Abel's theorem, 193
Airport, 309
Analogue systems, 311
Analytical, 309
Analyzer module, 128
Arbitrary repair times, 110, 191, 210
Automated plant operation, 311
Availability, 77
Bath tub curve, 14, 28
Bayesian models, 124
Beta distribution, 14
Binomial distribution, 10
Binomial techniques, 36
Boolean algebra properties, 60
Boundary states, 249
Bounds, 254
Bridge configuration, 35
Budget, 1
Bulk power system reliability, 216
Capacity reserve model, 225, 226
Catastrophic failure, 196, 200
Chain model, 152
Coding theory, 314
Command and control, 296
Common-cause failure:
 availability model, 104
 one out of n, G system, 107
 4-unit redundant system, 167
Common-cause failure analysis:
 of bridge network, 102
 of K-out-of-n system, 99
 of parallel-series network, 102
 of parallel system, 95
 of reliability networks, 93, 94
Common mode failure, 260
Communication failure, 312
Commuters, 1
Compensating failures, 316
Computer failures, 311-312
Computer reliability, 311
Computer software, 118
Consumers, 1
Correct programs, 118
Cramer's rule, 195
Cut sets, 253
Decomposition method, 38
Delays, 268-269, 303
Delay time, 232
Delphi method, 165
Delta-star technique, 39
Demand based measures, 267-269, 297-303
Demand model, 217
Derated capacity states, 217
Design, 1, 264
Differential equations:
 integration technique, 21, 22
 Laplace transform technique, 22
Digital systems, 311
Distribution reliability, 226, 252
Do while, 127
Downtown people movers, 309
Dynamic redundancy, 314
Electrical noise, 312
Electric utilities, 216
Electromagnetic interference, 312
Energy index of reliability, 231
Entraining, 308
Environmental failures, 312
Equivalent subset, 255
Equivalent transition rate, 272, 277-278
Error free software, 125
Errors, 119

335
Generation system model, 217, 239
Glitches, 313
Go to statement, 126
Guideway, 295

Hardware redundancy, 313
Hazard function:
for exponential distribution, 132
for extreme value distribution, 133
for gamma distribution, 134
for log-normal distribution, 135
for Weibull distribution, 133
Hazard rate distribution, 14-15
Hazard rate function, 14, 27
Hazard rate plotting theory, 17
Heads, 274
Hot reserve, 232
Human correctness function, 169
Human error, 161, 312
causes, 164
correction, 161, 312
types, 163
Human error rate, 167
Human performance under stress, 162
Human reliability definition, 161
Human reliability function, 166
analysis applied to nuclear plants (THERP), 172
experiment justification, 168
modeling, 166, 168, 169
prediction technique, 170
quantifiers, 168
Human unreliability, data banks, 164
experimentally-based, 165
field-based, 165
subjectively-based, 165
Hybrid approach, 309
Hybrid redundancy, 314

If Then Else, 127
Infinite span capacity, 306
Inherent reliability, 3
Initial errors, 120
Instrumentation module, 128
Interconnected systems, 216, 241
correlated load models, 245
independent load models, 242
Interference theory, 145
models, 145, 148
reliability evaluation, graphical method, 146
Interval frequency, 238, 240

JPL-STAR computer, 314
Kinetic tree theory, 25
K-cut-of-n configuration, 31
Lambert tan method, 81
Laplace:
finite value theorem, 20
initial value theorem, 26
theorem of derivatives, 19
transforms, 19
Lead time, 322
LIM tail, 296
Linear induction propulsion, 206
Load factors, 141
Load model, 217
asymmetry, 226
CVF and MLE, 225
for frequency and duration, 223
for LOLE, 222
sequential correlation, 232
Log-normal distribution, 13, 135
Loss of capacity expectation, 270
Loss of capacity probability, 270
Loss of load expectation, 222

Magnetic levitation, 245-296
Maintenance, 1, 260, 274
Maintenance area, 272
Majority voting, 314
Margin state arrays, 245
Margin state matrix, 225
Markov cut set method, 253, 255
Markov models, 23, 190
Married pairs, 289
Mean:
failure rate, 78
repair rate, 78
Mean time between human error (MTBHE), 168
Mean time to failure (MTTF), 29, 30, 31, 32, 33, 35
Mean time to first human error (MTBHE), 168
Mean time to human initiated failures (MTTHI), 168
Mechanical reliability, 131, 132
chain model, 152
optimization, 154
time dependent models, 153
Mechanical system failure modes, 136, 152
Melvin transforms, 146
Memory failures, 312

Mergeability, 238, 272
Military, 1
Minimal cut set method, 38
Minimal cut sets algorithm, 61
Mission-oriented systems, 317
Model validation, 124-125
Modal programs, 117
Moment generating function:
continuous case, 16
discrete case, 16
Multi-normal distribution, 10
Multiple failure modes, 152

Network reduction method, 38
Normal distribution, 13, 151

Off-line, 289
Off peak periods, 308
Open failure mode, 177, 179
Operating reserve evaluation, 217
basic PJM method, 233
frequency and fractional duration, 237
modified PJM method, 233
Operational reliability, 268
Operation of transistors, 1, 264

Parallel configuration, 31
Parallel-series network, 181
Partial capacity states, 217
Partial failure mode, 271
Partial failures, 196, 200
Partial fraction technique, 20
Poisson, 94
Pointwise probability, 237
Poisson, 94
Power failures, 312
Power mals, 295
Power substitutions, 295
Power systems, 216
Probability:
conditional, 9
density function, 9
distribution function, 9
of intersection, 8
Reliability function, 25, 26, 27
for exponential distribution, 127
for extreme value distribution, 133
for gamma distribution, 134
for log-normal distribution, 135
for mixed Weibull distribution, 134
for Weibull distribution, 133
Reliability improvement, 125
Reliability optimization, 154
Repairable models, 190
Residual errors, 120
Resources, 1
Retrieval mode, 270
Rubber wheels, 264
Safety factors, 139
Safety margin, 140
Schedded maintenance, 221
Sensitivity studies, 303
Sequence and control errors, 128
Sequencing, 127
Sequential addition, 291
Sequential truncation, 253
Series structure, 30
Set theory:
 basic laws, 7
 intersection of sets, 6
 union of sets, 5
Shielding, 312
Short failure mode, 177, 179
Simplex system, 313, 315
Simulation, 309
Software redundancy, 314
Software reliability, 118
Steady state availability, 196

Steel wheels, 264
Strength, 137
Strength distribution:
 exponential, 148
 gamma, 151
 normal, 154
Rayleigh, 146, 149
Stress distribution determination, 144
Stress, 137
Stress distribution:
 exponential, 148
 normal, 151, 154
Rayleigh, 149
Weibull, 146
Stress distribution determination, 144
Structural analysis, 128
Structured programming, 126
Supplementary variable technique, 110, 190, 210
System based measures, 267, 296-297
Task correction rate, 169
Temporary failures, 312
Testing and reliability, 119
Theory of failures, 137
Three state device system, 23, 117
 bridge, 182, 188
 with common-cause failures, 210
delta-star technique, 183
k-out-of-n unit system, 207
literature review, 177
optimization, 212
parallel, 181, 207, 213
parallel-series, 181
repaireable models, 190
series, 178, 207, 211
series-parallel, 182
Tie sets, 253
Time redundancy, 313
Top down programming, 126
Total failure mode, 279
Trade-off, reliability and cost, 226
Train, 285-289, 307
Transfer 'in' and 'out', 50, 52
Transistor reliability, 312, 325
Transmission system, 252
Transportation system, 311
Triple modular redundancy, 315
Two failure mode system, 23, 178, 190
Unavailability, 77
Uniform distribution, 11
Unit addition algorithm, 219
Unit removal algorithm, 221
Variance, 16, 17
Voter, 316
Warranties, 264
Weibull distribution, 12, 18, 133
mixed, 134

Probability: (Continued)
properties, 8
of sample, 8
of union, 8
Probability distributions:
 beta, 14
 binomial, 10
 exponential, 12, 132, 148
 extreme value, 13, 133
 fatigue life, 135
 gamma, 12, 134, 151
 general, 14
 hazard rate, 14, 15
 log-normal, 13, 135
 mixed Weibull, 134
 multinomial, 10
 normal, 13, 151
 Poisson, 10
 uniform, 11
 Weibull, 12, 18, 133
 Probability tree analysis, 170
 Processor errors, 312
 Program librarian, 128
Quality of service, 262
Quantitative reliability, 1
Quick start units, 217
Random variables:
 continuous, 9, 10
 discrete, 9
 expected value of, 16
 variance of, 16, 17
Rayleigh distribution, 12, 149
Real time computer control, 311
Redundancy, 313
Redundant networks, 29
Redundant system, 94
Registers, 225
Reliability:
 allocation, 43
 evaluation techniques, 36
 optimization, 212
Reliability apportionment, 43
Reliability design methodology, 143
Reliability during design, 2
Reliability evaluation:
 binomial technique, 35
 decomposition method, 38
 delta-star technique, 39
 network reduction method, 38
 state space method, Markov processes, 23, 37

Weibull distribution, 12, 18, 133
mixed, 134

Index

Steel wheels, 264
Strength, 137
Strength distribution:
 exponential, 148
 gamma, 151
 normal, 154
Rayleigh, 146, 149
Stress distribution determination, 144
Stress, 137
Stress distribution:
 exponential, 148
 normal, 151, 154
Rayleigh, 149
Weibull, 146
Stress distribution determination, 144
Structural analysis, 128
Structured programming, 126
Supplementary variable technique, 110, 190, 210
System based measures, 267, 296-297
Task correction rate, 169
Temporary failures, 312
Testing and reliability, 119
Theory of failures, 137
Three state device system, 23, 117
 bridge, 182, 188
 with common-cause failures, 210
delta-star technique, 183
k-out-of-n unit system, 207
literature review, 177
optimization, 212
parallel, 181, 207, 213
parallel-series, 181
repaireable models, 190
series, 178, 207, 211
series-parallel, 182
Tie sets, 253
Time redundancy, 313
Top down programming, 126
Total failure mode, 279
Trade-off, reliability and cost, 226
Train, 285-289, 307
Transfer 'in' and 'out', 50, 52
Transistor reliability, 312, 325
Transmission system, 252
Transportation system, 311
Triple modular redundancy, 315
Two failure mode system, 23, 178, 190
Unavailability, 77
Uniform distribution, 11
Unit addition algorithm, 219
Unit removal algorithm, 221
Variance, 16, 17
Voter, 316
Warranties, 264
Weibull distribution, 12, 18, 133
mixed, 134