High-Order Filters

- There are two main approaches for implementing high-order filters:
 - **Cascade**
 - Multiple Feedback Architecture: Leap Frog, Follow the Leader, etc

- Cascade approach

\[T(s) = \prod_{i=1}^{N} T_i(s) \]

where

\[T_i(s) = K_i \frac{s^2 + C_i s + d_i}{s^2 + \left(\frac{\omega_o}{Q} \right)_i s + \omega^2_{oi}} \]
• T(s) can be realized by a cascade of circuits blocks, each of these blocks realizes the biquadratic function \(T_i(s) \).

• Each biquad is independent of any biquad if \(Z_{oi} << Z_{in}(i+1) \)

\[
T_i \quad T_{i+1}
\]

\(Z_{oi} \quad Z_{in, i+1} \)

Condition \(Z_{oi} << Z_{in, i+1} \)

• **Degrees of freedom**
 - Physical position of each biquad in the cascade
 - Distribution of the overall gain in the different biquads
 - Pole-Zero pairing
• Optimal goals for cascade filters
 - Maximization of dynamic range
 - Maximization of the signal-to-noise ration

• Additional desirable features
 - Simplification of the tuning procedure
 - Minimization of the pass band attenuation

• Pole-zero pairing
 - Pair each complex pole with its nearest complex zero. This will maximize the dynamic range of each biquad.
 - Starting with the pole of highest Q factor, i.e.,
• How about the cases for zeros at zero and infinity?

\[T(s) = \frac{ks^3}{(s^2 + b_1s + C_1)(s^2 + b_2s + C_2)(s^2 + b_3s + C_3)} \]

- Options

\[T(s) = \frac{k_1}{s^2 + b_1s + C_1} \frac{k_2s^2}{s^2 + b_2s + C_2} \frac{k_3s}{s^2 + b_3s + C_3} \]

\[T(s) = \frac{k_1s}{s^2 + b_1s + C_1} \frac{k_2s}{s^2 + b_1s + C_1} \frac{k_3s}{s^2 + b_1s + C_1} \]

- Advantages and disadvantages

• Cascade sequence

 - Several options N!
 - Cascade in increasing Q factors.

 \[\text{LP with } Q_1 \]
 \[\text{BP with } Q_1 \]
 \[\text{HP with } Q_3 \]
 \[Q_1 < Q_2 < Q_3 \]