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Stability of Linear Systems

B Harold S. Black, 1927 - Negative feedback concept
B Negative feedback provides:

 Gain stabilization

e Reduction of nonlinearity

* Impedance transformation
B But also brings:

 Potential stability problems

« Causes accuracy errors for low dc gain

B Here we will discuss frequency — compensation
techniques



Stability Problem

INPUT  + Xq x, LOAD

A(s)
Xj
— . |
| B

Ais) 1B A®s)
I+ pA(s) ., 1 1+T(s)
PA(s)

He (s)=

B Feedback forces x, to become smaller
B [t takes time to detect x, and feedback to the input
B x, could be overcorrected (diverge and create instability)

B How to find the optimal (practical) x, will be based on
frequency compensation techniques



Gain Margin & Phase Margin

|T| (dB)

b B G,,1s the number of dBs by
which |T(jo_)| can increase
until 1t becomes 0 dB

1
r (] W_150° )|

To

G,, =20log

B Phase margin ¢,, 1s the number
of degrees by which £T(jw,)

19:00 J:r b N can be reduced until it reaches
1[I w1807
4, =180°+ /T(jo,)
Conceptual Gain Margin G, or
and Phase Margin ¢, LT(ja)x ) =¢ —180°

* w, 1s the crossover frequency



Gain Margin & Phase Margin

B At the crossover point,

T(jo,)=1-£T(jo,)=1-£(4,-180°)=—"*

B The non-ideal closed loop transfer function becomes

| Ajo,) __AGo,) _ Ay,
H _ . _ X — laea
CL(]a)x) 1+,3A(J0)x) l—I—T(]C()x) 1—|—1/T(]0)x)
_ Aideal _ Aideal
1—e”/ 1-(cosg, —jsing, )
. 1 1
i) = Jicosg,frsing, B



Gain Margin & Phase Margin

B Observe that different ¢, yield different errors. 1.e.

& H, (jo,) e In practical systems,

" ¢, = 60° 1s required
90° 0.707
60° 1.00 * A worst case ¢, = 4.’50 |

for a typical lower limit
45° 1.31
3()° 1.93 ¢ FOI“ ¢n(1 < 6(;( , WEC have
Aljo ) >4,

15° 3.83 e

indicating a peaked closed-

oo (oscillatory loop response

0 behavior)



Why a dominant pole is required for a stable amplifier?

B A good Opamp design implies:
(i) |sA(jw)|>>1 over as wide a band of frequencies as possible
(11) The zeroes of pA(j®)-1=0must be all in the left-hand plane

These two conditions often conflict with each other. These
trade-offs should be carefully considered. Let’s consider a

practical amplifier characterized with these poles,
A — Ay,2,0

(I+s/a \1+s/a, 1 +s/ay) - (s+a )s+a, Ns+a)
The characteristic equation becomes

A(s)=—

- pA,a,a,

cra ot ota)

PA(s)—1= (

(s+a, )s+a, s +a,)+ pA,a0,0, =0



Critical Value of A,

s*+5% (o, +a, +a, )+ s(ao, + a0 + ;) + o0 (1+ B4, ) = 0

Note that A4, 1s the critical parameter that determines the pole
locations for a given a,, a, and a; (0< f <1). Furthermore, when
pA, =0, the roots are at -a,, -a, and -a;. Therefore, for small 54,
the roots should be 1n the left-hand plane (LHP). However, for
PA,>>1, two of the roots might be forced to move to the right-
hand plane (RHP). This can be verified by applying Routh’s
stability criterion. Let us write the polynomial as

b,s’ +b,s* +bs+b, =0

In order to have, 1n the above equation, left half plane roots, all
the coefficients must be positive and satisfy

b,b —bb, =0



Critical Value of A,

The condition for imaginary-axis roots become

b3(ja))3 +b2(ja))2 +b1(ja)) +b, =0
(b, - b, )+ joolb, - bye* )= 0

Now, for s=jw being a root, both real and imaginary parts must
be zero. That 1s,

b,—b,0* =0, b —bw> =0 or bpb,=bb,

Then the two roots are placed at

b b
o =xj|L==%j |+
P23 ]\/; ]\/;




Critical Value of A,

Then
a,0,0, [1 T (ﬂAo )c ] = (al Ta, +a;, )(0‘1052 T+ 0‘20‘3)

Thus, the critical value of 4, becomes

a o, o, «a; 0O

o
(B4,), =2+ L+ L+ 24 224 T3y
az a?) al a?) al a2

Thus when A4 ,becomes (f4,)., the amplifier will oscillate at

b
Y L T

3

Also when pA4,> (fA,)c, the amplifier has RHP poles, therefore 1s
unstable.

1

0




Critical Value of A,

B Let us consider some numerical examples. Let 4, = 10°,
(i) Three equal poles o ,=a,=a;=10"rad/s.
The amplifier oscillates at @, = o,+/3 =10"~/3rad/s

(B4,). =8, B.=8/4,=8x10"

a, O

(i) a, = 0" 10" then the critical loop gains yields
a e . 2x10*
(84, ). = 2;2 =2x10", thus the amplifier is stable if £ < VR 0.2
1 0

Since f=R,/(R,+R,),3<0.2 causes (R,/R)>4,

which means that for an inverting (non-inverting) configuration,
the gain must be greater than -4 (5) to keep the amplifier stable.



Critical Value of A,

(111) Let us determine 4~ under the most stringent condition f=1.
Then from previous equation,

a, a;

AO<2+a1+ T B B I
o, o o o & o
In order to have a large 4, the poles must be widely separated.

1.e. a,<<a,<<a;, then the 4, inequality can be approximated as
(04 (94

A, <—=2+—=

al al

To obtain a conservative 4,, let a,=a;, which yields

04
A,<2—=
al

This inequality bounds the DC gain to provide a stable closed
loop configuration.



Peaking and Ringing

B Peaking in the frequency domain usually implies ringing in the
time domain

B Normalized second-order all-pdle (low pass) system

2
@, 1

H(s) =
s= jw ) 2
s+ 25+, 1_w+]1 o
s=jw a)o Q &)0
Normalized Normalized
freq. response (dB) step rcsponse (V)
'Y

Ll,__




Peaking and Ringing

B GP: Pecak gain — We have the error function,
1 1

E(jw)| = \/ = (1)

> jz 1 o D(a))
+ «

==
0)0

A2 2
Q" w,

To find out the maximum value of |E(jw)|, calculate the
derivative of D(w) and make it equal to zero

. 1
iD(a))=2 %—2 a)z +4a)4 =0 a)*2=[1——2]a)02 OR w=0
dw 0, w, o, : 20

For 0>1/42 , use w.in Eq. (1) and we get the peak gain

2
Gp=— 2 >|E(j0) =1 )

J40 -1



Peaking and Ringing

B OS: Overshoot — Inverse Laplace transform
. b Inverse . . B .
s -domain : ——— Ll s time - doamin : e sin(b# Ju(¢)
(s+a) +b

For a 2™ order all pole error function, the impulse response is

2 2
~ w, _ o) b v. (£)=0(t)
HE) 0 = ) @, 2 b (s+a)+b 2
S +——St+a, a=—=
20
Inverse ) 2 1
Laplace N h(f) — 7Oe—at Sll’l(bt)u(t) b= 1—4—Q20)0

Consider the normalized step response of this system,

y(t) = j h(t)dt =1— % e sin(bt+¢),¢ =tan™ b for v. () =u(t)= j sydt (3)
0 a

Use the damping factor ¢ to represent, a=25w,.b=+1-5a,




Peaking and Ringing

Usually, the damping factor &=1/2Q 1s used to characterize a
physical 2" order system. Thus, we rewrite the normalized
time-domain equation (3)

e sin( 1-E2 ot + ¢)

2(6)=1-22 e sin(bt + ¢) =1 -
b ]— &2

b 1-&° “
$=tan ' —=tan" ¢
a

For under damped case £ <1 (Q > 0.5), the overshoot 1s the
peak value of y(¢). To find the peak value, we first calculate
the derivative of y(¢), and make 1t equal to 0.

¢~

, for small &

V=&
S

d y(t) = —Le_gy%t sin( 1-E2 ot + ¢)

d (a)ot ) \/Q

+e cos( 1-E2 ot + ¢)



Peaking and Ringing

d
() y()=0

— ﬁe{%t sin( 1—§2a)0t+¢): e cos( 1—§2a)ot+¢)
tan( 1—§2a)0t+¢)=\/1;7:tan¢

—

To satisfy the equality above, we have
nimw
J1-&°

In other words, the normalized step response y(7) in Eq.(3)
achieves extreme values at time steps of n=0, 1, 2, ...

o1 = n=0,12,...



Peaking and Ringing

n=0 n=1 n=2 n=3 n=4 n=5 n=6
16

141

Amp dude it

S

]




Peaking and Ringing

n=0, w,=0, y(@)=0
_ g
nzla a)ot: 4 > y(t)ZI—%e‘/@sin(ﬂ'+¢):l+e -
1-¢& JI1=&
278 2x&
2 B 2, 2
n=2, = 7[2, y(t)=1- : 2e@s1n(27z+¢)=1—eﬁ
1-¢& VJI1-&
_ 378 _ 3x¢
n=3, a)of:3—7r, y(t)=1- : e@sin(37r+¢):l+e@

1- &2 J1-&2
Therefore, the global peak value of y(7) 1s achieved when n=1.
Thus, the overshoot 1s defined as

. .7
Peak Value — Final Value 100x e iz 5)

0OS(%) =100 x .
Final Value



Peaking and Ringing

B ¢ : Phase Margin
For a 2" order all-pole error function

E(s)= 1(s) _ 1 - |
1+7(s) 1+1T(s) s° 1 s
>+ +1
a)O Q a)O
Therefore, the loop gain T'(s) is given by
T=w 15
wi  Qwo

The cross-over frequency thus can be obtained

(=) (2] -

T(jo,)



Peaking and Ringing

Solve the equation and get the crossover frequency,
1/2
1 | /2
w, = w{ 0 +1— 2Q2j = a)o(w/4§4 +1 —252)
And thus the phase margin 1s

d :1800+4T(ja)x)=cosl[ /1+4£124 —Zézjzcosl(w/4§4+l—2§2)

B Study the relationship between phase margin and gain peaking
(Eq.2) or overshoot (Eq.5), we have
GP(60°)=0.3dB 0S(60°)=8.8% O =~0.82
GP(45°)=2.4dB 0S(45°)=23% Q~1.18

2

1
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The Rate of Closure (ROC)

. LOAD

A(s) 9
stability for minimum phase systems b ]
from the magnitude Bode plots 1s by determining the ROC.

INPUT

B One effective method of assessing

B The Rate of Closure (ROC)
Determining the ROC is done by observing the slopes of |A]
and |1/f] at their intersection point (cross-over frequency f,)
and deciding the magnitude of their difference.

ROC=|Slopd| 4|} Siopl/ ) fut

The ROC 1s used to estimate the phase margin and therefore the
stability (How ?)



The Rate of Closure (ROC)

B Observing a single-root transfer function

H(jf)=—— NGB L

AR e BE BT O
F<f,/10  Slopd|H|)—>0dB/dec  sH >0 T4 B
f>10f, Slopd|H|)—>-20dB/dec £H—>-90° £ | 1“4
=1, SlopdH|)—>-10dB/dec /H—>-45 3

B Empirical Equation |
o7 ”1:;" e w0 00

ZH = 4.5 Slope(|H]) "

This correlation holds also 1f H(s) has more than one root,
provided the roots are real negative, and well separated, say, at
least a decade apart.



The Rate of Closure (ROC)

INPUT +

B [n a feedback system, suppose both |4 by

and |1/f| have been graphed.
LT(ifx) — LA(jfx) — Lﬁ_l(jfx)

A(s) T
p
=~ —45 X ROC

Thus, the ROC can be used to estimate the phase margin (Page 4)
@, =180°+ LT (jf,)

B Cases
ROC=20dB/dec = ¢, =90°
ROC=30dB/dec = ¢, 6=45°
ROC=40dB/dec = ¢,6,=0°
ROC>40dB/dec = ¢,6<0°



The Rate of Closure (ROC)

A(s) =
Aol
(1+SJ[1+ > J
@, @, 1/B,
60
Gain
\
40 *% 1/B3
*20dB/dec ROC 20 *
- “Stability”
0 1/B4
** 40dB/dec ROC 1 10 100 IK 10K 100K 1M

- “Marginal Stability” Frequency(Hz)




Stability in Constant-GBP OpAmp

(4))

B Constant-GBP OpAmp (i.e. 46)_, =~ )

jw
* Unconditionally stable with frequency-independent
feedback, or /5 =0. (e.g. in a non-inverting or inverting
amplifier, the feedback network contains only resistors)

« Stable for any f<I.

 In feedback systems, since now we have
LT =LAB)= 24 , LA=-90°
these circuits enjoy

¢ =180°+ LA(jf.)=180°-90°=90°
» Typically, due to additional high-order poles in OpAmps,
60°< ¢ <90°



Feedback Pole

B Feedback Pole
Feedback network includes reactive elements = Stability may
no longer be unconditional

a_ B
Blif) T »

4 /idB)

1/8
B A polef, (or a zero) of

becomes a zero f, (or a
pole) for 1/5. Po

B For the case /. <<fb./, N

The effect of a pole within the feedback loop

28




Feedback Pole

B Examine the error function

__Hep(s) 1 _ _ _1
E(s) = Ardoay  141/T° T = AR, Ajgear = ;

Using OpAmp high-frequency approximation: A(jw) = ]G,—j = ]f—;
| 1
E(S) = —
1+ L 1+ 7 f . f2
J
Ap fBe JDof.

Refer to page 14, and we have s=j2xf. The peak value of E(s) can
be obtained. For Q >> 1, the approximate result 1s

f. =18 0=ABS ] f.



Feedback Pole

B The lower f, compared to f,f,, the higher the Q and, hence, the
more pronounced the peaking and ringing.

B Derive the phase margin

ZT(jif,) = ZACf) = AUBUL)
fo_ |
N

B As f.<<fb,f, , ZT(jf.)=-180° and ROC = 40dB/dec
The circuit 1s on the verge of oscillation!

~-90°—tan"'(f./f.)

3

0




Differentiator

B Feedback pole example:
differentiator

B Assume constant-GBP OpAmp

A( ]f) =GB/ jo={f,/jf Uncompensated
Differentiator
Z.+R 1+jf/f.° jaC R,

B To stabilize the differentiator,
add a series resistance Rs.

Compensated
Differentiator

31




Differentiator

B At low frequency, Rq has little effect because R<<|1/jw (]

B At high frequency, C acts as a short compared to Rg The
feedback network becomes |1/f4| = 1+R/R.

Ar(dB) A H(dB)

Ag Uncompensated Ao

Compensated

VR T E AN



Differentiator

B Assume Ry << R, the series resistor Rg introduces an extra
pole frequency £,

1 Z.+R 1 1+jf/f.

1
~ ZC:— RS’ 0:1= x NS
Y54 Z; ﬂo 1+Jf/fe ja)C+ g 4 1

B Choose Rs=R/y/f//f., wehave f.=+/.J.

LT(jf,) = ZA(if.) - AUBUT.)

~-90°+tan”'(f,/f,)— tan”'(£./1.)
=—]135°

Therefore, ROC = 30 dB/dec, ¢, = 45°



Stray Input Capacitance Compensation

B All practical OpAmps exhibit stray input capacitance. The net
capacitance C, of the inverting input toward ground 1s

C =C,+C./2+C,,

C, 1s the diffrential Cap between input pins, C /2 is the

common-mode cap of each input to ground, and C,_, 1s the
external parasitic cap. c
f
1
B In the absence of Cr, R,
) ' W
there’s a pole in feedback
1

YR (1+R,/ RN+ jf[27(R // R,)C, ]}

ROC =40 dB/dec
(See page 29)

3

4




Stray Input Capacitance Compensation

B Solution: Introduce a feedback capacitance C; to create feedback phase
lead.

B In the presence of Cr we have
1 (1+&)1+ff/fz

3 Ri) 1+ jf/f,

£ = 1 £ = 1
Z 7 2n(Cp+Cr)(Re|[Rz) ° YP  2mCyRy

B To have ¢,,, = 45° (i.e. ROC=30 dB/dec):

Make the cross-over frequency exactly at f,

. 1 o1 ] _ C
A0R)| =[] =5 = MORI=1+E D
Since

: fi 1 1 Cn
AR = = §=2ntrRe =5 (1+2)
Solve the equation to get Cf L RAR,

C. — 1+,/1+87R,Cp ft
4 AR, ft



Stray Input Capacitance Compensation

B To have ¢, = 90° (1.e. ROC=20 dB/dec):
Place f,, exactly on the top of f, to cause a pole-zero cancellation
fz = fp
(Cn + Cr)(Ra|[R2) = CfR;
Thus using simple algebra

Cr=—2C (Neutral Compensation)
f RZ n
AH(dB)
Ay
A b, = 0°
/ (pm ~ 450
1+R/R, | 11/B | b = 90°
| ! AN >
/- o ff\ f(dec)

36




Capacitive-Load Isolation

B There’re applications in which the external load 1s heavily
capacitive.

B [ oad capacitance C,

* A new pole 1s formed with
output resistance r, and C;

 Ignore loading by the feedback
network

* The loaded gainis 4, ,, = A(l+ i1, )‘1, f, =(2mC,)"
« ROC i1s increased and thus invite instability

B Solution: Add a small series resistance R to decouple the
output from C,



Capacitive-Load Isolation

R, W
Ai W—e
\ .

OV
B-T-——/ C=—

R R

RS:RTLFO C, = [1—|—le [j
2

3

8




Uncompensated OpAmp

B The poles of the uncompensated OpAmp are located close
together thus accumulating about 180° of phase shift before
the 0-dB crossover frequency f,.

B Unstable device, thus efforts must be done to stabilize it.

B Example of uncompensated OpAmps 1s 748 , which is the
uncompensated version of 741.

B They can be approximated as a three-pole system

F) = Ao
D = G557+ if AT /)

3= 2mRic,

Three-pole OpAmp model




Stability of Uncompensated OpAmp

B With a frequency-independent feedback (i.e. 1/ curve is flat)
around an uncompensated OpAmp, we have

IT| = lalp
|T| curve can be visualized as the |a| curve with thel/f
line 1s the new 0-dB axis al @)
+ For1/f = la(if-135°) [
ROC <30 dB/dec
b = 45°

lalf-135)]

* For|a(jf-1g0)| = 1/8 < la(jf-135°)
30 dB/dec < ROC <40 dB/dec
0° < ¢y < 45°
* For1/B < la(jf-180°)
ROC <40 dB/dec | L
o 1 2 fase f3 \ [ (dec)
¢, <0

Three-pole open-loop response

-225°




Stability of Uncompensated OpAmp

B The uncompensated OpAmp provides only adequate phase
margin only in high-gain applications (i.c. high 1/f)

B To provide adequate phase margin in low-gain application,
frequency compensation 1s needed.

 Internal compensation = Achieved by changing a(jf)
o External compensation = Achieved by changing S(jf)



Internal Frequency Compensation

B How to stabilize the circuit by modifying the open loop
response a(jf)?

* Dominant-Pole Compensation

Shunt-Capacitance Compensation

Miller Compensation

Pole-Zero Compensation

Feedforward Compensation



Dominant-Pole Compensation

B An additional pole at sufficiently low frequency 1s created to
insure a roll-off rate of -20 dB/dec all the way up to the
crossover frequency.

. Additional Pole

° fx(new) = f1:
ROC =30 dB/dec == ¢, = 45°

* fx(new) < f1:
ROC =20 dB/dec == ¢ . = 90° yp

B This technique causes a drastic

» [ {dec)

gain reduction above f4
43




Dominant-Pole Compensation

B Numerical example:

e 1=, =0

 g,=2mA/V,R,=100 kQ, g,=10 mA/V, R,=50 kQ

e f1=100kHz f, =1MHz, f; = 10 MHz

e Find the required value of f; for ¢p,,, = 45°with f =1
For ¢,,=45°, we have

fx="h
Draw a straight line of slope -20 dB/dec until it intercepts with the DC gain
asymptote at point D and get f;. o can
|a(jfx(new))| _ fa
la(jfa)l fx(new)

Thus:

f _ fx(new) — fi =@ "
d Bag B*x(g1R192R>) '

Requires EXTREMELY LARGE passive components

* [ fidec)

44




Shunt-Capacitance Compensation

B The dominant-pole technique adds a fourth pole = Extra cost
and less bandwidth.

B This technique rearranges the existing rather than creating a
new pole.

B [t decreases the first (dominant) pole to sufficiently low
frequency to insure a roll-off rate of -20 dB/dec all the way up
to the crossover frequency.

+— , AN
-+ + R; T Fo +
EC,- ;L_."r H:.! {.-I::: !';: {q{ — V; !';:.-
B (Y ' 1 ” v, "

Vi r, R C
) L
1 S /
\ B Y | \ _' J \_T_} B
1 1 1
h= 2mR,(C; + C,) f2= 21R,C, fs= 2mR5Cs

4

5




Shunt-Capacitance Compensation

° il fidB) O pensale
. CaSGS. | |‘ 4 || {,I,.-,:If ;;ﬂuu.:f
— . g e 'y L ted
* fr(new) = fa: ra J;' 4
= = °© S
ROC o 30 dB/deC - ¢m T 45 a| Compensated '\, “?J&
. $n = 90" %
y fx(new) < f2- S
2 e
ROC =20 dB/dec - ¢,, = 90° & e
I Ii'.'r .
1 "Ilﬁl | v tf._«fx
AN
¥
fie i I f:' T f.“;:% » f(dec)

B Since finew) 18 chosen to insure roll-off rate of -20 dB/dec all
the way up to the crossover frequency.
Thus:

|a(jf x(new))l __ f1i(new) - _ fx(new)
|a(Jjf1tnew))|  fx(new) fl(new) "~ Bag

46



Shunt-Capacitance Compensation

B The first pole i1s decreased by adding an extra capacitance to
the internal node causing it.

4
+
<l> R i C Ji VI Cc
giVa )
4

1

B Given the value of f;pew) from the desired value of ¢, we
can find C,
. fx . 1 ,8 Ao
Jitnew) = Ba, 2mR{(C;+C,) - G 2R [,

12




Shunt-Capacitance Compensation

B Numerical example:
e 1=, =0
g,=2 mA/V, R,=100 kQ
g2,=10 mA/V, R,=50 kQ
f1=100kHz, f, =1 MHz, f3 = 10 MHz
Find the required value of C, for ¢,,, = 45° with f = 1

¢
+ +
R] C] VI CC Rg C2:: VZ
81 Va i 514, i
H

i i

For ¢,, =45°,f, =f, =1MHz

_f2 _ _ f _ _ 1 _
Then, fl(new) B aoz,B B .91R1292R2 =10Hz = @1fl(new) = 159nf

EXTREMELY LARGE
Unsuitable for monolithic fabrication

4

8




Miller Compensation

B Miller’s Theorem

If A, 1s the voltage gain from node 1 to 2, then a floating
impedance Z; can be converted to two grounded impedances Z,

and Z,:

KZ_VZZ? - Zl:ZFVVlV )
F 1 1 72
@O Ze @
; {— mp
Vi Vs
L n
PP

4

9



Miller Compensation

B Applying Miller’s theorem to a floating capacitance connected
between the input and output nodes of an amplifier.

1
Z, _%a)CF B 1 /CUC 1

A4 T -4 Jel-A ), B A o (l_%lv)CF

lﬂnvc}ut - Vin b vaut

1
CF{1—AV)I ICF{1_A_VJ |
- - [Liu]

B The floating capacitance is converted to two grounded
capacitances at the input and output of the amplifier.

B The capacitance at the input node 1s larger than the original
floating capacitance (Miller multiplication effect)

5

0




Miller Compensation

B This technique places a capacitor €, in the feedback path of
one of the internal stages to take advantage of Miller
multiplication of capacitors.

C
I
I

—|
+ +
RI C/:: VI RZ CZ:: VZ
giVa i oV i
®

L

B The reflected capacitances due to €. and the DC voltage gain
between V, and V; (a, = —g,R,) yields

1
Cic = Cc(1+ g2R3) and (0 =C ( 1+ ngz)

= |a,|C, = (.
B A low-frequency dominant pole can be created with a
moderate capacitor value.



Miller Compensation

B Accurate transfer function T
[
V2 1_jf/fz - +
- E R R . 3 R] C]—— Vi Rg Cg:: V)
Va g17t1821%2 (1_]f/f1(new))(1_]f/fz(new)) %%Vd T - 7 -
L
B Pole/zero locations
w; = ”g—i RHP zero
1 o 1 1 _ |
P1i(new) = R1C1+g2R2R1Cc+R2C, — R1g2R2Cc |az|CoRy Dominant Pole

R1C1+R192R2Cc+R2C 92Cc Second Pole

W = ~
2(new) RyRy(C1CotCiCa+CoCy) — C1Ce+CiCy+CeCo




Miller Compensation

B Right-half plane zero:
 The RHP zero 1s a result of the feedforward path through C,

=, UQ C.
o— ® __"__}l
+ + 3 +
Va ”'d% <l> R C; Vi R, Q C,=L-T>
) g1V i 2V )
o T

e The circuit 1s no longer a minimum-phase system.
e [t introduces excessive phase shift, thus reduces the phase margin.

e In bipolar OpAmps, it is usually at much higher frequency than the
poles—>1—f/f, =1



Miller Compensation

B Pole Splitting
* Increasing C; lowers f;pew) and raises fomew)

e The shift in f, eases the amount of shift required by f; — Higher
bandwidth

|a| (dB)
F 3
iy

™ ,
. |a| Uncompensated

S G O

.
|a| Compensated

I
I
|
I
I
I
I
|
I
I
|
I
I
| [ — o
| gﬁf,,— 45
I I
i
|
I
|
i

' i\ 1/]p]

! |

! |

l I A . . )
i fo Somew \ > f (dec)

e Increasing C. above a certain limit makes f, stops to increase.

.)( new)

W )_an( , = 9> - 92
2(new) — 2(new) — —
C; + CE.CZ + C, C1+ G Ce>>C1,Co
Cc



Miller Compensation

B Numerical example:
e r;7=0,1,=0,g,=2mA/V, R,=100 kQ, g,=10 mA/V, R,=50 kQ
e f1=100kHz f, =1MHz, f; =10 MHz
e Find the required value of C,. fogcqu =45°withf =1

+ +
l R/ C]:: VI R2 CZ:: V2
&iVa i gV i

m— .
From f; and f,, we can calculate C; = 15.9 pF and C, = 3.18 pF
Assume C is large — fomew) = 2n(£2+C2) = 83.3MHz > f;

Since fomew) > f3 — f3 1s the first non-dominant pole
For ¢,,, = 45°, f, = f3 = 10 MHz

_ I3 _ f: _
Then, fimew) = a03ﬁ = glR1392R2 =100 Hz

1 Much smaller than that of shunt-
C = — capacitance compensation
¢ 27‘[ R 1 g 2 R 2 fl i n ewi Suitable for monolithic fabrication




Pole-Zero Compensation

B This technique uses a large compensation —
+ C.
capacitor (C, > C;) to lower the first pole f;. <l> RiQ Ci== 7 —g
: 1Vd _ R
B |t also uses a small resistor (R, << Ry) &l e

to create a zero that cancels the second pole f>.
B The compensated response 1s then dominated by the lowered

first pole up to f3
B Transfer function
E = —g1R1 ; L+ ] /T ;
Vd (1 +]f/f1(new))(1 +]f/f4)
B Pole/zero locations 1 1
1
fitnew) = 30 =arc. ' =R



Pole-Zero Compensation

B (. and R; lowers the dominant pole f;mew) <K f1, Creates a
zero f,, and creates an additional pole f, > f,

B Choose R, such that f, cancels f,

B The open loop gain now becomes

Anew (]f ) =

0%

(1 +Jjf/fiinew)) X+ jf/f)A + jf/fa)

lal (dB)
F 3

a4y Nt |l Uncompensated - To have ¢m = 450, the cross-over

N\ Pu frequency should be f3

- Since the compensated response is
dominated by f; mew) pole up to f3

|a(jf1(new))| _ Ao _ f3
la(if3)l 1/B fl(new)

|
|a| Com picnsarctf
=145
|

\ P - Thus, fl(new) = f3/aep




Pole-Zero Compensation

B Numerical example:
e r;7=0,1,=0,g,=2mA/V, R,=100 kQ, g,=10 mA/V, R,=50 kQ
e f1=100kHz f, =1MHz, f; =10 MHz
e Find the required value of C, for ¢,,, = 45°with f =1

s
+ L C. +
R] C]—— V] R2 CZ—— VZ
giVa i R. 214 )
° T

L

From f; and f,, we can calculate C; = 15.9 pF and C, = 3.18 pF
For ¢,, =45°, f, = f3 =10 MHz

_ f3 _ f3 — = !
Then, fl(new) "~ agf  giR1G2Rz 100Hz = €= 21R1 [ 1(new)

) 1 Relaxed compared to shunt-
R 1s chosen such that f — f2 — R, = =10 Q capacitance compensation,
o z c 21C.f
cj2 but still LARGE

zmi — =1GHz > f; — It will not affect the phase margin
ct1

Since f, =

58




Feedforward Compensation

B In multistage amplifiers, usually there 1s one stage that acts as
a bandwidth bottleneck by contributing a substantial amount of
phase shift in the vicinity of the cross-over frequency f,

B This technique creates a high-frequency bypass around the
bottleneck stage to suppress its phase at f,., thus improving ¢,,

/a

>

High frequency
bypass




Feedforward Compensation

B The bypass around the bottleneck stage 1s a high-pass function
KCI

.o . I/ o

h(]f) — 1+jf/f0 Vi —OVO
B The compensated open-loop gain 1s

acomp (]f) — [al (]f) + h(]f)]az (If) High frequency
B At low frequency: |h(jf)| < |la;(f)] .

acomp(if) = a1(if)a2(if) = a(]f)
The high low-frequency gain advantage of the uncompensated
amplifier still hold.

B At high frequency: |h()| > |a (f)]
Acomp (]f) = a; (]f)
The dynamics are controlled only by a, — Wider bandwidth &

Lower phase shift
. 60




Summary of Internal Frequency Compensation

B Dominant-pole compensation: ddionl P

[t creates an additional pole at sufficiently low frequency
e [t doesn’t take advantage of the existing poles.
e [t suffers from extremely low bandwidth.

[ Shunt-capaeitanee compensation:

shu it Eﬂp

e It rearranges the ex1st1ng poles rather than creating an n additional pole.
e It moves the first pole to sufficiently low frequency.
e The value of the shunt capacitance 1s extremely large — Extra cost

61




Summary of Internal Frequency Compensation

B Miller compensation:

=

e [t takes advantage of Miller multiplicative effect of capacitors, thus
requires moderate capacitance to move the first pole to sufficiently low
frequency.

e [t causes pole splitting, where the dominant pole 1s reduced and the first
non-dominant pole 1s raised in frequency.

6

2




Summary of Internal Frequency Compensation

B Pole-zero compensation:

-

Saiisbasew

e Similar to shunt-capacitance technique, a large capacitor 1s used to shift
the first pole to sufficiently low frequency.
* A small resistance is used to create a zero that cancels the first non-

dominant pole

B Feedforward Compensation .

Vio—e—P| a; Z p —o V,

A

[

h
/< High frequency

bypass

e It places a high frequency bypass around the bottleneck stage that
contributes the most phase shift in the vicinity of f,



External Frequency Compensation

B How to stabilize the circuit by modifying its feedback factor 5 ?
* Reducing the Loop Gain
 Input-Lag Compensation
* Feedback-Lead Compensation



Reducing the Loop Gain

B This method shifts |1/B| curve upwards until it intercepts the |a)
curveat f = f b —180°% where ¢,,, 1s the desired phase margin.

B The shift 1s obtained by connecting resistance R, across the

Inputs. . o
,«rm—.-_-..' A
R, T
T
BI ol [Franco]
UncomEensated

1

PR S S
b (R 1 ”R C) R 1 _Ryg
T o




Reducing the Loop Gain

B R_is chosen to achieve the desired phase margin ¢,,:

g R Ra_| N ¥
3= 1+ R + Re |a(]f¢m—180 )| "i““"" ) S SR
Then, "3 T
R, = L g
¢ alUry, _1g07)|-(1+R2/R1) . )| [Franco]
ranco
H{dB) i
g
I
|
|
|
| > 45"
. 'd
|@(ifm -180°)| : L
| fu= 45"
la(if 135 : \ 4
| \ 1
I ' Uncompensated (¢, < 45")
| [
1+Ry/R, | ! )
| |
|
! I | . f(dff—'}
fi o 5




Reducing the Loop Gain

B Prices that we are paying for stability:

e Gain Error:
1 T Aideal

H = =
LT BR14+T  141/T
The presence of R, reduces T, thus resulting in a larger gain error.

e DC Noise Gain:
R, R,

1
H(jO)=2—=1+—+
c.(JO) 3 R R
The presence of R, causes an increased DC-noise gain which
may result in an intolerable DC output error.

THERE’S NO FREE LUNCH !



Input-Lag Compensation

B The high DC-noise gain of the previous method can be
overcome by placing a capacitance C, in series with R,..

R, R,
* High frequencies: A I—w —rx

v’ C, is short. TR %

v I1I curve 1s unchanged compared to the previous case. C

P B I [Franco]

* Low frequencies: I

v' C, is open

v m =1 + —=, we now have much higher DC loop gain & much lower DC

H{dB)

output error.

ay

Compensated (¢,, = 45%)

N

I+RyR+R./R,
1/|B|

] 50
IR /R, Uncompensated (¢, < 45°)




Input-Lag Compensation

B R_is chosen to achieve the desired phase margin ¢,;,:

1

. R, R, .
o=l =alf, )| L n

- e
Then . ) P

R — I ranco
7 |aGry, _1ge)|-A+R2/RY) "1 el

B To avoid degrading ¢,,, it 1s good practice to position the
second breakpoint of |1/£| curve a decade below f b, —180°"

11 f
2nC.R, 107 $m—180 "

Then,
5

C. =

”Rcf¢m_180°



Input-Lag Compensation

B Advantage(s):
© Lower DC-noise gain due to the presence of C..

© It allows for higher slew rate compared with internal compensation techniques:
Op-amp is spared from having to charge/discharge internal compensation
capacitance.

B Disadvantage(s):

@® Long settling tail because of the presence of pole-zero doublet of the feedback
network (|S)).

@ Increased high-frequency noise in the vicinity of the cross-over frequency.
@® Low closed-loop differential input impedance (Z;) which may cause high-

frequency input loading
Zd :Zd”ZC ) ZC:RC+1/SCC K Zg

** z4 1s the open loop input impedance of the Op-Amp.



Feedback-Lead Compensation

B This technique uses a feedback capacitance Cr to create phase
lead in the feedback path.

B The phase lead is designed to be 1n the vicinity of the
crossover frequency f,, which 1s were ¢,,, 1s boosted.

4=

—.M

R, R,
Ahj: Ny

.

Bi__+

T [Franco]
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Feedback-Lead Compensation

B Analysis:

1, (Be|Fey) Ro\ 1+if/f;
T (1 T R_1) 1+if/fp
where,

1

— — Ra
fo = 2nCeRy f2 = (1 +R1)fp

1
B(jw)
e The optimum value of (5 , that maximizes the phase margin,

* The phase-lag provided by is maximum at ./ f f,.

is the one that makes this point at the crossover frequency. 1+R /R,

fx_ /fzfp _fp ’1+R_1

* The cross-over frequency can be obtained from

1
BGl- TR,

* Having fy, the optimum C; can be found

J1+R,/R;

Cr =
f 21R, f,

|a(]fx)| =




Feedback-Lead Compensation

B How much phase margin can we get ?

* At the geometric mean of f,, and f,, we have
1) — 900 — -1 Rz

A(ﬁ)—90 2 tan (1+R1)

o The larger the value of 1 + R, /R, the greater the

contribution of 1/f to the phase margin.

« Eg 1+4+R,/R, =10 - 2£(1/B(jf,)) = —=55°
Thus,
N o 1\ : o
2T(if) = 2a(if) = £ (55=) = 2a(if) + 55
- The phase margin is improved by 55° due to
feedback-lead compensation.

1+R/R;

1/|B|

fy \ -
|
i - f(dec)
45 T————————f——————‘—,'v'”
Jin



Feedback-Lead Compensation

B Advantage(s):
© (s helps to counteract the effect of the input stray capacitance C,, as we
discussed beforehand.

© It provides better filtering for internally generated noise.

B Disadvantage(s):

@ It doesn’t have the slew-rate advantage of the input-lag compensation.



Decompensated OpAmps

B These OpAmps are compensated for unconditional stability
only when used with 1/ above a specified value

5=(5)
—> (=
’8 ’8 min

B They provide a constant GBP only for |a| = (1/8)mn
B They offer higher GBP and slew rate.

B Example

e The fully compensated LF356 OpAmp uses C, = 10 pF to provide
GBP =5 MHz and SR = 12 V /us for any |a| = 1 V/V.

e The decompensated version of the same OpAmp, LF357, uses C, =
3 pF and provides GBP = 20 MHz and SR = 50V /us but only for
any |a] =5 V/V.



