

ECEN 607 (ESS)

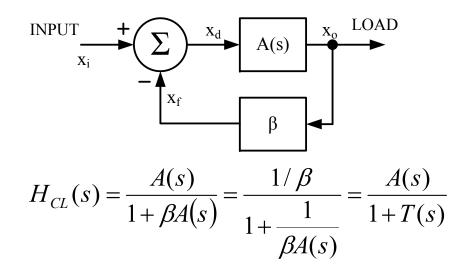
Op-Amps Stability and Frequency Compensation Techniques

Analog & Mixed-Signal Center
Texas A&M University

Stability of Linear Systems

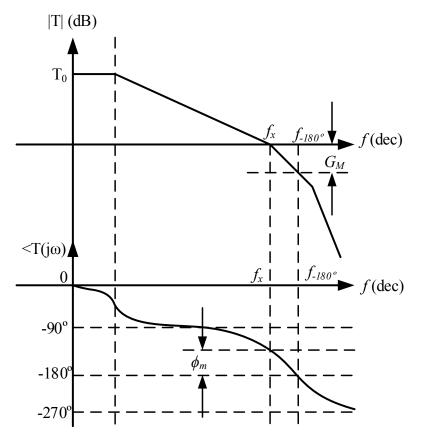
- Harold S. Black, 1927 → Negative feedback concept
- Negative feedback provides:
 - Gain stabilization
 - Reduction of nonlinearity
 - Impedance transformation
- But also brings:
 - Potential stability problems
 - Causes accuracy errors for low dc gain
- Here we will discuss frequency compensation techniques

Stability Problem



- \blacksquare Feedback forces x_d to become smaller
- \blacksquare It takes time to detect x_o and feedback to the input
- \blacksquare x_d could be overcorrected (diverge and create instability)
- How to find the optimal (practical) x_d will be based on frequency compensation techniques

Gain Margin & Phase Margin



Conceptual Gain Margin G_M and Phase Margin ϕ_m

■ G_M is the number of dBs by which $|T(j\omega_{-180^\circ})|$ can increase until it becomes 0 dB

$$G_M = 20\log \frac{1}{|T(j\omega_{-180^\circ})|}$$

Phase margin ϕ_m is the number of degrees by which $\angle T(j\omega_x)$ can be reduced until it reaches $-\pi$ (-180°)

$$\phi_m = 180^\circ + \angle T(j\omega_x)$$

or

$$\angle T(j\omega_x) = \phi_m - 180^\circ$$

* ω_x is the crossover frequency

Gain Margin & Phase Margin

At the crossover point,

$$T(j\omega_x) = 1 \cdot \angle T(j\omega_x) = 1 \cdot \angle (\phi_m - 180^\circ) = -e^{j\phi_m}$$

■ The non-ideal closed loop transfer function becomes

$$H_{CL}(j\omega_{x}) = \frac{A(j\omega_{x})}{1 + \beta A(j\omega_{x})} = \frac{A(j\omega_{x})}{1 + T(j\omega_{x})} = \frac{A_{ideal}}{1 + 1/T(j\omega_{x})}$$

$$= \frac{A_{ideal}}{1 - e^{-j\omega_{x}}} = \frac{A_{ideal}}{1 - (\cos\phi_{m} - j\sin\phi_{m})}$$

$$|H_{CL}(j\omega_{x})| = |A_{Ideal}| \frac{1}{\sqrt{(1 - \cos\phi_{m})^{2} + \sin^{2}\phi_{m}}}, A_{Ideal} = \frac{1}{\beta}$$

Gain Margin & Phase Margin

 \blacksquare Observe that different ϕ_m yield different errors. i.e.

ϕ_m	$ H_{CL}(j\omega_x) $
90°	0.707
60°	1.00
45°	1.31
30°	1.93
15°	3.83
$0_{\rm o}$	∞ (oscillatory behavior)

- In practical systems, $\phi_m = 60^{\circ}$ is required
- A worst case $\phi_m = 45^{\circ}$ for a typical lower limit
- For $\phi_m < 60^{\circ}$, we have $|A(j\omega_x)| > |A_{ideal}|$

indicating a peaked closed-loop response.

Why a dominant pole is required for a stable amplifier?

- A good Opamp design implies:
 - (i) $|\beta A(j\omega)| >> 1$ over as wide a band of frequencies as possible
 - (ii) The zeroes of $\beta A(j\omega) 1 = 0$ must be all in the left-hand plane

These two conditions often conflict with each other. These trade-offs should be carefully considered. Let's consider a practical amplifier characterized with these poles,

$$A(s) = -\frac{A_0}{(1+s/\alpha_1)(1+s/\alpha_2)(1+s/\alpha_3)} = \frac{-A_0\alpha_1\alpha_2\alpha_3}{(s+\alpha_1)(s+\alpha_2)(s+\alpha_3)}$$

The characteristic equation becomes

$$\beta A(s) - 1 = \frac{-\beta A_0 \alpha_1 \alpha_2 \alpha_3}{(s + \alpha_1)(s + \alpha_2)(s + \alpha_3)} - 1 = 0$$
$$(s + \alpha_1)(s + \alpha_2)(s + \alpha_3) + \beta A_0 \alpha_1 \alpha_2 \alpha_3 = 0$$

$$s^{3} + s^{2}(\alpha_{1} + \alpha_{2} + \alpha_{1}) + s(\alpha_{1}\alpha_{2} + \alpha_{1}\alpha_{3} + \alpha_{2}\alpha_{3}) + \alpha_{1}\alpha_{2}\alpha_{3}(1 + \beta A_{0}) = 0$$

Note that βA_0 is the critical parameter that determines the pole locations for a given α_1 , α_2 and α_3 ($0 \le \beta \le 1$). Furthermore, when $\beta A_0 = 0$, the roots are at $-\alpha_1$, $-\alpha_2$ and $-\alpha_3$. Therefore, for small βA_0 , the roots should be in the left-hand plane (LHP). However, for $\beta A_0 >> 1$, two of the roots might be forced to move to the right-hand plane (RHP). This can be verified by applying Routh's stability criterion. Let us write the polynomial as

$$b_3 s^3 + b_2 s^2 + b_1 s + b_0 = 0$$

In order to have, in the above equation, left half plane roots, all the coefficients must be positive and satisfy

$$b_2 b_1 - b_3 b_0 = 0$$

The condition for imaginary-axis roots become

$$b_{3}(j\omega)^{3} + b_{2}(j\omega)^{2} + b_{1}(j\omega) + b_{0} = 0$$
$$(b_{0} - b_{2}\omega^{2}) + j\omega(b_{1} - b_{3}\omega^{2}) = 0$$

Now, for $s=j\omega$ being a root, both real and imaginary parts must be zero. That is,

$$b_0 - b_2 \omega^2 = 0$$
, $b_1 - b_3 \omega^2 = 0$ or $b_3 b_0 = b_1 b_2$

Then the two roots are placed at

$$\omega_{p_{2,3}} = \pm j \sqrt{\frac{b_0}{b_2}} = \pm j \sqrt{\frac{b_1}{b_3}}$$

$$b_0 = \frac{b_2 b_1}{b_3}$$

Then

$$\alpha_1 \alpha_2 \alpha_3 \left[1 + (\beta A_0)_C \right] = (\alpha_1 + \alpha_2 + \alpha_3) (\alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3)$$

Thus, the critical value of βA_0 becomes

$$(\beta A_0)_C = 2 + \frac{\alpha_1}{\alpha_2} + \frac{\alpha_1}{\alpha_3} + \frac{\alpha_2}{\alpha_1} + \frac{\alpha_2}{\alpha_3} + \frac{\alpha_3}{\alpha_1} + \frac{\alpha_3}{\alpha_2}$$

Thus when βA_{θ} becomes $(\beta A_{\theta})_{C}$, the amplifier will oscillate at

$$\omega_{OSC} = \sqrt{\frac{b_1}{b_3}} = \sqrt{\alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3}$$

Also when $\beta A_0 > (\beta A_0)_C$, the amplifier has RHP poles, therefore is **unstable**.

- Let us consider some numerical examples. Let $A_0 = 10^5$,
- (i) Three equal poles $\alpha_1 = \alpha_2 = \alpha_3 = 10^7 \text{rad/s}$.

The amplifier oscillates at $\omega_{OSC} = \alpha_1 \sqrt{3} = 10^7 \sqrt{3} \text{ rad/s}$

$$(\beta A_0)_C = 8$$
, $\beta_C = 8 / A_0 = 8 \times 10^{-5}$

(ii) $\alpha_1 = \frac{\alpha_2}{10^4} = \frac{\alpha_3}{10^4}$, then the critical loop gains yields

$$(\beta A_0)_C \cong 2\frac{\alpha_2}{\alpha_1} = 2 \times 10^4$$
, thus the amplifier is stable if $\beta_C < \frac{2 \times 10^4}{A_0} = 0.2$

Since $\beta = R_1 / (R_1 + R_2), \beta < 0.2$ causes $(R_2 / R_1) > 4$,

which means that for an inverting (non-inverting) configuration, the gain must be greater than -4 (5) to keep the amplifier stable.

(iii) Let us determine $A_{\theta C}$ under the most stringent condition $\beta=1$. Then from previous equation,

$$A_0 < 2 + \frac{\alpha_1}{\alpha_2} + \frac{\alpha_1}{\alpha_3} + \frac{\alpha_2}{\alpha_1} + \frac{\alpha_2}{\alpha_3} + \frac{\alpha_3}{\alpha_1} + \frac{\alpha_3}{\alpha_2}$$

In order to have a large A_0 , the poles must be widely separated. i.e. $\alpha_1 << \alpha_2 << \alpha_3$, then the A_0 inequality can be approximated as

$$A_0 < \frac{\alpha_2}{\alpha_1} + \frac{\alpha_3}{\alpha_1}$$

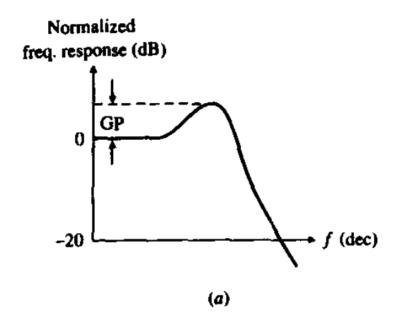
To obtain a conservative A_0 , let $\alpha_2 = \alpha_3$, which yields

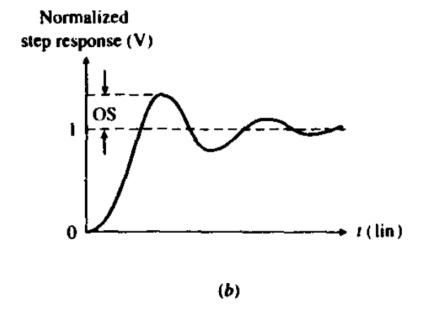
$$A_0 < 2\frac{\alpha_2}{\alpha_1}$$

This inequality bounds the DC gain to provide a stable closed loop configuration.

- Peaking in the frequency domain usually implies ringing in the time domain
- Normalized second-order all-pole (low pass) system

$$H(s)|_{s=j\omega} = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}|_{s=j\omega} = \frac{1}{1 - \frac{\omega^2}{\omega_0^2} + j\frac{1}{Q} \cdot \frac{\omega}{\omega_0}}$$





 \blacksquare **GP:** Peak gain – We have the error function,

$$\left| E(j\omega) \right| = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \frac{1}{Q^2} \cdot \frac{\omega^2}{\omega_0^2}}} = \frac{1}{\sqrt{D(\omega)}}$$
(1)

To find out the maximum value of $|E(j\omega)|$, calculate the derivative of $D(\omega)$ and make it equal to zero

$$\frac{d}{d\omega}D(\omega) = 2\left(\frac{1}{Q^2} - 2\right)\frac{\omega}{{\omega_0}^2} + \frac{4\omega^3}{{\omega_0}^4} = 0 \quad \implies \omega_*^2 = \left(1 - \frac{1}{2Q^2}\right)\omega_0^2 \text{ OR } \omega = 0$$

For $Q > 1/\sqrt{2}$, use ω_* in Eq. (1) and we get the peak gain

$$GP = \frac{2Q^2}{\sqrt{4Q^2 - 1}} \ge |E(j0)| = 1 \tag{2}$$

■ *OS*: Overshoot – Inverse Laplace transform

s - domain:
$$\frac{b}{(s+a)^2+b^2} \xrightarrow{Inverse \\ Laplace}$$
 time - doamin: $e^{-at} \sin(bt)u(t)$

For a 2nd order all pole error function, the **impulse response** is

$$H(s)\big|_{s=j\omega} = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2} = \frac{\omega_0^2}{b} \cdot \frac{b}{(s+a)^2 + b^2}$$

$$u = \frac{\omega_0}{2Q}$$

$$\frac{l_{nverse}}{Laplace} h(t) = \frac{\omega_0^2}{b}e^{-at}\sin(bt)u(t)$$

$$b = \sqrt{1 - \frac{1}{4Q^2}}\omega_0$$

Consider the normalized step response of this system,

$$y(t) = \int_0^t h(t)dt = 1 - \frac{\omega_0}{b} e^{-at} \sin(bt + \phi), \phi = \tan^{-1} \frac{b}{a} \quad \text{for } v_{in}(t) = u(t) = \int \delta(t)dt \quad (3)$$

Use the damping factor ξ to represent, $a = \xi \omega_0, b = \sqrt{1 - \xi^2} \omega_0$

Usually, the damping factor $\xi=1/2Q$ is used to characterize a physical 2nd order system. Thus, we rewrite the normalized time-domain equation (3)

$$y(t) = 1 - \frac{\omega_0}{b} e^{-at} \sin(bt + \phi) = 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_0 t} \sin(\sqrt{1 - \xi^2} \omega_0 t + \phi)$$

$$\phi = \tan^{-1} \frac{b}{a} = \tan^{-1} \frac{\sqrt{1 - \xi^2}}{\xi}$$

$$\phi \approx \frac{\sqrt{1 - \xi^2}}{\xi}, \text{ for small } \xi$$
(4)

For under damped case $\xi < 1$ (Q > 0.5), the overshoot is the peak value of y(t). To find the peak value, we first calculate the derivative of y(t), and make it equal to 0.

$$\frac{d}{d(\omega_0 t)} y(t) = -\frac{\xi}{\sqrt{1 - \xi^2}} e^{-\xi \omega_0 t} \sin\left(\sqrt{1 - \xi^2} \omega_0 t + \phi\right) + e^{-\xi \omega_0 t} \cos\left(\sqrt{1 - \xi^2} \omega_0 t + \phi\right)$$

$$\frac{d}{d(\omega_0 t)} y(t) = 0$$

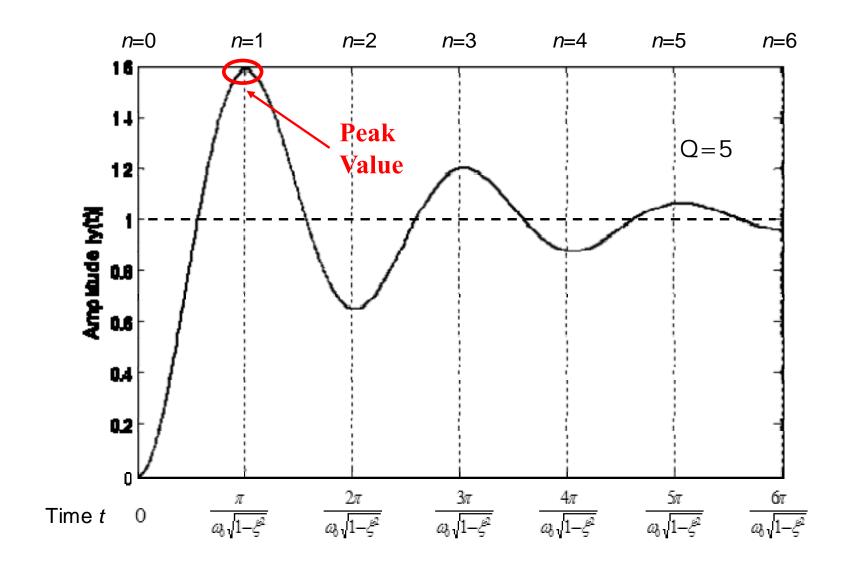
$$\Rightarrow \frac{\xi}{\sqrt{1 - \xi^2}} e^{-\xi \omega_0 t} \sin\left(\sqrt{1 - \xi^2} \omega_0 t + \phi\right) = e^{-\xi \omega_0 t} \cos\left(\sqrt{1 - \xi^2} \omega_0 t + \phi\right)$$

$$\Rightarrow \tan\left(\sqrt{1 - \xi^2} \omega_0 t + \phi\right) = \frac{\sqrt{1 - \xi^2}}{\xi} = \tan \phi$$

To satisfy the equality above, we have

$$\omega_0 t = \frac{n\pi}{\sqrt{1-\xi^2}}, n = 0,1,2,...$$

In other words, the **normalized step response** y(t) in Eq.(3) achieves **extreme values** at time steps of n=0, 1, 2, ...



$$n = 0, \quad \omega_0 t = 0, \qquad y(t) = 0$$

$$n = 1, \quad \omega_0 t = \frac{\pi}{\sqrt{1 - \xi^2}}, \quad y(t) = 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\frac{\pi \xi}{\sqrt{1 - \xi^2}}} \sin(\pi + \phi) = 1 + e^{-\frac{\pi \xi}{\sqrt{1 - \xi^2}}}$$

$$n = 2, \quad \omega_0 t = \frac{2\pi}{\sqrt{1 - \xi^2}}, \quad y(t) = 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\frac{2\pi \xi}{\sqrt{1 - \xi^2}}} \sin(2\pi + \phi) = 1 - e^{-\frac{2\pi \xi}{\sqrt{1 - \xi^2}}}$$

$$n = 3, \quad \omega_0 t = \frac{3\pi}{\sqrt{1 - \xi^2}}, \quad y(t) = 1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\frac{3\pi \xi}{\sqrt{1 - \xi^2}}} \sin(3\pi + \phi) = 1 + e^{-\frac{3\pi \xi}{\sqrt{1 - \xi^2}}}$$

Therefore, the global peak value of y(t) is achieved when n=1.

Thus, the overshoot is defined as

$$OS(\%) = 100 \times \frac{\text{Peak Value} - \text{Final Value}}{\text{Final Value}} = 100 \times e^{-\frac{\pi \xi}{\sqrt{1 - \xi^2}}}$$
(5)

 $\blacksquare \phi_m$: Phase Margin

For a 2nd order all-pole error function

$$E(s) = \frac{T(s)}{1 + T(s)} = \frac{1}{1 + 1/T(s)} = \frac{1}{\frac{s^2}{\omega_0^2} + \frac{1}{Q} \frac{s}{\omega_0} + 1}$$

Therefore, the loop gain T(s) is given by

$$T(s) = \frac{1}{\frac{s^2}{\omega_0^2} + \frac{1}{Q} \frac{s}{\omega_0}}$$

The cross-over frequency thus can be obtained

$$|T(j\omega_x)| = \left(\sqrt{\left(\frac{\omega_x^2}{\omega_0^2}\right)^2 + \left(\frac{\omega_x}{\omega_0 Q}\right)^2}\right)^{-1} = 1$$

Solve the equation and get the crossover frequency,

$$\omega_{x} = \omega_{0} \left(\sqrt{\frac{1}{4Q^{4}} + 1} - \frac{1}{2Q^{2}} \right)^{1/2} = \omega_{0} \left(\sqrt{4\xi^{4} + 1} - 2\xi^{2} \right)^{1/2}$$

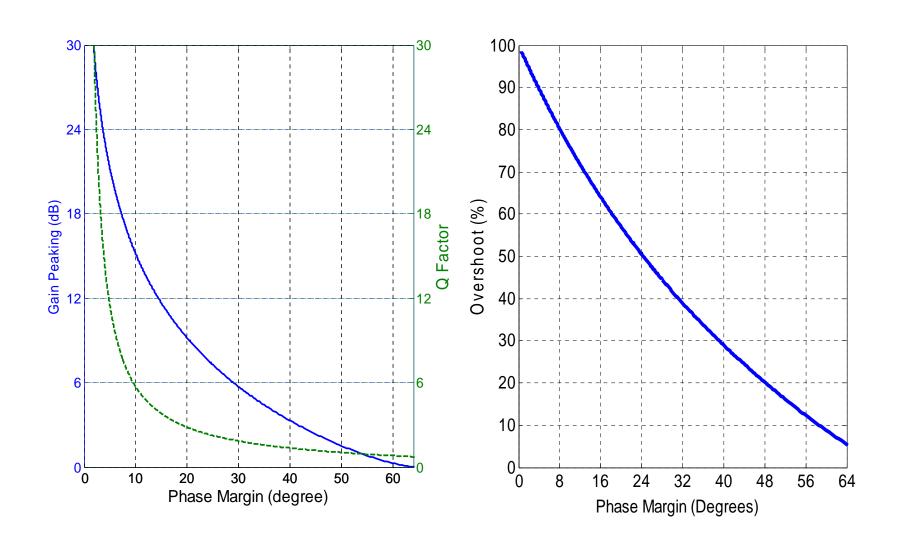
And thus the phase margin is

$$\phi_m = 180^\circ + \angle T(j\omega_x) = \cos^{-1}\left(\sqrt{1 + \frac{1}{4Q^4}} - \frac{1}{2Q^2}\right) = \cos^{-1}\left(\sqrt{4\xi^4 + 1} - 2\xi^2\right)$$

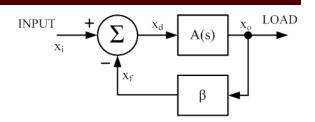
■ Study the relationship between phase margin and gain peaking (Eq.2) or overshoot (Eq.5), we have

$$GP(60^{\circ}) \cong 0.3dB \quad OS(60^{\circ}) \cong 8.8\% \quad Q \approx 0.82$$

$$GP(45^{\circ}) \cong 2.4 dB \quad OS(45^{\circ}) \cong 23\% \quad Q \approx 1.18$$



One effective method of assessing stability for minimum phase systems



from the magnitude Bode plots is by determining the ROC.

■ The Rate of Closure (ROC)

Determining the ROC is done by observing the slopes of |A| and $|1/\beta|$ at their intersection point (cross-over frequency f_x) and deciding the magnitude of their difference.

$$ROC = |Slope(A|) - Slope(1/\beta|)_{f=f_x}$$

The ROC is used to estimate the phase margin and therefore the stability (How?)

■ Observing a single-root transfer function

$$H(jf) = \frac{1}{1 + jf/f_0}$$

$$f \leq f_0/10 \quad Slope(|H|) \rightarrow 0dB/dec \quad \angle H \rightarrow 0^{\circ}$$

$$f > 10f_0 \quad Slope(|H|) \rightarrow -20dB/dec \quad \angle H \rightarrow -90^{\circ}$$

$$f = f_0 \quad Slope(|H|) \rightarrow -10dB/dec \quad \angle H \rightarrow -45^{\circ}$$

$$Empirical Equation$$

$$\angle H \cong 4.5 \times Slope(|H|)$$

This correlation holds also if H(s) has more than one root, provided the roots are real negative, and well separated, say, at least a decade apart.

■ In a feedback system, suppose both |A| and $|1/\beta|$ have been graphed.

INPUT
$$x_i$$
 x_i x_j x_j LOAD x_j x_j

$$\angle T(jf_x) = \angle A(jf_x) - \angle \beta^{-1}(jf_x)$$

\approx -4.5 \times ROC

Thus, the ROC can be used to estimate the phase margin (Page 4)

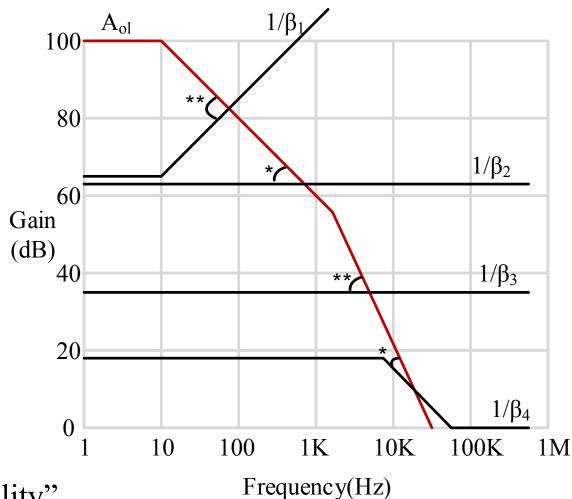
$$\phi_m = 180^\circ + \angle T(jf_x)$$

Cases

$$ROC \cong 20dB/dec \implies \phi_m \cong 90^{\circ}$$

 $ROC \cong 30dB/dec \implies \phi_m \cong 45^{\circ}$
 $ROC \cong 40dB/dec \implies \phi_m \cong 0^{\circ}$
 $ROC > 40dB/dec \implies \phi_m < 0^{\circ}$

$$A(s) = \frac{A_{ol}}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)}$$



* 20dB/dec ROC

→ "Stability"

** 40dB/dec ROC

→ "Marginal Stability"

Stability in Constant-GBP OpAmp

- Constant-GBP OpAmp (i.e. $A(s)|_{s=j\omega} = \frac{\omega_t}{j\omega}$)
 - Unconditionally stable with frequency-independent feedback, or $\angle \beta = 0$. (e.g. in a non-inverting or inverting amplifier, the feedback network contains only resistors)
 - Stable for any $\beta \le 1$.
 - In feedback systems, since now we have

$$\angle T = \angle (A\beta) = \angle A$$
, $\angle A \cong -90^{\circ}$

these circuits enjoy

$$\phi_m = 180^\circ + \angle A(jf_x) \cong 180^\circ - 90^\circ \cong 90^\circ$$

• Typically, due to additional high-order poles in OpAmps,

$$60^{\circ} \le \phi_m \le 90^{\circ}$$

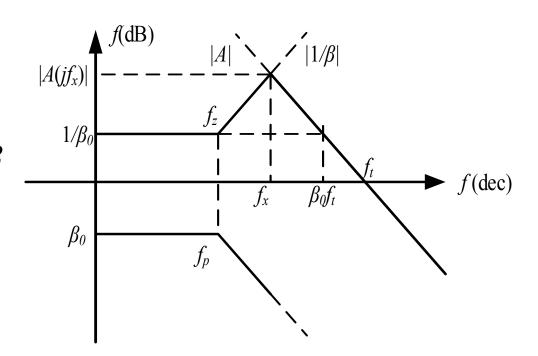
Feedback Pole

■ Feedback Pole

Feedback network includes reactive elements → Stability may no longer be unconditional

$$\beta(jf) = \frac{\beta_0}{1 + jf / f_p}$$

- A pole f_p (or a zero) of β becomes a zero f_z (or a pole) for 1/β.
- For the case $f_z << \beta_0 f_t$



The effect of a pole within the feedback loop

Feedback Pole

■ Examine the error function

$$E(s) = \frac{H_{CL}(s)}{A_{ideal}} = \frac{1}{1+1/T}, \qquad T = A\beta, \quad A_{ideal} = \frac{1}{\beta}$$

Using OpAmp high-frequency approximation: $A(j\omega) = \frac{GB}{j\omega} = \frac{f_t}{jf}$

$$E(s) = \frac{1}{1 + \frac{1}{A\beta}} = \frac{1}{1 + j\frac{f}{f_t\beta_0} - \frac{f^2}{f_t\beta_0 f_z}}$$

Refer to page 14, and we have $s=j2\pi f$. The peak value of E(s) can be obtained. For Q >> 1, the approximate result is

$$f_x = \sqrt{f_z \beta_0 f_t}, Q = \sqrt{\beta_0 f_t / f_z}$$

Feedback Pole

- The lower f_z compared to $\beta_0 f_t$, the higher the Q and, hence, the more pronounced the peaking and ringing.
- Derive the phase margin

$$\angle T(jf_x) = \angle A(jf_x) - \angle |1/\beta(jf_x)| \cong -90^{\circ} - \tan^{-1}(f_x/f_z)$$

$$\frac{f_x}{f_z} = \sqrt{\frac{\beta_0 f_t}{f_z}}$$

■ As $f_z << \beta_0 f_t$, $\angle T(jf_x) \cong -180^\circ$ and ROC = 40dB/dec The circuit is on the verge of oscillation!

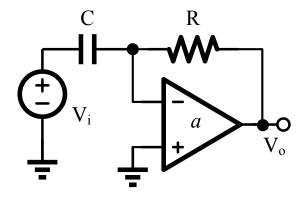
Differentiator

- Feedback pole example: differentiator
- Assume constant-GBP OpAmp

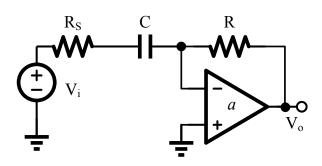
$$A(jf) \cong GB / j\omega \cong f_t / jf$$

$$\beta = \frac{Z_C}{Z_C + R} = \frac{1}{1 + jf / f_z}, Z_C = \frac{1}{j\omega C}$$

■ To stabilize the differentiator, add a series resistance Rs.



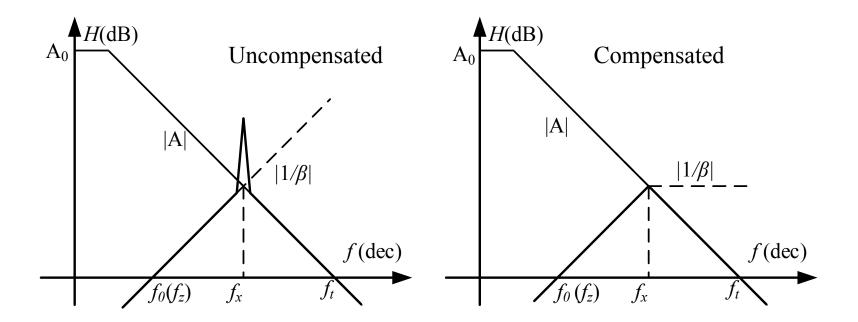
Uncompensated Differentiator



Compensated Differentiator

Differentiator

- At low frequency, R_S has little effect because $R_S << |1/j\omega C|$
- At high frequency, C acts as a short compared to R_{S_s} The feedback network becomes $|1/\beta| = 1 + R/R_{S_s}$.



Differentiator

Assume $R_S \ll R_C$, the series resistor R_S introduces an extra pole frequency f_e

$$\frac{1}{\beta} = \frac{Z_C + R}{Z_C} \approx \frac{1}{\beta_0} \frac{1 + jf / f_z}{1 + jf / f_e} \qquad Z_C = \frac{1}{j\omega C} + R_S, \beta_0 = 1, f_x = \sqrt{f_t f_z}$$

■ Choose $R_S \approx R/\sqrt{f_t/f_z}$, we have $f_e = \sqrt{f_t f_z}$

$$\angle T(jf_x) = \angle A(jf_x) - \angle |1/\beta(jf_x)|$$

$$\cong -90^\circ + \tan^{-1}(f_x/f_e) - \tan^{-1}(f_x/f_z)$$

$$= -135^\circ$$

Therefore, ROC = 30 dB/dec, $\phi_m \approx 45^{\circ}$

Stray Input Capacitance Compensation

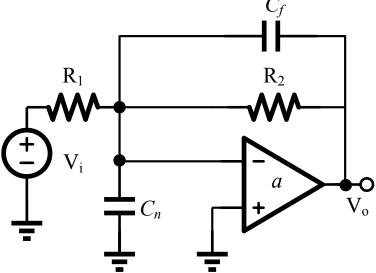
All practical OpAmps exhibit stray input capacitance. The net capacitance C_n of the inverting input toward ground is

$$C_n = C_d + C_C / 2 + C_{ext}$$

 C_d is the diffrential Cap between input pins, $C_c/2$ is the common-mode cap of each input to ground, and C_{ext} is the external parasitic cap.

■ In the absence of C_f , there's a pole in feedback

$$\frac{1}{\beta} = (1 + R_2 / R_1) \{1 + jf [2\pi (R_1 / R_2)C_n]\}$$
ROC \approx 40 dB/dec
(See page 29)



Stray Input Capacitance Compensation

- **Solution:** Introduce a feedback capacitance C_f to create feedback phase lead.
- In the presence of C_f we have

$$\frac{1}{\beta} = \left(1 + \frac{R_2}{R_1}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

$$f_z = \frac{1}{2\pi(c_n + c_f)(R_1 || R_2)} , f_p = \frac{1}{2\pi c_f R_2}$$

To have $\phi_m = 45^{\circ}$ (i.e. ROC=30 dB/dec):

Make the cross-over frequency exactly at f_p

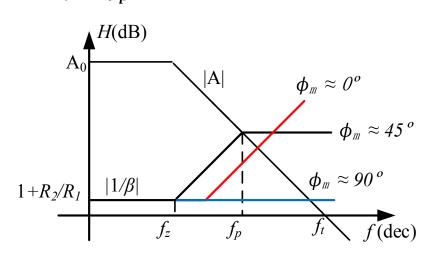
$$|A(jf_p)| = \left|\frac{1}{\beta(jf_p)}\right| \cong \frac{1}{\beta_{\infty}} \to |A(jf_p)| \cong 1 + \frac{c_n}{c_f}$$

Since

$$|A(jf_p)| = \frac{f_t}{f_p} \rightarrow \frac{1}{f_p} = 2\pi C_f R_2 = \frac{1}{f_t} \left(1 + \frac{C_n}{C_f}\right)$$

Solve the equation to get C_f

$$C_f = \frac{1 + \sqrt{1 + 8\pi R_2 C_n f_t}}{4\pi R_2 f_t}$$



Stray Input Capacitance Compensation

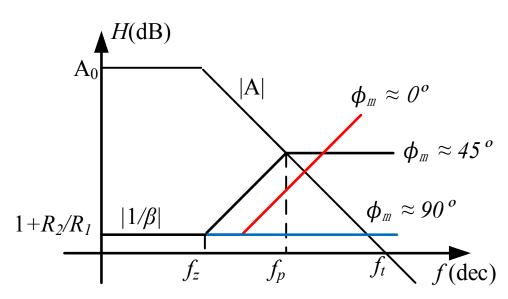
To have $\phi_m = 90^{\circ}$ (i.e. ROC=20 dB/dec):

Place f_p exactly on the top of f_z to cause a pole-zero cancellation

$$f_z = f_p$$
$$(C_n + C_f)(R_1 || R_2) = C_f R_2$$

Thus using simple algebra

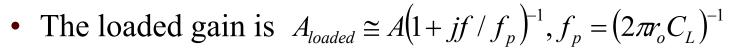
$$C_f = \frac{R_1}{R_2} C_n$$
 (Neutral Compensation)



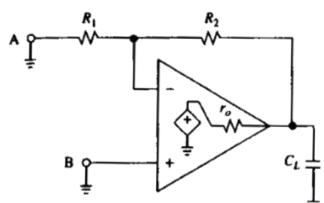
Capacitive-Load Isolation

There're applications in which the external load is heavily capacitive.

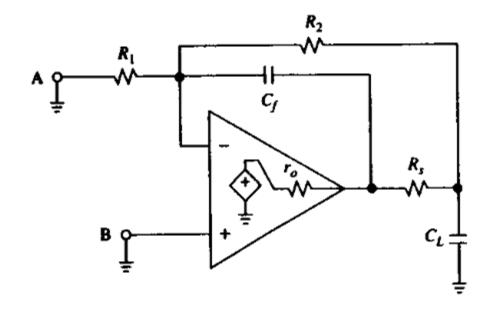
- Load capacitance C_L
 - A new pole is formed with output resistance r_o and C_L
 - Ignore loading by the feedback network



- ROC is increased and thus invite instability
- Solution: Add a small series resistance R_S to decouple the output from C_L



Capacitive-Load Isolation

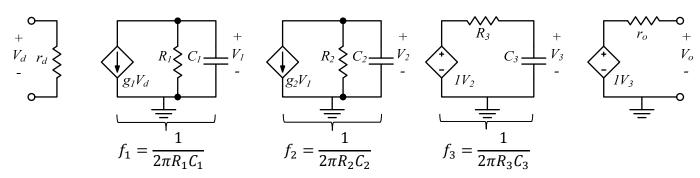


$$R_S = \frac{R_1}{R_2} r_O \qquad C_f = \left(1 + \frac{R_1}{R_2}\right)^2 \left(\frac{r_o}{R_2}\right) C_L$$

Uncompensated OpAmp

- The poles of the uncompensated OpAmp are located close together thus accumulating about 180° of phase shift before the 0-dB crossover frequency f_x .
- Unstable device, thus efforts must be done to stabilize it.
- Example of uncompensated OpAmps is 748, which is the uncompensated version of 741.
- They can be approximated as a three-pole system

$$a(jf) = \frac{a_0}{(1+jf/f_1)(1+jf/f_2)(1+jf/f_3)}$$



Three-pole OpAmp model

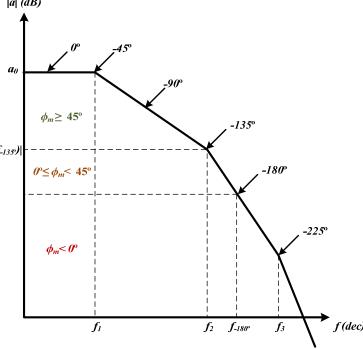
Stability of Uncompensated OpAmp

■ With a frequency-independent feedback (i.e. $1/\beta$ curve is flat) around an uncompensated OpAmp, we have

$$|T| = |a|\beta$$

|T| curve can be visualized as the |a| curve with the $1/\beta$ line is the new 0-dB axis

- For $1/\beta \ge |a(jf_{-135^\circ})|$ $ROC \le 30 \text{ dB/dec}$ $\phi_m \ge 45^\circ$
- For $|a(jf_{-180^{\circ}})| \le 1/\beta < |a(jf_{-135^{\circ}})|$ | $a(jf_{-135^{\circ}})|$ | $a(jf_{-1$
- For $1/\beta \le |a(jf_{-180^\circ})|$ ROC < 40 dB/dec $\phi_m < 0^\circ$



Three-pole open-loop response

Stability of Uncompensated OpAmp

- The uncompensated OpAmp provides only adequate phase margin only in high-gain applications (i.e. high $1/\beta$)
- To provide adequate phase margin in low-gain application, frequency compensation is needed.
 - Internal compensation \rightarrow Achieved by changing a(jf)
 - External compensation \rightarrow Achieved by changing $\beta(jf)$

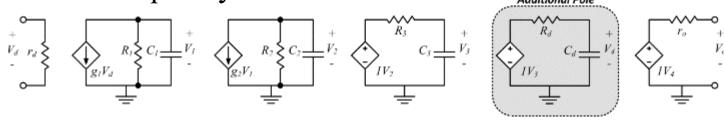
Internal Frequency Compensation

- How to stabilize the circuit by modifying the open loop response a(jf)?
 - Dominant-Pole Compensation
 - Shunt-Capacitance Compensation
 - Miller Compensation
 - Pole-Zero Compensation
 - Feedforward Compensation

Dominant-Pole Compensation

An additional pole at sufficiently low frequency is created to insure a roll-off rate of -20 dB/dec all the way up to the crossover frequency.

Additional Pole



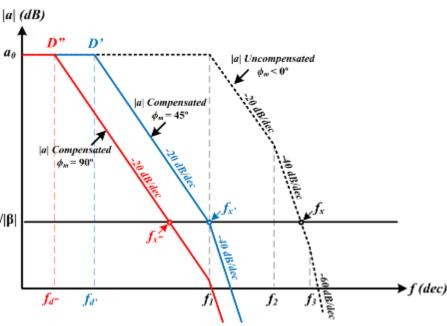
- Cases:
 - $f_{x(new)} = f_1$:

$$ROC = 30 \text{ dB/dec} \implies \phi_m = 45^\circ$$

• $f_{x(new)} < f_1$:

$$ROC = 20 \text{ dB/dec} \implies \phi_m \cong 90^{\circ} \text{ }_{1/|\beta|}$$

■ This technique causes a drastic gain reduction above f_d



Dominant-Pole Compensation

■ Numerical example:

- $r_d = \infty$, $r_o = 0$
- $g_1=2 \text{ mA/V}, R_1=100 \text{ k}\Omega, g_2=10 \text{ mA/V}, R_2=50 \text{ k}\Omega$
- $f_1 = 100 \text{ kHz}, f_2 = 1 \text{ MHz}, f_3 = 10 \text{ MHz}$
- Find the required value of f_d for $\phi_m = 45^\circ$ with $\beta = 1$

For $\phi_m = 45^{\circ}$, we have

$$f_x = f_1$$

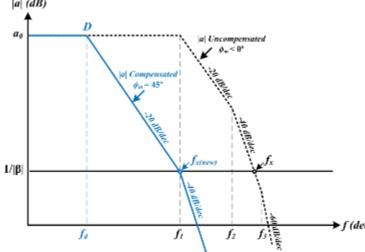
Draw a straight line of slope -20 dB/dec until it intercepts with the DC gain asymptote at point D and get f_d .

$$\frac{\left|a(jf_{x(new)})\right|}{\left|a(jf_d)\right|} = \frac{f_d}{f_{x(new)}}$$

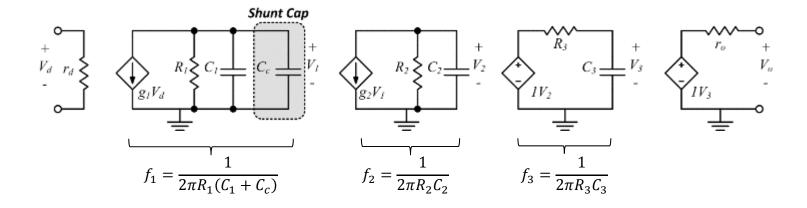
Thus:

$$f_d = \frac{f_{x(new)}}{\beta a_0} = \frac{f_1}{\beta \times (g_1 R_1 g_2 R_2)} = 1 Hz$$

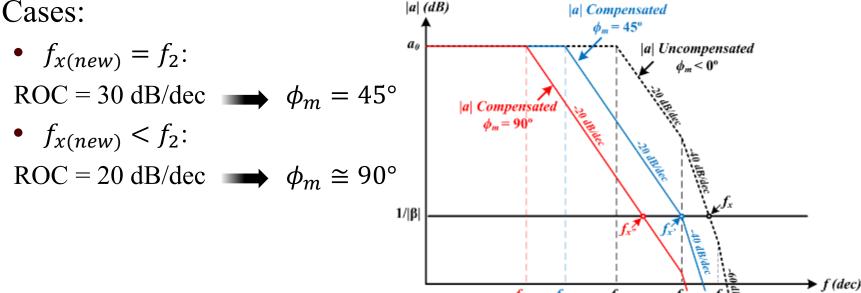
Requires EXTREMELY LARGE passive components



- The dominant-pole technique adds a fourth pole → Extra cost and less bandwidth.
- This technique rearranges the existing rather than creating a new pole.
- It decreases the first (dominant) pole to sufficiently low frequency to insure a roll-off rate of -20 dB/dec all the way up to the crossover frequency.



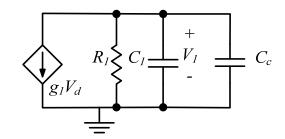
Cases:



■ Since $f_{1(new)}$ is chosen to insure roll-off rate of -20 dB/dec all the way up to the crossover frequency.

Thus:

■ The first pole is decreased by adding an extra capacitance to the internal node causing it.

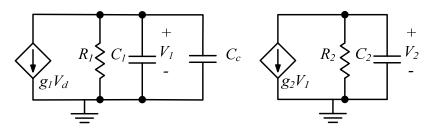


■ Given the value of $f_{1(new)}$ from the desired value of ϕ_m , we can find C_c

$$f_{1(new)} = \frac{f_x}{\beta a_0} = \frac{1}{2\pi R_1(C_1 + C_c)} \rightarrow C_c \cong \frac{\beta a_0}{2\pi R_1 f_x}$$

■ Numerical example:

- $r_d = \infty$, $r_o = 0$
- $g_1=2 \text{ mA/V}, R_1=100 \text{ k}\Omega$
- $g_2=10 \text{ mA/V}, R_2=50 \text{ k}\Omega$
- $f_1 = 100 \text{ kHz}, f_2 = 1 \text{ MHz}, f_3 = 10 \text{ MHz}$
- Find the required value of C_c for $\phi_m = 45^\circ$ with $\beta = 1$



For
$$\phi_m = 45^{\circ}$$
, $f_x = f_2 = 1 \, MHz$

Then,
$$f_{1(new)} = \frac{f_2}{a_0 \beta} = \frac{f_2}{g_1 R_1 g_2 R_2} = 10 \ Hz$$
 \rightarrow $C_c = \frac{1}{2\pi R_1 f_{1(new)}}$

$$C_c = \frac{1}{2\pi R_1 f_{1(new)}} = 159 \, nf$$

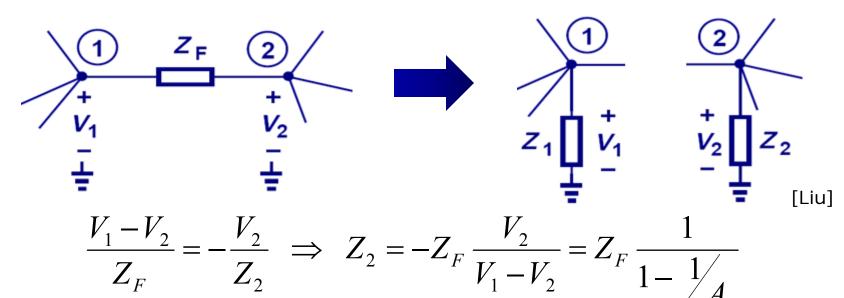
EXTREMELY LARGE

Unsuitable for monolithic fabrication

■ Miller's Theorem

If A_v is the voltage gain from node 1 to 2, then a floating impedance Z_F can be converted to two grounded impedances Z_1 and Z_2 :

$$\frac{V_1 - V_2}{Z_F} = \frac{V_1}{Z_1} \implies Z_1 = Z_F \frac{V_1}{V_1 - V_2} = Z_F \frac{1}{1 - A_v}$$



Applying Miller's theorem to a floating capacitance connected between the input and output nodes of an amplifier.

$$Z_{1} = \frac{Z_{F}}{1 - A_{v}} = \frac{1}{j\omega C_{F}} = \frac{1}{j\omega(1 - A_{v})C_{F}}$$

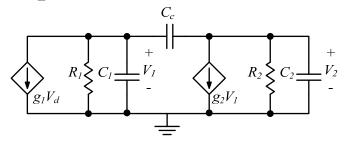
$$Z_{2} = \frac{Z_{F}}{1 - \frac{1}{A_{v}}} = \frac{1}{j\omega C_{F}} = \frac{1}{j\omega(1 - \frac{1}{A_{v}})C_{F}}$$

$$V_{\text{in}} = \frac{C_{F}}{1 - \frac{1}{A_{v}}} = \frac{1}{j\omega(1 - \frac{1}{A_{v}})C_{F}}$$

$$C_{F} = \frac{1}{j\omega(1 - \frac{1}{A_{v}})C_{F}}$$
[Liu]

- The floating capacitance is converted to two grounded capacitances at the input and output of the amplifier.
- The capacitance at the input node is larger than the original floating capacitance (Miller multiplication effect)

This technique places a capacitor C_c in the feedback path of one of the internal stages to take advantage of Miller multiplication of capacitors.



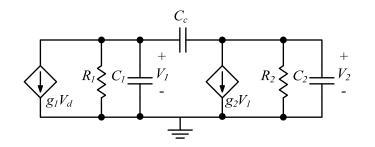
■ The reflected capacitances due to C_c and the DC voltage gain between V_2 and V_1 ($a_2 = -g_2R_2$) yields

$$C_{1,c} = C_c(1 + g_2 R_2)$$
 and $C_{2,c} = C_c \left(1 + \frac{1}{g_2 R_2}\right)$
 $\cong |a_2|C_c$ $\cong C_c$

■ A low-frequency dominant pole can be created with a moderate capacitor value.

Accurate transfer function

$$\frac{V_2}{V_d} \cong g_1 R_1 g_2 R_2 \frac{1 - jf/f_z}{(1 - jf/f_{1(new)})(1 - jf/f_{2(new)})}$$



■ Pole/zero locations

$$\omega_{Z} = \frac{g_{2}}{C_{c}}$$

$$\omega_{1(new)} = \frac{1}{R_{1}C_{1} + g_{2}R_{2}R_{1}C_{c} + R_{2}C_{2}} \cong \frac{1}{R_{1}g_{2}R_{2}C_{c}} = \frac{1}{|a_{2}|C_{c}R_{1}}$$

$$\omega_{2(new)} = \frac{R_{1}C_{1} + R_{1}g_{2}R_{2}C_{c} + R_{2}C_{2}}{R_{1}R_{2}(C_{1}C_{c} + C_{1}C_{2} + C_{c}C_{2})} \cong \frac{g_{2}C_{c}}{C_{1}C_{c} + C_{1}C_{2} + C_{c}C_{2}}$$

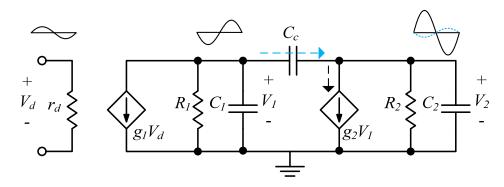
RHP zero

Dominant Pole

Second Pole

Right-half plane zero:

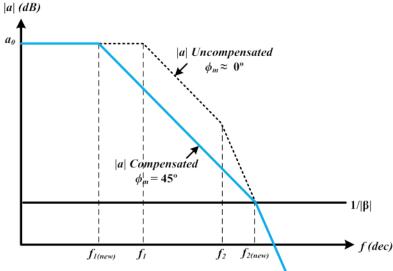
• The RHP zero is a result of the feedforward path through C_c



- The circuit is no longer a minimum-phase system.
- It introduces excessive phase shift, thus reduces the phase margin.
- In bipolar OpAmps, it is usually at much higher frequency than the poles $\rightarrow 1 f/f_z \cong 1$

■ Pole Splitting

- Increasing C_c lowers $f_{1(new)}$ and raises $f_{2(new)}$
- The shift in f_2 eases the amount of shift required by $f_1 \to \text{Higher}$ bandwidth

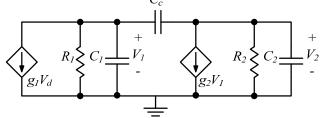


• Increasing C_c above a certain limit makes f_2 stops to increase.

$$\omega_{2(new)} = 2\pi f_{2(new)} = \frac{g_2}{C_1 + \frac{C_1 C_2}{C_c} + C_2} \cong \frac{g_2}{C_1 + C_2} \bigg|_{C_c \gg C_1, C_2}$$

Numerical example:

- $r_d = \infty$, $r_o = 0$, $g_1 = 2 \text{ mA/V}$, $R_1 = 100 \text{ k}\Omega$, $g_2 = 10 \text{ mA/V}$, $R_2 = 50 \text{ k}\Omega$
- $f_1 = 100 \text{ kHz}, f_2 = 1 \text{ MHz}, f_3 = 10 \text{ MHz}$
- Find the required value of C_c for $\phi_m = 45^\circ$ with $\beta = 1$



From f_1 and f_2 , we can calculate $C_1 = 15.9 \ pF$ and $C_2 = 3.18 \ pF$

Assume
$$C_c$$
 is large $\to f_{2(new)} = \frac{g_2}{2\pi(C_1 + C_2)} = 83.3 \, MHz > f_3$

Since $f_{2(new)} > f_3 \rightarrow f_3$ is the first non-dominant pole

For
$$\phi_m = 45^{\circ}$$
, $f_x = f_3 = 10 \, MHz$

Then,
$$f_{1(new)} = \frac{f_3}{a_0 \beta} = \frac{f_3}{g_1 R_1 g_2 R_2} = 100 \text{ Hz}$$

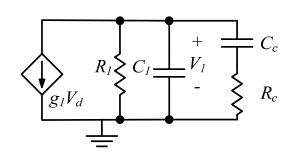
$$C_c = \frac{1}{2\pi R_1 g_2 R_2 f_{1(new)}} = 31.8 \text{ pF}$$

Much smaller than that of shuntcapacitance compensation Suitable for monolithic fabrication

Pole-Zero Compensation

This technique uses a large compensation capacitor $(C_c \gg C_1)$ to lower the first pole f_1 .

It also uses a small resistor $(R_c \ll R_1)$



- It also uses a small resistor $(R_c \ll R_1)$ to create a zero that cancels the second pole f_2 .
- The compensated response is then dominated by the lowered first pole up to f_3
- Transfer function

$$\frac{V_1}{V_d} = -g_1 R_1 \frac{1 + jf/f_z}{(1 + jf/f_{1(new)})(1 + jf/f_4)}$$

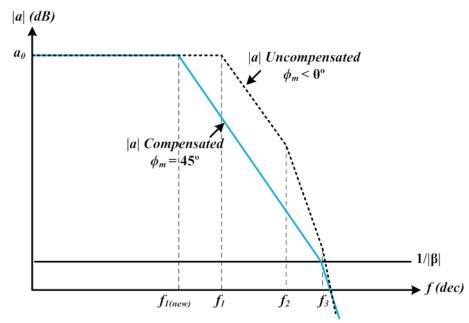
Pole/zero locations

$$f_{1(new)}\cong rac{1}{2\pi R_1 C_c}$$
 , $f_z=rac{1}{2\pi R_c C_c}$, $f_4\cong rac{1}{2\pi R_c C_1}$

Pole-Zero Compensation

- C_c and R_c lowers the dominant pole $f_{1(new)} \ll f_1$, creates a zero f_z , and creates an additional pole $f_4 \gg f_z$
- Choose R_c such that f_z cancels f_2
- The open loop gain now becomes

$$a_{new}(jf) = \frac{a_0}{\left(1 + jf/f_{1(new)}\right)(1 + jf/f_3)(1 + jf/f_4)}$$



- To have $\phi_m = 45^\circ$, the cross-over frequency should be f_3
- Since the compensated response is dominated by $f_{1(new)}$ pole up to f_3

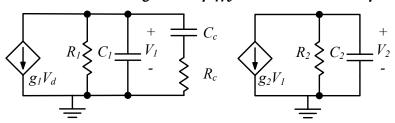
$$\frac{\left|a(jf_{1(new)})\right|}{|a(jf_3)|} = \frac{a_0}{1/\beta} = \frac{f_3}{f_{1(new)}}$$

- Thus,
$$f_{1(new)} = f_3/a_0\beta$$

Pole-Zero Compensation

Numerical example:

- $r_d = \infty$, $r_o = 0$, $g_1 = 2 \text{ mA/V}$, $R_1 = 100 \text{ k}\Omega$, $g_2 = 10 \text{ mA/V}$, $R_2 = 50 \text{ k}\Omega$
- $f_1 = 100 \text{ kHz}, f_2 = 1 \text{ MHz}, f_3 = 10 \text{ MHz}$
- Find the required value of C_c for $\phi_m = 45^\circ$ with $\beta = 1$



From f_1 and f_2 , we can calculate $C_1 = 15.9 pF$ and $C_2 = 3.18 pF$

For
$$\phi_m = 45^{\circ}$$
, $f_x = f_3 = 10 \, MHz$

Then,
$$f_{1(new)} = \frac{f_3}{a_0 \beta} = \frac{f_3}{g_1 R_1 g_2 R_2} = 100 \ Hz \rightarrow C_c = \frac{1}{2\pi R_1 f_{1(new)}} = 15.9 \ nf$$

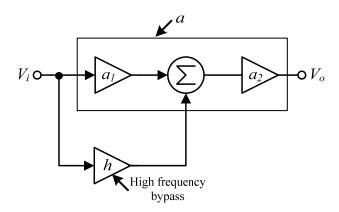
$$R_c$$
 is chosen such that $f_z = f_2 \rightarrow R_c = \frac{1}{2\pi C_c f_2} = 10 \Omega$

Relaxed compared to shuntcapacitance compensation, but still LARGE

Since $f_4 = \frac{1}{2\pi R_c C_1} = 1 GHz \gg f_3$ It will not affect the phase margin

Feedforward Compensation

- In multistage amplifiers, usually there is one stage that acts as a bandwidth bottleneck by contributing a substantial amount of phase shift in the vicinity of the cross-over frequency f_x
- This technique creates a high-frequency bypass around the bottleneck stage to suppress its phase at f_x , thus improving ϕ_m



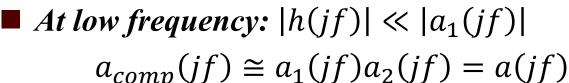
Feedforward Compensation

■ The bypass around the bottleneck stage is a high-pass function

$$h(jf) = \frac{jf/f_0}{1+jf/f_0}$$

■ The compensated open-loop gain is

$$a_{comp}(jf) = [a_1(jf) + h(jf)]a_2(jf)$$



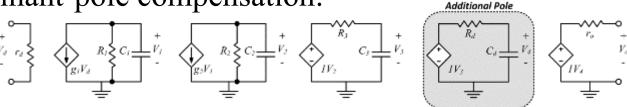
The high low-frequency gain advantage of the uncompensated amplifier still hold.

■ At high frequency: $|h(jf)| \gg |a_1(jf)|$ $a_{comp}(jf) \cong a_2(jf)$

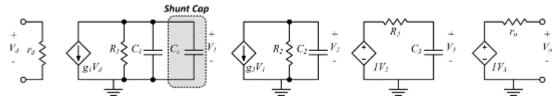
The dynamics are controlled only by $a_2 \rightarrow$ Wider bandwidth & Lower phase shift

Summary of Internal Frequency Compensation

■ Dominant-pole compensation:



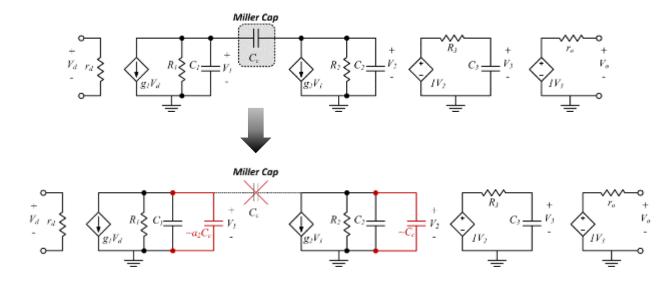
- It creates an additional pole at sufficiently low frequency.
- It doesn't take advantage of the existing poles.
- It suffers from extremely low bandwidth.
- Shunt-capacitance compensation:



- It rearranges the existing poles rather than creating an additional pole.
- It moves the first pole to sufficiently low frequency.
- The value of the shunt capacitance is extremely large \rightarrow Extra cost

Summary of Internal Frequency Compensation

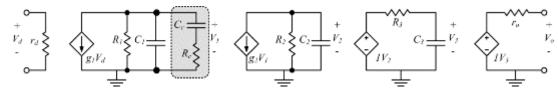
■ Miller compensation:



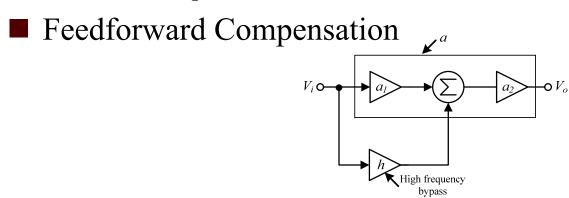
- It takes advantage of Miller multiplicative effect of capacitors, thus requires moderate capacitance to move the first pole to sufficiently low frequency.
- It causes pole splitting, where the dominant pole is reduced and the first non-dominant pole is raised in frequency.

Summary of Internal Frequency Compensation

■ Pole-zero compensation:



- Similar to shunt-capacitance technique, a large capacitor is used to shift the first pole to sufficiently low frequency.
- A small resistance is used to create a zero that cancels the first non-dominant pole



• It places a high frequency bypass around the bottleneck stage that contributes the most phase shift in the vicinity of f_x

External Frequency Compensation

- \blacksquare How to stabilize the circuit by modifying its feedback factor β ?
 - Reducing the Loop Gain
 - Input-Lag Compensation
 - Feedback-Lead Compensation

Reducing the Loop Gain

This method shifts $|1/\beta|$ curve upwards until it intercepts the |a| curve at $f = f_{\phi_m - 180}^{\circ}$, where ϕ_m is the desired phase margin.

 \blacksquare The shift is obtained by connecting resistance R_c across the

inputs.

$$\frac{1}{\beta} = 1 + \frac{R_2}{\left(R_1 \| R_c\right)} = 1 + \frac{R_2}{R_1} + \frac{R_2}{R_c}$$
Shifts the curve upwards to improve ϕ_m

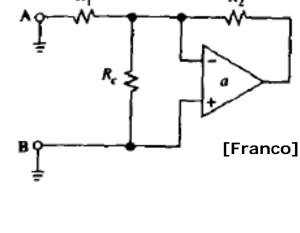
Reducing the Loop Gain

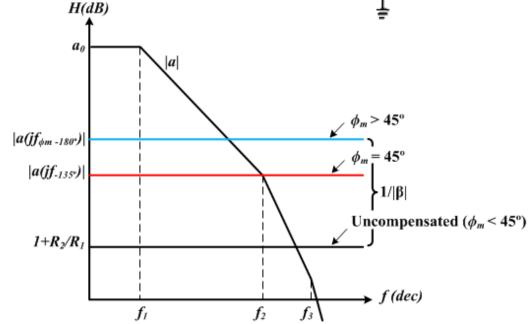
 \blacksquare R_c is chosen to achieve the desired phase margin ϕ_m :

$$\frac{1}{\beta} = 1 + \frac{R_2}{R_1} + \frac{R_2}{R_c} = \left| a(jf_{\phi_m - 180^\circ}) \right|$$

Then,

$$R_c = \frac{R_2}{\left|a(jf_{\phi_m-180^{\circ}})\right| - (1+R_2/R_1)}$$





Reducing the Loop Gain

- Prices that we are paying for stability:
- Gain Error:

$$H_{CL} = \frac{1}{\beta} \frac{T}{1+T} = \frac{A_{ideal}}{1+1/T}$$

The presence of R_c reduces T, thus resulting in a larger gain error.

• DC Noise Gain:

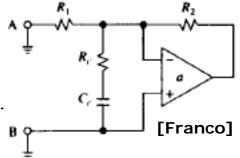
$$H_{CL}(j0) \cong \frac{1}{\beta_0} = 1 + \frac{R_2}{R_1} + \frac{R_2}{R_c}$$

The presence of R_c causes an increased DC-noise gain which may result in an intolerable DC output error.

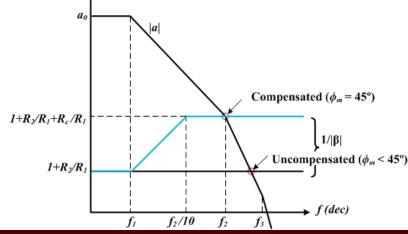
THERE'S NO FREE LUNCH!

Input-Lag Compensation

- The high DC-noise gain of the previous method can be overcome by placing a capacitance C_c in series with R_c .
 - High frequencies:
 - $\checkmark C_c$ is short.
 - $\sqrt{\frac{1}{|\beta|}}$ curve is unchanged compared to the previous case.



- Low frequencies:
 - $\checkmark C_c$ is open
 - $\checkmark \frac{1}{|\beta|} = 1 + \frac{R_2}{R_1}$, we now have much higher DC loop gain & much lower DC output error.



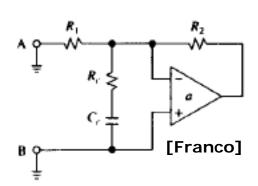
Input-Lag Compensation

 \blacksquare R_c is chosen to achieve the desired phase margin ϕ_m :

$$\frac{1}{\beta_{\infty}} = 1 + \frac{R_2}{R_1} + \frac{R_2}{R_c} = \left| a(jf_{\phi_m - 180^{\circ}}) \right|$$

Then,

$$R_{c} = \frac{R_{2}}{\left|a(jf_{\phi m-180}^{\circ})\right| - (1+R_{2}/R_{1})}$$



To avoid degrading ϕ_m , it is good practice to position the second breakpoint of $|1/\beta|$ curve a decade below $f_{\phi_m-180^{\circ}}$.

$$\frac{1}{2\pi C_c R_c} = \frac{1}{10} f_{\phi_m - 180^\circ}.$$

Then,

$$C_c = \frac{5}{\pi R_c f_{\phi m^{-180^{\circ}}}}$$

Input-Lag Compensation

■ *Advantage(s)*:

- \odot Lower DC-noise gain due to the presence of C_c .
- © It allows for higher slew rate compared with internal compensation techniques: Op-amp is spared from having to charge/discharge internal compensation capacitance.

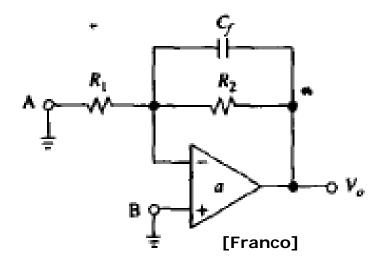
■ Disadvantage(s):

- \odot Long settling tail because of the presence of pole-zero doublet of the feedback network ($|\beta|$).
- © Increased high-frequency noise in the vicinity of the cross-over frequency.
- oximes Low closed-loop differential input impedance (Z_d) which may cause high-frequency input loading

$$Z_d = z_d || Z_c$$
 , $Z_c = R_c + 1/sC_c \ll z_d$

** z_d is the open loop input impedance of the Op-Amp.

- This technique uses a feedback capacitance C_f to create phase lead in the feedback path.
- The phase lead is designed to be in the vicinity of the crossover frequency f_x which is were ϕ_m is boosted.



■ Analysis:

$$\frac{1}{\beta} = 1 + \frac{\binom{R_2 \| Z_{C_f}}{R_1}}{R_1} = \left(1 + \frac{R_2}{R_1}\right) \frac{1 + jf/f_z}{1 + jf/f_p}$$

where,

$$f_p = \frac{1}{2\pi C_f R_2}$$
 , $f_z = \left(1 + \frac{R_2}{R_1}\right) f_p$

- The phase-lag provided by $\frac{1}{\beta(j\omega)}$ is maximum at $\sqrt{f_z f_p}$.
- The optimum value of C_f , that maximizes the phase margin, is the one that makes this point at the crossover frequency.

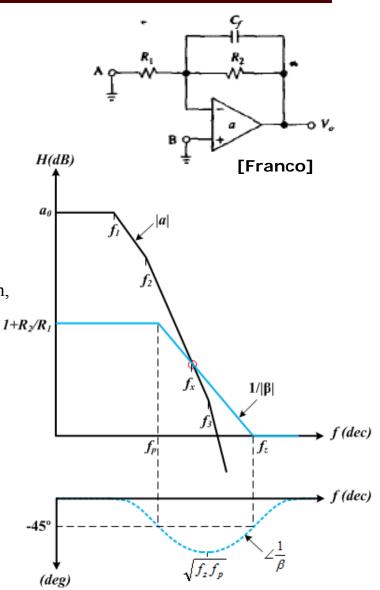
$$f_x = \sqrt{f_z f_p} = f_p \sqrt{1 + \frac{R_2}{R_1}}$$

• The cross-over frequency can be obtained from

$$|a(jf_x)| = \frac{1}{|\beta(jf_x)|} = \sqrt{1 + \frac{R_2}{R_1}}$$

• Having f_x , the optimum C_f can be found

$$C_f = \frac{\sqrt{1 + R_2 / R_1}}{2\pi R_2 f_x}$$



■ How much phase margin can we get?

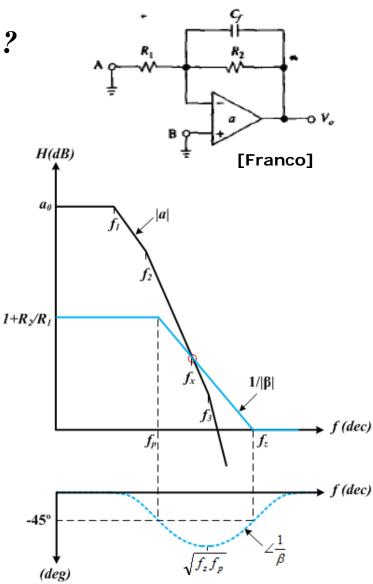
• At the geometric mean of f_p and f_z , we have

$$\angle \left(\frac{1}{\beta}\right) = 90^{\circ} - 2 \tan^{-1} \left(1 + \frac{R_2}{R_1}\right)$$

- The larger the value of $1 + R_2/R_1$, the greater the contribution of $1/\beta$ to the phase margin.
- E.g. $1 + R_2/R_1 = 10 \rightarrow \angle (1/\beta (jf_x)) = -55^{\circ}$ Thus,

$$\angle T(jf_x) = \angle a(jf_x) - \angle \left(\frac{1}{\beta(jf_x)}\right) = \angle a(jf_x) + 55^{\circ}$$

- The phase margin is improved by 55° due to feedback-lead compensation.



■ *Advantage(s)*:

- \odot C_f helps to counteract the effect of the input stray capacitance C_n as we discussed beforehand.
- © It provides better filtering for internally generated noise.

■ Disadvantage(s):

☼ It doesn't have the slew-rate advantage of the input-lag compensation.

Decompensated OpAmps

These OpAmps are compensated for unconditional stability only when used with $1/\beta$ above a specified value

$$\frac{1}{\beta} \ge \left(\frac{1}{\beta}\right)_{min}$$

- They provide a constant GBP only for $|a| \ge (1/\beta)_{min}$
- They offer higher GBP and slew rate.

■ Example

- The fully compensated LF356 OpAmp uses $C_c \cong 10 \ pF$ to provide $GBP = 5 \ MHz$ and $SR = 12 \ V/\mu s$ for any $|a| \ge 1 \ V/V$.
- The decompensated version of the same OpAmp, LF357, uses $C_c \cong 3 \, pF$ and provides $GBP = 20 \, MHz$ and $SR = 50 \, V/\mu s$ but only for any $|a| \ge 5 \, \text{V/V}$.