݂ ൌ ,ݖܪܯ	1 ଷ݂ ൌ ݖܪܯ	10
• Find the required value of ௖ܥ for ߶௠ ൌ 45° with ߚ ൌ 1

From ଵ݂ and ଶ݂, we can calculate ଵܥ ൌ ܨ݌	15.9 and ଶܥ ൌ ܨ݌	3.18

Assume ௖ܥ is large → ଶ݂ ௡௘௪ ൌ ௚మ
ଶగሺ஼భା஼మሻ

ൌ ݖܪܯ	83.3 ൐ ଷ݂

Since ଶ݂ ௡௘௪ ൐ ଷ݂ → ଷ݂ is the first non-dominant pole
For ߶௠ ൌ 45°, ௫݂ ൌ ଷ݂ ൌ ݖܪܯ	10

Then, ଵ݂ ௡௘௪ ൌ ௙య
௔బఉ

ൌ ௙య
௚భோభ௚మோమ

ൌ ݖܪ	100

௖ܥ ൌ
1

ଵ݃ଶܴଶܴߨ2 ଵ݂ሺ௡௘௪ሻ
ൌ 31.8 ܨ݌

Miller Compensation

Much smaller than that of shunt-
capacitance compensation

Suitable for monolithic fabrication
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 This technique uses a large compensation
capacitor ௖ܥ) ≫ (ଵܥ to lower the first pole ଵ݂.
 It also uses a small resistor (ܴ௖ ≪ ܴଵ)
to create a zero that cancels the second pole ଶ݂.
 The compensated response is then dominated by the lowered

first pole up to ଷ݂

 Transfer function
ଵܸ

ௗܸ
ൌ െ݃ଵܴଵ

1 ൅ ݆݂ ௭݂⁄
1 ൅ ݆݂ ଵ݂ሺ௡௘௪ሻ⁄ 1 ൅ ݆݂ ସ݂⁄

 Pole/zero locations
ଵ݂ ௡௘௪ ≅

1
௖ܥଵܴߨ2

				 , 				 ௭݂ ൌ
1

௖ܥ௖ܴߨ2
				 , 		 ସ݂ ≅

1
ଵܥ௖ܴߨ2

Pole-Zero Compensation
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 ௖ܥ and ܴ௖ lowers the dominant pole ଵ݂ ௡௘௪ ≪ ଵ݂, creates a
zero ௭݂, and creates an additional pole ସ݂ ≫ ௭݂

 Choose ܴ௖ such that ௭݂ cancels ଶ݂

 The open loop gain now becomes
ܽ௡௘௪ ݆݂ ൌ

ܽ଴
1 ൅ ݆݂ ଵ݂ ௡௘௪⁄ 1 ൅ ݆݂ ଷ݂⁄ 1 ൅ ݆݂ ସ݂⁄

Pole-Zero Compensation

- To have ߶௠ ൌ 45°, the cross-over 
frequency should be ଷ݂

- Since the compensated response is 
dominated by ଵ݂ ௡௘௪ 	pole up to ଷ݂

ܽ ݆ ଵ݂ ௡௘௪

ܽ ݆ ଷ݂
ൌ

ܽ଴
1 ⁄ߚ ൌ ଷ݂

ଵ݂ ௡௘௪

- Thus, ଵ݂ሺ௡௘௪ሻ ൌ 	 ଷ݂ ܽ଴ߚ⁄
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 Numerical example:
• rd=∞, ro=0 , g1=2 mA/V, R1=100 kΩ, g2=10 mA/V, R2=50 kΩ
• ଵ݂ ൌ ,ݖܪ݇	100 ଶ݂ ൌ ,ݖܪܯ	1 ଷ݂ ൌ ݖܪܯ	10
• Find the required value of ௖ܥ for ߶௠ ൌ 45° with ߚ ൌ 1

From ଵ݂ and ଶ݂, we can calculate ଵܥ ൌ ܨ݌	15.9 and ଶܥ ൌ ܨ݌	3.18
For ߶௠ ൌ 45° , ௫݂ ൌ ଷ݂ ൌ ݖܪܯ	10

Then, ଵ݂ ௡௘௪ ൌ ௙య
௔బఉ

ൌ ௙య
௚భோభ௚మோమ

ൌ 				ݖܪ	100 → 			 ௖ܥ ൌ
ଵ

ଶగோభ௙భ ೙೐ೢ
ൌ 15.9	݂݊

ܴ௖ is chosen such that ௭݂ ൌ ଶ݂ → ܴ௖ ൌ
ଵ

ଶగ஼೎௙మ
ൌ 10	Ω

Since ସ݂ ൌ
ଵ

ଶగோ೎஼భ
ൌ ݖܪܩ1 ≫ ଷ݂ → It will not affect the phase margin

Pole-Zero Compensation

Relaxed compared to shunt-
capacitance compensation, 

but still LARGE

g2V1

R2 C2

+
V2
-g1Vd

R1 C1

+
V1
-

Cc

Rc
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 In multistage amplifiers, usually there is one stage that acts as
a bandwidth bottleneck by contributing a substantial amount of
phase shift in the vicinity of the cross-over frequency ௫݂

 This technique creates a high-frequency bypass around the
bottleneck stage to suppress its phase at ௫݂, thus improving ߶௠

Feedforward Compensation
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 The bypass around the bottleneck stage is a high-pass function

݄ ݆݂ ൌ ௝௙ ௙బ⁄
ଵା௝௙ ௙బ⁄

 The compensated open-loop gain is
ܽ௖௢௠௣ ݆݂ ൌ ܽଵ ݆݂ ൅ ݄ ݆݂ ܽଶ ݆݂

 At low frequency: ݄ ݆݂ ≪ ܽଵ ݆݂
ܽ௖௢௠௣ ݆݂ ≅ ܽଵ ݆݂ ܽଶ ݆݂ ൌ ܽ ݆݂

The high low-frequency gain advantage of the uncompensated
amplifier still hold.
 At high frequency: ݄ ݆݂ ≫ ܽଵ ݆݂

ܽ௖௢௠௣ ݆݂ ≅ ܽଶ ݆݂
The dynamics are controlled only by ܽଶ → Wider bandwidth &
Lower phase shift

Feedforward Compensation
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 Dominant-pole compensation:

• It creates an additional pole at sufficiently low frequency.
• It doesn’t take advantage of the existing poles.
• It suffers from extremely low bandwidth.

 Shunt-capacitance compensation:

• It rearranges the existing poles rather than creating an additional pole.
• It moves the first pole to sufficiently low frequency.
• The value of the shunt capacitance is extremely large → Extra cost

Summary of Internal Frequency Compensation 
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 Miller compensation:

• It takes advantage of Miller multiplicative effect of capacitors, thus
requires moderate capacitance to move the first pole to sufficiently low
frequency.

• It causes pole splitting, where the dominant pole is reduced and the first
non-dominant pole is raised in frequency.

Summary of Internal Frequency Compensation 
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 Pole-zero compensation:

• Similar to shunt-capacitance technique, a large capacitor is used to shift
the first pole to sufficiently low frequency.

• A small resistance is used to create a zero that cancels the first non-
dominant pole

 Feedforward Compensation

• It places a high frequency bypass around the bottleneck stage that
contributes the most phase shift in the vicinity of ௫݂

Summary of Internal Frequency Compensation 
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 How to stabilize the circuit by modifying its feedback factor ߚ ?
• Reducing the Loop Gain
• Input-Lag Compensation
• Feedback-Lead Compensation

External Frequency Compensation
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 This method shifts |1/β| curve upwards until it intercepts the |a| 
curve at ݂ ൌ ݂థ೘ିଵ଼଴º, where ߶௠ is the desired phase margin.

 The shift is obtained by connecting resistance ܴ௖ across the 
inputs. 

1
ߚ ൌ 1 ൅

ܴଶ
ܴଵฮܴ௖

ൌ 1 ൅
ܴଶ
ܴଵ

൅
ܴଶ
ܴ௖

Reducing the Loop Gain

[Franco]

Uncompensated

Shifts the curve upwards 
to improve ϕm
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 Rc is chosen to achieve the desired phase margin ߶௠:
ଵ
ఉ
ൌ 1 ൅ ோమ

ோభ
൅ ோమ

ோ೎
ൌ ܽሺ݆݂థ೘ିଵ଼଴°ሻ

Then, 
ܴ௖ ൌ

ோమ
௔ሺ௝௙ഝ೘షభఴబ°ሻ ି ଵାோమ ோభ⁄

Reducing the Loop Gain

[Franco]
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 Prices that we are paying for stability:
• Gain Error:

஼௅ܪ ൌ
1
ߚ

ܶ
1 ൅ ܶ ൌ

௜ௗ௘௔௟ܣ
1 ൅ 1 ܶ⁄

The presence of ܴܿ reduces ܶ, thus resulting in a larger gain error.

• DC Noise Gain:

஼௅ܪ ݆0 ≅
1
଴ߚ

ൌ 1 ൅
ܴଶ
ܴଵ

൅
ܴଶ
ܴ௖

The presence of ܴ௖ causes an increased DC-noise gain which 
may result in an intolerable DC output error.

THERE’S NO FREE LUNCH !

Reducing the Loop Gain
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[Franco]

 The high DC-noise gain of the previous method can be 
overcome by placing a capacitance ܿܥ in series with ܴ௖. 
• High frequencies: 

 ௖ܥ is short.


ଵ
ఉ

curve is unchanged compared to the previous case.

• Low frequencies: 
 ௖ܥ is open


ଵ
ఉ
ൌ 1 ൅ ோమ

ோభ
, we now have much higher DC loop gain & much lower DC 

output error.

Input-Lag Compensation
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 Rc is chosen to achieve the desired phase margin ߶௠:
ଵ
ఉಮ

ൌ 1 ൅ ோమ
ோభ
൅ ோమ

ோ೎
ൌ ܽሺ݆݂థ೘ିଵ଼଴°ሻ

Then, 

ܴ௖ ൌ
ோమ

௔ሺ௝௙ഝ೘షభఴబ°ሻ ି ଵାோమ ோభ⁄

 To avoid degrading ߶௠, it is good practice to position the 
second breakpoint of 1 ⁄ߚ 	 curve a decade below ݂థ೘ିଵ଼଴°.

ଵ
ଶగ஼೎ோ೎

ൌ ଵ
ଵ଴
݂థ೘ିଵ଼଴°.

Then, 

௖ܥ ൌ
ହ

గோ೎௙ഝ೘షభఴబ°

Input-Lag Compensation
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 Advantage(s):
 Lower DC-noise gain due to the presence of ܥ௖.
 It allows for higher slew rate compared with internal compensation techniques: 

Op-amp is spared from having to charge/discharge internal compensation 
capacitance.

 Disadvantage(s):
 Long settling tail because of the presence of pole-zero doublet of the feedback 

network (|ߚ|).
 Increased high-frequency noise in the vicinity of the cross-over frequency. 
 Low closed-loop differential input impedance ሺܼௗሻ which may cause high-

frequency input loading

ܼௗ ൌ ,							ௗฮܼ௖ݖ 		 ܼ௖ ൌ ܴ௖ ൅ 1 ⁄௖ܥݏ ≪ ௗݖ
ௗݖ	** is the open loop input impedance of the Op-Amp. 

Input-Lag Compensation
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 This technique uses a feedback capacitance ܥ௙ to create phase 
lead in the feedback path.

 The phase lead is designed to be in the vicinity of the 
crossover frequency ௫݂ which is were ߶௠ is boosted.

Feedback-Lead Compensation
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 Analysis:
ଵ
ఉ
ൌ 1 ൅

ோమቛ௓಴೑
ோభ

ൌ 1 ൅ ோమ
ோభ

ଵା௝௙ ௙೥⁄
ଵା௝௙ ௙೛⁄

where, 

௣݂ ൌ
ଵ

ଶగ஼೑ோమ
				 , 				 ௭݂ ൌ 1 ൅ ோమ

ோభ ௣݂

• The phase-lag provided by ଵ
ఉ ௝ఠ

is maximum at ௭݂ ௣݂.

• The optimum value of ܥ௙ , that maximizes the phase margin,
is the one that makes this point at the crossover frequency.

௫݂ ൌ ௭݂ ௣݂ ൌ ௣݂ 1 ൅
ܴଶ
ܴଵ

• The cross-over frequency can be obtained from 

ܽ ݆ ௫݂ ൌ
1

ߚ ݆ ௫݂
ൌ 1 ൅

ܴଶ
ܴଵ

• Having ௫݂ ,	the optimum ܥ௙ can be found

௙ܥ ൌ
1 ൅ ܴଶ ܴଵ⁄
ଶܴߨ2 ௫݂

Feedback-Lead Compensation
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 How much phase margin can we get ?
• At the geometric mean of ௣݂ and ௭݂, we have

∠ ଵ
ఉ

ൌ 90° െ 2 tanିଵ 1 ൅ ோమ
ோభ

• The larger the value of 1 ൅ ܴଶ ܴଵ⁄ , the greater the
contribution of 1/ߚ to the phase margin.

• E.g. 1 ൅ ܴଶ ܴଵ⁄ ൌ 10	 → ∠ 1 ⁄ߚ ݆ ௫݂ ൌ െ55°	
Thus, 

∠ܶ ݆ ௫݂ ൌ ∠ܽሺ݆ ௫݂ሻ െ ∠ ଵ
ఉ ௝௙ೣ

ൌ ∠ܽ ݆ ௫݂ ൅ 55°

- The phase margin is improved by 55° due to
feedback-lead compensation.

Feedback-Lead Compensation

73



 Advantage(s):
 ௙ܥ helps to counteract the effect of the input stray capacitance ܥ௡ as we 

discussed beforehand.
 It provides better filtering for internally generated noise.

 Disadvantage(s):
 It doesn’t have the slew-rate advantage of the input-lag compensation.  

Feedback-Lead Compensation
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 These OpAmps are compensated for unconditional stability
only when used with 1 ⁄ߚ above a specified value

1
ߚ ൒

1
ߚ ௠௜௡

 They provide a constant GBP only for ܽ ൒ 1 ⁄ߚ ௠௜௡

 They offer higher GBP and slew rate.
 Example

• The fully compensated LF356 OpAmp uses ௖ܥ ≅ ܨ݌	10 to provide
ܲܤܩ ൌ ݖܪܯ	5 and ܴܵ ൌ 12	 ܸ ⁄ݏߤ for any ܽ ൒ 1 V/V.

• The decompensated version of the same OpAmp, LF357, uses ௖ܥ ≅
ܨ݌	3 and provides ܲܤܩ ൌ ݖܪܯ	20 and ܴܵ ൌ 50ܸ ⁄ݏߤ but only for
any ܽ ൒ 5 V/V.

Decompensated OpAmps
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