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Abstract 

A 64-way time-interleaved successive approximation based 
ADC front-end efficiently incorporates a 2-tap embedded FFE 
and a 1-tap embedded DFE, while achieving 4.56-bits peak 
ENOB at a 10GS/s sampling rate. Fabricated in 1.1V 65nm 
CMOS, the ADC with embedded equalization achieves 0.48 
pJ/conv.-step FOM, while consuming 79.1mW and occupying 
0.33mm2 core ADC area.  

Keywords: ADC, ADC-based receiver, DFE, embedded 
equalization, FFE, SAR, time interleaving. 

Introduction 
ADC-based receivers for wireline applications allow for 

implementing flexible, complex, and robust equalization in the 
digital domain [1], as well as easily supporting bandwidth- 
efficient modulation schemes, such as PAM4 and duobinary. 
However, front-end baud-rate ADCs can consume a significant 
percentage of the system power. Embedded analog equalization 
can reduce ADC resolution requirements [2] and allow for 
overall lower receiver power consumption, provided a low- 
overhead implementation. A recent example of this is the work 
of [1], where a pre-ADC continuous-time high-pass filter 
(HPF) is used in combination with a sampled feed-forward 
equalizer (FFE) that follows the flash ADC track-and-holds 
(T/H). However, this approach requires additional CML input 
stages which add to the ADC power. This work presents a 
10GS/s 6b ADC which efficiently incorporates both a 2-tap 
embedded FFE and a 1-tap embedded decision feedback 
equalizer (DFE) directly into the capacitive DAC (CDAC) of a 
time-interleaved successive approximation register (SAR) 
ADC which further optimizes power through the use of dual 
voltage supplies.  

ADC Architecture with Embedded FFE and DFE 
Fig. 1 shows the 64-way time-interleaved SAR ADC block 

diagram with embedded equalization. The 10GS/s converter 
consists of eight parallel sub-ADCs, where each sub-ADC is 
formed by a front-end T/H clocked at 1.25GHz and followed 
by eight unit SAR ADCs. A differential divide-by-four circuit 
is used with a 5GHz input clock to generate eight clock phases 
spaced at 100ps. Digitally controlled capacitor banks, with a 
0.5ps resolution and 36ps range, are employed to calibrate 
timing mismatches in the clock distribution to the T/H blocks. 
A source-follower based T/H with PMOS inputs and 
bootstrapped front-end sampling switches is used. 

The conceptual implementation of the proposed embedded 
2-tap FFE and 1-tap DFE is depicted in Fig. 2 during each SAR 
cycle. A two-tap discrete-time FFE [3] is realized with the 
cursor tap having a gain of unity for the current ADC input 
sample, while the post-cursor tap coefficient β for the previous 
sample is set with the SAR CDAC weighting during the 
sampling phase. In order to efficiently embed the 1-tap DFE, a 
redundant cycle approach [4] is used where the MSB is 
calculated for both +α and −α as the DFE tap coefficient during 
two consecutive cycles. At the end of second MSB cycle the 

correct coefficient is decided based on the previous ADC 
channel MSB using a MUX, and five cycles follow to compute 
the remaining bits. Compared to a loop-unrolled DFE approach, 
this redundant cycle approach utilizes roughly half the CDAC 
and comparator circuitry, while only increasing the total 6-bit 
conversion time by a factor of 8/7.  

Fig. 3 shows the implementation of each unit SAR ADC with 
embedded FFE and DFE. A 4-input comparator is used, with 
one input connected to sample capacitors, CS, and the other 
input connected to the CDAC. Utilizing the CS capacitor, the 
current input sample from the main T/H(n) forms the FFE first 
tap with unity gain, while DFE ISI subtraction is performed by 
connecting the other CS terminal to a shifted common-mode 
voltage during subsequent cycles. The other input from the 
binary CDAC forms the FFE post-cursor tap and the SAR 
reference voltage levels. During the sampling phase the 
previous signal held at the output of T/H(n-1) is sampled on part 
of the binary CDAC, with the weighting determining the FFE 
post-cursor coefficient β, while the rest of the DAC capacitors 
that are used to set the SAR reference levels are discharged to 
zero. When the sampling phase of the previous unit ADC 
channel ends, charge sharing in the CDAC combines the 
post-cursor FFE tap and the SAR reference levels. Small 
custom-designed unit 0.45fF metal flux capacitors are utilized 
for a relatively low area implementation and to reduce the 
CDAC switching power and the power of common-mode and 
reference voltage buffers. A 4-input modified StrongArm 
comparator with 6-bit current-steering offset calibration DACs 
[4] is used to calibrate the unit-ADC offset at a resolution of 
4mV. Also, comparator metastability issues are addressed with 
a metastability detector and correction circuit [5]. While the 
T/Hs, CDAC switches, and voltage buffers operate with a 1.1V 
supply, the total power consumption is decreased by reducing 
the supply voltage of comparators and SAR logic to 
LVDD=0.9V in the core time-interleaved ADC. 

Experimental Results 
The GP 65nm CMOS die micrograph, where the unit ADCs 

order is optimized in the floorplan to reduce the 1-tap DFE 
critical delay path, is shown in Fig. 4. Setting the embedded 
FFE post-cursor and DFE coefficients to zero, the measured 
post-calibration SNDR and SFDR of the 10GS/s 6b ADC are 
shown in Fig. 5. A low input frequency maximum SNDR of 
29.19dB is achieved, which translates to 4.56 bits ENOB, and 
the effective resolution bandwidth (ERBW) is 4.5GHz.  

Fig. 6 shows post-ADC quantized eye diagrams for 10Gb/s 
210-1 PRBS data passed through a 10-inch FR4 channel. Due to 
ISI, disabling the ADC embedded equalization results in a 
closed eye and all 64 codes being present. Independently 
activating the 1-tap DFE and 2-tap FFE results in a timing 
margin of 0.23UI and 0.41UI, respectively. Enabling both 
embedded FFE and DFE improves the timing margin to 0.5UI 
and the quantized eye opening to 19 LSB, which verifies the 
effectiveness of the proposed implementation.  
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Table I summarizes the performance of the 6-bit 10GS/s 
ADC with a 2-tap embedded FFE and a 1-tap embedded DFE 
and compares this work against similar previous systems in the 
10GS/s range. The ADC, including the front-end T/Hs, clock 
generation, voltage buffers, and calibration circuitry, consumes 
79.1mW total power, achieving a 0.48 pJ/conv.-step FOM. 
Overall, the proposed design performance is comparable to the 
state-of-the-art design of [6], which does not include embedded 
equalization, and includes an increased amount of embedded 
equalization options relative to [1]. The total ADC area, 
including clock phase generation, front-end T/H array, and 
voltage buffers is 0.52mm2, with the core ADC occupying 
0.33mm2. 
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Fig. 2.  Conceptual embedded FFE/DFE phases of operation. 

 
 

Fig. 5.  ADC dynamic performance at fs = 10GHz. 

TABLE I: PERFORMANCE SUMMARY  
Specification [6] [1] This Work 

Technology 65nm 65nm 65nm 
Power Supply 1.1V 1.1V 1.1V/0.9V 
ADC Structure TI-Flash TI-Flash TI-SAR 

Equalization No HPF + FFE Embedded 
FFE + DFE 

Sampling Rate 12 GS/s 10 GS/s 10 GS/s 
Resolution 5 bits 4 bits 6 bits 
ENOB @ ERBW 3.88 bits N/A 4.03 bits 
Input Range 590 mVpp 600 mVpp 500 mVpp 
FOM (P/2ENOB.fs) 0.46 pJ/c.-s. N/A 0.48 pJ/c.-s. 
Area 0.44 mm2 0.29 mm2 0.52 mm2 
Power 81 mW 93 mW* 79.1 mW 

* This value includes the clock and analog front-end power consumption. 
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Fig. 6.  Channel response and measured functionality of embedded 
FFE/DFE for a 10Gb/s 210-1 PRBS input through a 10-inch FR4 
channel. 
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Fig. 4.  Micrograph of the ADC with embedded FFE/DFE. 
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Fig. 3.  Unit ADC implementation with embedded FFE and DFE. 
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Fig. 1.  Time-interleaved ADC with embedded FFE and DFE. 


