
ELEN-325. Introduction to Electronic Circuits: A Design Approach     Jose Silva-Martinez 

 

-      - 1

Chapter IIIa 
The operational Amplifier and applications. 

 
 
III.1. Basic Model for the Operational Amplifier. 
The OPerational AMPlifier (OPAMP) is a key building block in analog integrated circuit design. The OPAMP is 
composed by several transistors and passive elements (resistors and capacitors) and arranged such that its low 
frequency voltage gain is very high; the dc gain of the OPAMP-741 is around 105 V/V (10 V at the input give us 1 
V at the output). The design of such complex circuit is discussed in chapter 6; here we will use a simplified linear 
macromodel to analyze the principles of OPAMP based circuits and their operation. Several circuits are studied such 
as basic amplifiers, first order and second order filters and some non-conventional applications. The versatility of 
the OPAMP will be evident at the end of this chapter. 
To define the fundamental parameters of a system, let us consider a linear two-port system with two terminals 
grounded, as the one shown in Figure 3.1.  There are 4 variables vi, ii, vo and io to be studied. The interaction 
between the four variables can be defined in many different ways, depending on the definition of the dependent and 
independent variables; in real circuits these definitions depend on the input variable (current or voltage) and the 
most relevant output variable. Usually in voltage amplifiers the input signal is defined as vi while the output is vo.  
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Fig. 3.1. Electronic circuit represented by a black box.  

 
Since we are assuming that the circuit is linear, among other representations, we can describe the electronic circuit 
by using the following hybrid matrix representation: 
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Notice that we are mixing currents and voltages in the matrix, then we call it hybrid representation of the circuit, and 
the resulting model is termed hybrid model. In many text books you can find at least 4 different set of parameters, 
but this is one of the most relevant ones for voltage amplifiers. Bipolar and MOS transistors models are based on 
another model called -hybrid, to be discussed in the following chapters.  
In equations 3.1b, the parameter g11 defines the input conductance, and it relates the input current and the input 
voltage needed by the circuit without considering the effect of the output current (io=0); the circuit’s input 
conductance is formally defined as follows: 
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This parameter is measured by applying an input voltage source and measuring the input current; the output node is 
left open such that io=0. Since g11 is the ratio of the input current to the input voltage, while the output is leaved 
open, its units are amps/volts or 1/Ω. 
The parameter g12 defines the reverse current gain of the topology, and it is defined as 
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This parameter represents the reverse current gain: current generated at the input due to the output current. In the 
ideal case this parameter is zero since usually the operational amplifiers are unidirectional; e.g. the input signal 
applied to the system generates an output signal, but the output signals (current or voltage) should not generate any 
signal at the input. For measuring this parameter it is required to short circuit the input port such that vi=0, then 
apply a current at the output and measure the current generated at the input port. In practical circuits this parameter 
is very small and usually it is ignored. 
The Forward voltage gain is defined as the ratio of the output voltage and input voltage without any load connected 
at the output. 
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This is certainly one of the most important parameters of the two-port system; we also refer to AV as the open-loop 
gain of the OPAMP. It represents the circuit’s voltage gain without any load impedance attached (output current 
equal zero). 
Another important parameter is the system’s output impedance, which relates the output voltage and the output 
current without taking the effects of the input signal. It is defined by 
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Thus, the two-port system can be represented by the four aforementioned parameters; the resulting macromodel is 
shown in Figure 3.2. For sake of clarification we are using impedances instead of admittances in this representation. 
Notice that a current controlled current source (ICCS) is used for the emulation of parameter g12 since it represents 
the input current (input port) being generated by the output current (output port). A resistor can not represent this 
parameter since current is flowing in one port but the voltage at the other port controls it. Similar comments apply to 
the voltage controlled voltage source represented by AV vi (g21vi).  
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Fig. 3.2. Linear macromodel of a typical voltage amplifier using hybrid parameters. 

 
Model for the OPAMP. The ideal OPAMP is a device that can be modeled by using the circuit of Fig. 3.2 with 
AV=, g12=0, Zi=, and Zo=0. This is of course an unrealistic model, but it is enough for understanding the basic 
circuits and their operation. We will see that when you connect several circuits in cascade for complex signal 
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processing, both input and output impedances are important parameters that affect the overall performance of the 
system. In this section, however these effects are not considered.  
Discuss here the main limitations such as input impedance, limited DC gain and DC offsets and input bias current.  
 
III.2. Basic configurations: Inverting and non-inverting amplifier. 
Inverting configuration. The first topology to be studied is the inverting amplifier shown in fig. 3.3a.  It consists of 
an impedance connected between the input source and the OPAMP’s inverting terminal; the second impedance is 
connected from the inverting terminal to the output of the OPAMP. Z2 provides a negative feedback (connecting the 
OPAMP’s output and the negative input); this is the main reason for the excellent properties of this configuration.  
The simplified linear macromodel of the OPAMP is used for the representation of the inverting amplifier, and the 
equivalent circuit shown in fig. 3.3b. By using basic circuit analysis techniques it can be easily find that  
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and  
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Solving these equations as function of the input and output voltages yields; 
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This relationship is also known as closed-loop amplifier’s gain since the feedback resistor in combination with the 
OPAMP form a closed loop. If the open-loop gain of the OPAMP AV is very large, then the first factor can be 
approximated as unity and the closed-loop voltage gain becomes 
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This result shows that if negative feedback is used and if the open-loop gain of the OPAMP is large enough, the 
overall amplifier’s voltage gain depends on the ratio of the two impedances. Unlike to the gain of the open-loop 
gain of the OPAMP that can vary by more than 50 % due to transistor’s parameters variations and temperature 
gradients, as will be explained in the following sections, the closed loop gain is quite accurate, especially if same 
type of impedances are used. Usually ratio of impedances is more precise than the absolute value of components; 
e.g. ratio of capacitors fabricated in CMOS technologies can be as precise as 99.5 % while the absolute value of the 
capacitance may change by more than 20%. 
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Fig. 3.3. Inverting amplifier: a) the circuit and b) the linear macromodel assuming that OPAMP input is infinity and 
output impedance is zero. 

 
Another important observation is that the differential voltage at the OPAMP input vx (see Fig. 3b) is ideally zero. 
The reasoning behind this observation is as follows: according to 3.8, the output voltage is bounded (not infinity) if 
Z1 is not zero or Z2 is not infinite, hence vi is also bounded. Under these conditions and according to expression 3.6 
the OPAMP input voltage vx is very small if Av is large enough; the larger the OPAMP open loop gain the smaller 
signal at the input of the OPAMP. Therefore the inputs of the OPAMP can be considered as a virtual short; the 
voltage difference between the two input terminals (v+ - v-) is very small but they are not physically connected.  
The virtual short principle is extremely useful in practice; most of the transfer functions can be easily obtained if this 
property is used. To illustrate its use, let us consider again the circuit of fig. 3.3b.  Due to the virtual ground at the 
input of the OPAMP, vx=0 (virtual short) and the input current ii is determined by vi/Z1. Since the input impedance 
of the OPAMP is infinite, ii flows throughout Z2, leading to an output voltage given by –iiZ2. As a result, the 
closed-loop voltage gain becomes equal to -Z2/ Z1, as stated in equation 3.8. 
If the impedances Z1 and Z2 are replaced by resistors as shown in Fig. 3.4a, we end up with the basic resistive 
inverting amplifier. The closed-loop gain is then obtained as 
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Fig. 3.4. Resistive amplifiers: a) inverting configuration and b) non-inverting configuration. 
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Notice that in the case of the inverting configuration, the amplifier’s input impedance is determined by R1; this is a 
result of the virtual ground present at the inverting terminal of the OPAMP. Hence, if several inverting amplifiers 
are connected in cascade we have to be aware that the amplifier must be able to drive the input impedance of the 
next stage.  
Non-inverting voltage gain configuration. If the input signal is applied at the non-inverting terminal and R1 is 
grounded, as shown in fig. 3.4b, the non-inverting configuration is obtained. Notice that the feedback is still 
negative. If R2 is connected to the positive terminal, the circuit becomes unstable and useless for linear 
applications; this will be evident in the following sections. The closed-loop voltage gain of the non-inverting 
configuration can be easily obtained if the virtual short principle is used. Due to the high gain of the OPAMP, the 
voltage difference between the inverting and non-inverting terminals is very small; hence the voltage at the non-
inverting terminal of the OPAMP is also vi. The current flowing through R1 and R2 is then given by vi/R1; therefore 
the output voltage is computed as 
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The voltage gain is therefore greater or equal than 1. An important characteristic of this configuration is that ideally 
its input impedance is infinity; hence several stages can be easily connected in cascade. A special case of the non-
inverting configuration is the buffer configuration shown in figure 3.5. If R1=, according to equation 3.10, the 
voltage gain is unity; in this case the value of R2 is not critical and can even be short-circuited (R2=0). This topology 
is also known as unity gain amplifier or buffer, and it is very popular for driving small impedances; e.g. speakers, 
motors, etc.  
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Fig. 3.5 OPAMP in unity gain buffer configuration 

 
Emphasis on loading effects; discuss these issues in class! 
                            
III.3. Amplifier with multiple inputs and superposition. 
Input signals can be applied to the two inputs of the OPAMP, as shown in Fig. 3.6. R1 and R2 are a voltage divider; 
the input voltage at the non-inverting (v+) terminal is then  
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Fig. 3.6. Amplifier configuration with two input signals applied to the non-inverting and inverting terminals. 
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If a virtual short at the OPAMP inputs is assumed, the voltage at the inverting and non-inverting terminals is the 
same, and determined by v+. Using KCL at the inverting terminal of the circuit leads to 
 

3

1i

4

o

R

vv

R

vv 


 
  (3.12) 

 
Using equations 3.11 and 3.12, the output voltage is obtained, yielding 
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Notice that the output voltage is a linear combination of the two input signals: the first component is determined by 
the vi1 and the other one determined by vi2. This analysis can always be used, but we can also take advantage of the 
properties of linear systems.  
 
Superposition principle for a linear system. If the OPAMP is considered as a linear device and only 
linear impedances are used, then the output voltage is a linear combination of all the inputs applied. If several 
inputs are applied to the linear circuit, then the output can be obtained considering each input signal at a time; e.g. 
grounding all other input signals and applying the input signal under study. Therefore, the following property holds: 
if 
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This property is known as the superposition principle. Let us apply this principle to the topology shown in Fig. 3.6, 
where two inputs are applied to the amplifier. The circuit is analyzed by applying one input signal at a time: if vi1 is 
considered, vi2 is made equal zero. The equivalent circuit is shown in Fig. 3.7a.  
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Fig. 3.7 Equivalent circuits for the computation of the output voltage: a) for vi1 and b) for vi2. 
 
Since the input impedance of the OPAMP is infinite, the current flowing through R1||R2 is zero, and v+=0. The 
resulting circuit is the typical inverting amplifier where the output voltage is given by -(R4/R3)vi1; notice that this 
output corresponds to the first term in equation 3.13. If the first input is grounded and signal vi2 is considered, the 
resulting equivalent circuit is depicted in fig. 3.7b. The voltage at the non-inverting terminal is given by equation 
3.11, and the output voltage is equal to vo=(1+R4/R3)v+; the final result leads to the second term of equation 3.13.  
 
Generalization of basic configurations. The concepts of infinite input impedance, zero output impedance, virtual 
short of the OPAMP inputs and linear superposition are especially useful when complex circuits are designed. An 
analog inverting adder is shown in fig. 3.8a; the output voltage can be easily found if we apply the superposition 
principle to each input. The equivalent circuit for the jth-input is depicted in fig. 3.8b. Since only Rj is connected to 
vij, the resistors connected to the other inputs must be grounded. These resistors are connected between the physical 
ground and the virtual ground generated by the negative feedback and the large open-loop voltage gain of the 
OPAMP, as a result of this the current flowing through all grounded resistors is zero, then ij, generated by vij, Rj and 
the virtual ground node vx (=0) flows throughout Rf. The output voltage is then obtained as –(Rf/Rj)vij. By using the 
same concept to all inputs, the amplifier’s output voltage is found as 
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Fig. 3.8. a) Analog adder and b) equivalent circuit for analyzing the output voltage due to vij. 
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An interesting advantage of this circuit is that each one of the input resistors independently controls the voltage gain 
for each input. This is an important circuit property used for the design of analog-digital converters for instance 
where the addition of binary weighted signals are required.  
An analog non-inverting adder is depicted in fig. 3.9a. Similarly to the previous case, the output voltage can be 
computed by using superposition. Shown in fig. 3.9b is the equivalent circuit for the jth-input signal, and making all 
other inputs equal zero. The voltage at the non-inverting terminal is the result of the voltage divider determined by 
the resistors lumped to node v+j as follows: 
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Fig. 3.9. a) Non-inverting amplifier with multiple inputs and b) equivalent circuit for the jth input. 
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Since many components are in parallel, for the analysis of this type of networks it is very often more convenient to 
use admittances instead of impedances. For this example, the previous equation can also be expressed as  
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The numerator (1/Rj) is identified as the admittance of the element connected between the input signal and v+j. The 
denominator represents the parallel of all elements attached to v+. The parallel connection of impedances is also 
equivalent to the reciprocal of the addition of their admittances; then 3.16 can be expressed by the following 
equivalent expression 
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where gi=1/Ri. Once v+j is obtained, the output voltage generated by vij can be obtained. Since v+j is the voltage at 
the non-inverting terminal, to find the output voltage for this input is straightforward as voj=(1+Rf/Ri)v+j. Taking into 
account all the input signals and applying the superposition principle, it can be shown that the overall output voltage 
is a linear combination of all inputs; the result of this analysis yields, 
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Each input signal has a contribution to the output voltage that depends of all resistors, unlike the case of the 
inverting topology. The input impedance for each input depends on the array of resistors; for instance the input 
impedance seen by the jth-input signal  is 
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Similar expressions can be obtained for all other input sources. 
 
Example: Design a circuit that implements the following equation: 
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 If needed use the supply voltages +/- 15 V. The circuit shown below can be used; this is not the only solution, 
combinations of inverting and non-inverting circuits might be used as well. The design process consists of finding 
the resistance values. For that purpose, the following equations must be solved: 
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Solve this set of equations, and find the numerical values; it is evident that g1=2g3 and that g2=4g3. 
 
III.4. Amplifiers with very large gain/attenuation factors. 
Very large gain amplifiers require large spread of the components. In analog integrated circuits design, it is difficult 
to control properly such large ratios, and very often they are very demanding of silicon area. Some configurations 
allow us to reduce this spread.  
Large gain inverting amplifier using resistors in a T-array. Large voltage gain factors require very large resistors; 
the array of resistors shown in figure 3.10can be used to “increase” the effective feedback resistor. The circuit’s 
transfer function can obviously be obtained by using conventional circuit analysis techniques such as KCL. It is 
however to useful to analyze the circuit based on the following observations: 
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1. Since the inverting terminal is at the ground potential due to the virtual short at the OPAMP input, the 
resistor R2 is connected between node vx and (virtual) ground; then it is in parallel with R3 if you analyze 
the circuit from the output. Therefore, the voltage vx can be computed as  
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Notice that vx is an attenuated version of the output voltage.  
 

2. Also, as a result of the virtual ground at the OPAMP’s input, the current flowing through R2 is given by 
vx/R2. If the OPAMP is ideal, the current flowing through R1 is equal to the one flowing through R2, and 
then the output voltage can be computed from the following expression: 
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Therefore, the voltage gain is 
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The voltage gain is therefore equivalent to the gain of a two-stage amplifier; larger gain factors are obtained with 
reduced resistive spread. 
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Fig. 3.10. Resistive voltage amplifier for high-gain applications. 

 
If further reduction on the resistive spread is needed, two T-networks can be used as shown in Fig. 3.11. Similarly to 
the previous case, the voltage vx is equal to –(R2/R1)vi; notice that vx is an attenuated version of vy and this last 
voltage is an attenuated version of vo. These voltages are related by the following expressions: 
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Then the closed loop voltage gain is obtained as  
 

   
  

  
  

















 













































1

2

32

432

5432

65432

in

x

x

y

y

o

i

o

R

R

RR

RRR

RRRR

RRRRR

v

v

v

v

v

v

v

v
  (3.25) 

 
This voltage gain can be very large; it is in fact determined by multiplication of 3 terms, which is equivalent to a 3-
stage amplifier. Notice that the input impedance of the non-inverting circuit is determined by R1. 
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Fig. 3.11. Resistive amplifier using a T-configuration for large gain factors 

 
Very large attenuation factors. The T-network can also be used for the design of large attenuation factors, for 
instance in applications related to power amplifiers where the input signal might be in the range of 100 V or more 
but the OPAMP can handle only 12 V or less. The resulting circuit using a T-network at the input is shown in figure 
3.12. The voltage vx is an attenuated version of the incoming signal, and the voltage gain is adjusted to the proper 
level by the typical inverting configuration (R3 and R4). The attenuating factor, considering again a virtual ground at 
the input, is determined by R1 and the parallel of R2 and R3; the voltage gain between vx and vo is determined by 
the ratio of resistors R4 and R3. Therefore, the output voltage is given by: 
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Fig. 3.12. Resistive amplifier using a T-configuration for large attenuation factors 
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The first factor is the result of the voltage divider at the input of the structure, while the second factor is the result of 
the non-inverting amplification of vx. You can also use the double T-cell structure; it is left to the student to find out 
the voltage gain in that case; DO IT, this can be a midterm question. 
  
III.5. RC Circuits: Integrators and differentiators.  
Basic integrators. If the feedback resistor is replaced by a capacitor, we obtain a lossless integrator; the circuit is 
shown below. In this circuit, the input voltage vi is converted into a current by R1 and the virtual ground present at 
the input of the OPAMP, similarly to the case of the resistive amplifier. The resulting current is injected into the 
feedback capacitor C2 where it is integrated; the resulting output voltage is the integral of the injected current. The 
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analysis of this circuit can easily be done in the frequency domain where the characteristic impedance of the 
capacitor is given by 1/(jC2). The transfer function of the inverting configuration is, as in the previous cases, 
determined by the ratio of the impedance in feedback and the input impedance, leading to the following result: 
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Fig. 3.13. Lossless inverting Integrator 
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where s=j. This circuit has a pole at the origin and a “phantom” zero at = (why?). The magnitude response is 
extremely large at low frequencies, and decreases at higher frequency with a rolloff of –20 dB/decade. The phase 
response is +90 (-270) degrees and independent of the frequency. Notice that at =1/R2C1, the magnitude of the 
voltage gain is unity. Usually this circuit is not used as a standalone device, but is the key building block for high-
order filters and analog-digital converters.  
The combination of resistors and capacitors lead to the generation of poes and zeros; for example, the circuit 
implementation of a first order filter is shown in figure 3.14. This circuit is also known as a lossy integrator because 
while R1 injects charge into C2, the resistor R3 leaks (introduces losses) the charge stored in the capacitor. The gain 
of this circuit is also determined by the ratio of the equivalent impedance in feedback and the input impedance. In 
this circuit, the equivalent feedback impedance is composed by the parallel of the impedance of the capacitor 
(1/jC2) and R3. The low frequency gain, where the impedance of the capacitor can be ignored, is determined by the 
ratio of the two resistors; it is evident that the voltage gain is given by –R3/R1. At very high frequencies, the 
impedance of C2 dominates the feedback and the circuit behaves as the lossless integrator shown in figure 3.19 (gain 
defined by –1/sR1C2). The overall voltage gain is given by: 
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Fig. 3.14. First order lowpass filter 
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The low-frequency gain is, as expected, determined by the ratio of the resistors. The pole is located at =1/R3C2, 
and for frequencies beyond this frequency the voltage gain decresases with a rolloff of –20 dB/decade.  
The main differences between this circuit and the passive lowpass filter (voltage divider) are twofold: a) in the 
active realization (with OPAMP) the low frequency gain can be greater than 1 by adjusting the ratio of the resistors 
while in the passive filter the gain is always less than 1; b) the OPAMP allows us to connect the circuit to the next 
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stage without affecting the transfer function; this is due to the small output  impedance of the OPAMP. A typical 
transfer function obtained with this circuit is depicted in the following plot; 
 

R3/R1>1

0 dB

1
1

2

1

3

23























R

R

CR
u












1

31010
R

R
log

23

1

CR
P 

 log

 
Fig. 3.15. Magnitude response for a first order filter. 

 
The unity gain frequency is another important parameter; it can be obtained by taking the magnitude (or square 
magnitude) of equation 3.28, and equating it to 1. The resulting equation can be solved for the frequency, leading to 
the following result (find it yourself) 
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For R2>>R1, this frequency is approximately given by u=1/R1C1. Notice that for R2<R1 the solution is imaginary, 
meaning that the unity gain frequency does not exist; in fact you can not find any frequency where the gain is unity 
for an attenuator (dc gain less trhan 1). For R2<R1, the low frequency gain is less than 1; hence the transfer function 
does not have any intersection with the 0 dB curve.  
The general first order transfer function can be implemented by using the topology shown in fig. 3.16. Since the 
elements are in parallel, it is very convenient o find the voltage gain as the ratio of the equivalent input addmittance 
and the equivalent feedback addmitance as follows: 
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Fig. 3.16. General first order filter 
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With this circuit, you can design the following filters: 
(a) Lowpass filters if C0 is removed. The pole’s frequency is given by 1/R3C2 
(b) Amplifier if C0 and C2 are removed. Gain = -R3/R1 
(c) Amplifier if the resistors are removed. Gain = - C0/C2 (not very practical, especially for low frequency 

applications) 
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(d) High-pass if R1 is removed. Pole’s frequency at 1/R3C2, and high frequency gain = -C0/C2. 
 
The high-pass transfer function can also be realized if a series of a capacitor and resistor is used, as shown in the 
figure below. Low frequency components are blocked by the capacitor due to its high impedance at low frequencies. 
At high frequencies the capacitor behaves as a short circuit, and the gain is given by the ratio of the resistors. Using 
typical circuit analysis techniques, the overall transfer function can be obtained as 
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Fig. 3.17. First order High-pass filter using a series capacitor. 
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A DC zero and a pole located at =1/R2C1 can be observed. After the pole’s frequency the voltage gain is mainly 
determined by the ratio of the resistors –R3/R2. 
Non-inverting integrator. A non-inverting amplifier is implemented by using the following circuit. It is usually an 
expensive implementation, since the topology requires matched elements. The transfer function can be easily 
obtained by noting that the voltage at the non-inverting terminal is the result of a voltage divider between R and C 
(v+/vin=1/(1+sRC)). The voltage at the non-inverting terminal is then amplified by a factor 1 plus the ratio of the 
feedback impedance 1/sC’ and the resistor R’. The resulting transfer function yields; 
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Fig. 3.18. Non-inverting lossless integrator 
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That corresponds to a non-inveting integrator if R’C’ = RC; in this case, the voltage gain decreases when the 
frequency increases with a rolloff of -20 dB/decade and its phase is -90 degrees. The phase at DC is +90 degrees.  
 
III.6. Instrumentation amplifiers. 
In many practical applications, it is desirable to use amplifiers with very large input impedance and very low output 
impedance. This is the case when the sensors have large output impedance and or limited current driving 
capabilities. For those applications, the inverting amplifier based on two resistors can not be used since its input 
impedance is finite; e.g. defined by the input resistance. The only option is to use non-inverting amplifiers, as the 
ones shown in figure 3.19. In case the incoming signal is differential carried out by vi1 and vi2, therefore two non-
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inverting amplifiers are used. In a differential system, the information is determined by the voltage difference 
between the two inputs rather than by the voltage at each node. 
The circuit shown in figure 3.19a is composed by 2 single-ended non-inverting amplifiers. The circuit is a particular 
case of the circuit shown in Fig. 7b; R1=0, R2=∞, R3=∞, R4=0 that leads to a unity-gain amplifier (buffer) with 
very large input impedance. Since the OPAMP output impedance is very small you can easily connect inverting 
amplifiers after this structure if required. The benefits of these buffers will be evident in the following chapters.  
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vo1

vi1

Rf
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vo2
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(a) (b) 
Fig. 3.19. Fully-differential amplifiers based on: buffers and b) non-inverting amplifiers. 

 
The topology shown in figure 3.19b is more useful and can provide voltage amplification greater than 1; the input 
impedance is very large as well and determined by the input impedance of the OPAMP. The analysis of this circuit 
is straightforward if we take advantage of the virtual short principle. As shown in figure 3.20, the voltages at the 
inverting terminals are given by vi1 and v12, respectively. The current flowing through R1 is then given by (vi1-
vi2)/R1; this current flows throughout the resistors Rf, generating a voltage drop due to RF given by (vi1-vi2) Rf /R1. 
The output voltage vo1 is then equal to vi1+(vi1-vi2) Rf /R1 while the output voltage vo2 is given by vi2-(vi1-vi2) 
Rf /R1. The differential voltage gain is then computed as 
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Fig. 3.20. Practical fully-differential instrumentation amplifier. 

 
Notice in this expression that the output voltage is also differential vod=vo1-vo2. Since the gain of the previous 
expression is defined as the ratio of the differential output voltage and the differential input vid it is known as 
differential voltage gain.  
Discuss here the properties of differential and common-mode signals.  
Common-mode input impedance and differential mode input impedance. 
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The most popular single-ended instrumentation amplifier is depicted in Fig. 3.21; this topology is very useful for 
instrumentation applications. There are two inputs, and the important information is in differential format vid=vi1-
vi2. A major advantage of fully-differential circuits is that they are little sensitive to noise and signal interferences 
that affect both inputs; e.g. common-mode signals. The single ended output then should be proportional to vid, and 
signals that are present in both inputs with same amplitude and same phase are cancelled by the differential nature of 
the amplifier. Applying the superposition principle to the circuit shown in fig. 3.21, it can be shown that the output 
voltage is given by a linear combination of vo1 and vo2 as follows: 

 

vo1vi1

R2
R1

vi2

+

-

R2

vo2

+

-

+

-

R5

vo

R3

R4

R6

 
 

Fig. 3.21. Practical single-ended instrumentation amplifier. 
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Using the previous equations 3.33 and 3.34, the output voltage can be obtained as  
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After some algebra we get the following result: 
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If we introduce the conditions R3=R4 and R5=R6, this equation simplifies to the required differential output 
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The important properties of this amplifier are: 
1. The input impedance is extremely large and determined by the OPAMP. Therefore, it can be easily connected 

to a number of sensors regardless the type of sensor’s output impedance. 
2. The output voltage is sensitive to differential input voltage vid=vi1-vi2.  
3. Common-mode noise present at both terminals is rejected by the differential nature of the topology. The 

ability to reject common-mode noise (electromagnetic interference present at both amplifier’s inputs for 
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instance) by an amplifier is measured by the common-mode rejection ratio (CMRR) parameter, to be discussed 
in next sections.  

 
III.6. Practical OPAMP limitations. 
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ELEN-325. Part III.b 
 
7.- Design examples. 
Workout some additional examples: e.g. fig. P3.19, Sedra-Smith 1st edition.  
 
8.- Filters and other non-conventional circuits.  
Filters are used in electronics for the selection of information that is located in a specific frequency band. A popular 
structure is the so-called multiple feedback topology shown in figure 3.1b. Two feedback paths can be observed in 
this circuit, the first one due to Y4 and the second one due to Y5. Both feedback trajectories provide negative 
feedback, that makes the circuit is stable. The voltage gain of this structure can be found by solving the nodal 
equations at node vx and the OPAMP’s inverting terminal. Those equations can be written as (find it!): 
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Fig. 3.1b. Mulitple feedback second-order filter. 
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Please write the equations and check the matrix (don’t believe in professor’s result!). Solving the system of 
equations we should be able to find the output voltage of the circuit. Notice that we are not writing any equation for 
the output node of the OPAMP, and we should not! The OPAMP output voltage is generated by a voltage controlled 
voltage source, where the current demanded by the elements connected to the OPAMP is provided by that element. 
For ideal OPAMPs, vo is controlled by the elements connected in feedback and the input voltage, and not by the 
elements connected at the OPAMP output! For the solution of the equations 3.1b make v_=0 since we have a virtual 
ground at the input of the OPAMP. 
We might write these equations by inspection noticing that: 
1. For the first row we consider the nodal equation at node vx. For the element 11 of the admittance matrix we 

have to consider all the admittances connected to vx; since vx is the first node we are considering. In fig. 3.1b, 
the elements connected to vx are Y1, Y2, Y3, and Y4. 

2. The 12 element of the matrix is determined as the negative of the admittance between v and v-, since the second 
node considered in the admittance matrix is v-. 

3. The element 13 is the negative of the element(s) connected between vx and vo, in this case -Y4.  
4. For the second row we considered the nodal equation at node v-. Matrix term 21 is the negative of the 

admittance connected between v- and vx. 
5. The element 22 is composed by all admittances connected to v- (the node under consideration). 
6. Finally the matrix term 23 is the negative of the admittances connected between v- and vo. 
7. For the right hand side of 3.1b, we considered the input voltage and the admittance connected between vin and 

vx. 
8. Since we do not have any element connected between v- and vi the second term of the right hand side is zero. 
 
Another approach for finding the transfer function is using the properties of linear circuits. Applying superposition, 
vx is a linear combination of vin and vo. Since the OPAMP inverting terminal is a virtual ground, computation of vx 
yields (check it!) 
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Also, notice that vo is generated by Y5, Y3 and vx as  
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Solving those equations, the voltage gain can be found as: 
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Both methods are useful. 
 
A Particular case of this circuit is the Second order LOW-PASS transfer function. Replacing some of the 
admittances in Fig. 3.1b by the resistors and capacitors shown below, the circuit behaves as a second order lowpass 
filter. From equation 3.4b it can be found that  
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Fig. 3.2b. Mulitple feedback Low-pass filter. 
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The properties of this circuit are evident just analyzing the location of poles and zeros. There are two poles defined 
by the different components, and two zeroes at = (why?).  Therefore, the magnitude response will remain 
relatively flat until the frequency of the dominant poles if real poles are implemented. For frequencies above the first 
(dominant) pole, the magnitude response decreases monotonically with a roll-off of –20 dB/decade. Beyond the 
frequency of the second pole the roll-off becomes –40 dB/decade due to the effect of the second pole, as shown in 
the figure below. 
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Fig. 3.3b. Magnitude response for a second order transfer function with two real poles. 

 
For better rejection of high frequency components usually the poles are located close to each other as shown in the 
dashed curve; in this case the high-frequency rolloff of the magnitude response is –40 dB/decade. For the design of a 
low-pass second order transfer it is more convenient to express equation 3.5b as 
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The poles of the system are determined by the denominator of the previous equation and can be obtained as 
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Selecting the proper values for the components, the poles can be real or complex conjugate; the conditions for these 
cases are the following: 
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The phase response is also important for the full characterization of the low-pass filter. The inverting filter 
configuration has a phase shift of –180 degrees at very low frequencies; this can be verified on the original transfer 
function, equation 3.6b, evaluating it at s=0. Each pole introduces a phase shift of -45 degrees around its pole 
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frequency, as discussed in previous sections. If the poles are far away from each other, the phase response looks like 
the one depicted by the solid line in the following phase plot.  
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Fig. 3.4b. Phase response for an inverting second-order transfer function. 

 
If the system have the two poles close to P1, then the system’s phase response presents a roll-off of –90 
degrees/decade around P1, due to phase contribution of two poles, as shown in the dashed plot.  
 
The following design example will be discusssed in class: 
Lowpass filter design: DC GAIN = 20 dB, p1=p2=100 Krad/sec. The design equations are obtained from the 
desired filter’s transfer function as follows: 
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Note that the numerator 10P1

2 is needed to obtain the desired DC voltage gain. Equation the terms of this equation 
with the ones of equation 3.6b, the design conditions are obtained 
 
R4/R1=10 
(105)2=1/(R3R4C2C5) 
2(105)=(1/R1+1/R3+1/R4)/ C2 

 

Lets design the filter based on power consumption considerations. To avoid the use of very small resistors, which 
implies very large currents and more power consumption, lets fix the smaller resistor to R1=10 k and to use R3=R4. 
Hence:  
 
R3=R4 =100 k  
C2C5 =1/(1010x1010)= 10-20  

C2=(1.2x10-4)/ (2x105)=0.6x10-9 

 
Then C5 =10-20/0.6x10-9=16.6x10-12. The final design is shown below. The circuit has been simulated in PSPICE, the 
magnitude and phase response are also shown.  
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Component values for the LOWPASS filter 
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Spice Results: Magnitude response 
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Spice Results: Phase response 

 
 
Relationship between frequency domain and time domain.  In many cases we are more interested into seee the 
response of the circuit in time domain; e.g. impulse and/or pulse response. An approach for the anaylisis of a circuit 
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in time domain is to write the nodal or mesh equations in time domain using the integro-differential equations for 
capacitors and inductors. Another approach is to obtain the transfer function in the frequency domain as in the 
previous examples and to convert it into a differential equation by using the properties of the laplace transform. 
Among many other properties of the laplace transform, one of the fundamental ones is the following: 
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This property of the laplace transform is used for the conversion of rationale linear functions in the s-domain to the 
differential equation in the t-domain. To illustrate its use, let us consider the following s-domain (frequency domain) 
lowpass transfer function: 
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It can also be re-writeen as  
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if the laplace transform is applied to both sides of this equation, the time-domain equivalent is obatined leading to 
the following second-order differential equation 
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The next step is to solve this equation taking into account the type of input signal; e.g. impulse response, pulse 
response or even sinusoidal input response. It is not the purpose of this chapter to discuss the time domain analysis, 
and the student should be refereed to more specialized books for detailed analysis and more examples. 
 
Bandpass transfer function. Very often the information to b processed is within a given pass band, hence lowpass 
and high pass filtering might not be the most efficient approach for signal detection. A bandpass filter is more 
suitable for this purpose; it can be obtained if in addition to the two poles of the lowpas transfer function, one of the 
zeros is located at low frequency and the other one at very high frequencies.  These zeros can be easily implemented 
if they are located at  =0 and =, respectively. If the general multiple feedback transfer function, equation 3.4b, 
is considered the zero at low frequencies is generated if one of the two elements Y1 or Y3 is replaced by a capacitor 
while the other one is a conductance, respectively. A suitable option for filter realization is shown in the following 
figure. The analysis of this circuit is similar to the one used for the lowpass filter; the transfer function is 
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Fig. 3.5b. Mulitple feedback band-pass filter. 
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The resulting transfer function has two zeros, one at DC and the other one (phantom) at =. If the poles are at the 
same frequency, the magnitude and phase responses can be approximated by piece wise linear functions as depicted 
in the following plots. 
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Fig. 3.6b. Magnitude and phase response of a second order bandpass transfer function. 
 
Exercise: Design a Bandpass filter with both poles at 50 MHz and peak gain of 0 dB. Do it! 
 
10.- Partial positive feedback. 
 
10.1 Resistive amplifiers with partial positive feedback. Partial positive feedback can also be used for the 
implementation of demanding applications. For instance, negative resistors have to be used for the design of voltage 
controlled oscillators to cancel the effects of resistors lumped to inductors and capacitors (resistive losses). In partial 
positive feedback circuits, both terminals inverting and non-inverting are embedded in feedback loops; an example 
is the circuit shown in Fig. 3.7b. The voltage at the positive terminal is a sample of the output voltage vo, and then it 
can be found that 
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Fig. 3.7b. Resistive amplifier with negative and positive feedback 
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The output voltage is composed by the contribution of vi (inverting amplifier with a voltage gain =-R2/R1) and 
vx(non-inverting amplifier given by (1+ R2/R1)vx. Hence, the output voltage can be obtained as: 



ELEN-325. Introduction to Electronic Circuits: A Design Approach     Jose Silva-Martinez 

 

-      - 24

 

i
1

2
o

1

2

43

3
i

1

2
x

1

2
o v

R

R
v

R

R
1

RR

R
v

R

R
v

R

R
1v 
























































    (3.15b) 

 
The solution of this expression for output voltage yields; 
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The positive feedback is reflected in the negative term of the denominator. The voltage gain can be further increased 
if R3(R1+R2)/(R1(R3+R4)) is close to unity. Notice that the gain can potentially be infinite. This situation is 
undesirable because a small variation in any of the components has a huge impact on the overall voltage gain; these 
variations could be due to temperature variations or aging of the components. Thus, if positive feedback is used, be 
sure that negative feedback is dominant and that variations on components do not drastically affects circuit’s 
performances.  
 
Realization of negative impedances. 
The circuit shown below uses partial positive feedback as well since the R4 links the output voltage and the non-
inverting terminal. To understand the operation of the circuit, let us find the voltage at the non-inverting terminal. 
Applying superposition, vx is composed by the contribution of vi and vo. The first component can be obtained by 
considering vi, and grounding vo; this can be done because the output of the OPAMP is a low-impedance node, and 
vo is defined by the voltages applied at the OPAMP inputs. The second component is obtained by considering vo 
and grounding vi, then 
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3.8b. Amplifier with partial positive feedback. 
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Once this voltage is obtained, the output voltage can be easily determined, because 
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After some algebra we can find the overall transfer function as  
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Once again, the positive feedback is reflected in the negative term of the denominator. An important special case is 
when R1=R2 and R3=R4; the previous equations can be simplified as follows: 
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Therefore, the circuit behaves as a non-inverting amplifier. The most interesting properties of this circuit are 
associated with the input impedance. From 3.17b, it is obtained for the case R1=R2 and R3=R4 that 
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Therefore the current flowing throughout Z can now be obtained as 
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As can be noticed in this result, the current flowing through Z is determined by R3; this current is independent of Z. 
Therefore, this circuit can be considered as a voltage controlled current source; the current is controlled by the input 
voltage and the resistors R3=R4, and this current is forced to flow through Z. On the other hand, the impedance at 
the input port is determined as follows (please work out the following expression).  
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For Z<R3 the input impedance is positive, and negative for Z > R3.  
A useful circuit often used in filter’s design is the negative impedance converter. The circuit, shown in Fig. 3.9b, is a 
variation of the schematic depicted in Fig. 3.8b. The input voltage is applied to the non-inverting terminal, and the 
output voltage vo is given by (1+R2/R1)vi. The input current ii is computed as (vi-vo)/Z, leading to the result given 
in expression 3.24b. 
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Fig. 3.9b. Negative impedance converter. 
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Therefore, the equivalent impedance is negative. A negative impedance means that, contrary to the case of a positive 
impedance, the circuit delivers current when positive signals are applied. The reason for this behavior is that the 
OPAMP altogether with R1 and R2 amplify the input and the output voltage is greater or equal than vi. Hence 
positive vi generates vo > vi; since Z is connected between them it generates a current that flows from vo to vi.  
Think about the following questions: 
What is the meaning of negative impedance?  
Difference between positive and negative impedance? 
 
10.2. Sallen & Key Filter. Positive feedback has been use for the design of filters for long time. The filter based on 
finite gain amplifier uses 5 admittances and an amplifier with finite gain K. Since the amplifier is a non-inverting 
structure, the feedback produced by Y2 is positive leading to a filter with partial positive feedback. By following the 
analysis procedure used for the multiple feedback filters, the transfer function can be obtained by written the 
admittance matrix as follows: 
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Fig. 3.10b. Sallen and Key second-Order filter. 
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  (3.25b) 

 
 
The first two rows correspond to the nodal equations of nodes vx and vy, respectively. The third row corresponds to 
the finite amplifier gain given by vo=Kvy. The solution of this system leads to the following filter’s transfer 
function: 
 

vx Vy 
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Selecting the proper elements lowpass, bandpass and highpass filters can be designed. These especial cases are: 
 

 Selecting Y1 and Y3 as conductances, and Y2 and Y4 as capacitive admittances, the resulting transfer function 
leads to a lowpass transfer function. Even more, Y5 might be removed in this case; the resulting filter is shown 
in the figure below. Equation 3.27b show the transfer function.  
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Fig. 3.11b. Second order Sallen and Key Filter. Notice that tthis filter uses partial positive feedback 
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Similarly it can be shown that  
 

 Y1 and Y4 conductances, and Y3 and Y5 capacitors lead to a bandpass transfer function. 

 Y2 and Y4 conductances, and Y1 and Y2 capacitors lead to a high-pass transfer function. 
 
Find yourself the resulting circuits! You may find one of these topologies in the first midterm. 
 
11. Practical Limitations of the Operational Amplifiers. First at all, we must recognize that practical 
OPAMP are not even close to the ideal model: infinite input impedance, infinite gain, infinite bandwidth, and 
unlimited output current capability. Those parameters depends on the topology used (array of transistors , resistors 
and capacitors, technology used and power consumption); there are tons of different OPAMPs offered by different 
vendors; eg. Texas Instruments, Fairchild, National Semiconductor, etc. Although the origin of those limitations are 
not discussed in this course, the effects of on the overall transfer function of these parameters are briefly discussed 
in this section.  
A more realistic OPAMP macromodel is depicted in the following schematic. 

Zi -(Av)vn

vn
vn

vo

voro

 
Figure 3.12b. Macromodel for the OPAMP. 

 
Some values for comercially available OPAMPs are: Zi = 1M, r0=10, and Av=105. These parameters introduce 
errors in the transfer function. Usually it is cumbersome to obtain the final results, and it is difficult to evaluate 
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system degradation especially for complex circuits. Here we obtain some results for a single inverting amplifier but 
most of the conclusins for this circuit are also valid for complex circuits. Let us consider the circuit shown in Figure 
3.13b; we are considering the finite input impedance of the OPAMP Zi and the input impedance of the stage driven 
by the OPAMP. Using the macrodel of Fig. 3.12b with r0=0, the equivalent circuit can be obtained as depicted in 
Figure 3.13 (b). The transfer function can be obtained if the nodal equation at node v- is written; notice that nodal 
equation at the OPAMP output can not be written becausevo is controlled by the voltage dependent voltage source 
(vo=Av(v+-v-). The current demanded by ZF and ZL is provided by the ideal voltage source. Solving the fundamental 
equation (i1=ii+i0) the circuit’s transfer funcion yields,  
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Fig. 3.13b. a) Inverting amplifier with OPAMP input impedance Zi and load impedance ZL, and b) equivalent circuit 

with r0=0. 
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The effect of the finite DC gain and finite input impedance on the inverting amplifier can be better appreciated if the 
error function is considered; from equation 3.29b it follows that  
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where the error function ξ is defined as  
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If the OPAMP DC gain is limited, the assumption of virtual ground is not longer valid since any output voltage 
variation generates a finite variation on the differential input signal given by vo/Av. The smaller the OPAMP gain 
the larger the voltage variations at the OPAMP input are; hence the error should be inversely proportional to Av. The 
voltage variations on the non-inverting terminal lead to current errors: firstly the input current is given by (vi-v-)/Z1 
hence an error proportional to Z1 (ierror1= -v-/Z1) is introduced; Secondly, the OPAMP input impedance takes part of 
the current generated by Z1, leading to a second current error given by ierror2= v-/ZI. These current errors are 
converted into voltage errors by the feedback resistor RF, and are evident in equation 3.31b.  
Notice that even if the OPAMP input impedance is infinite, a gain error due proportional to the ideal gain ZF/Z1 is 
present. For a given OPAMP open-loop gain Av, the larger the closed-loop amplifier’s gain the larger the error is.  
The error that can be tolerated depends on the applications; notice that to kept the error below 1 % for instance it is 
required to satisfy  
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For instance if Zi=1 M, and voltage gain of –10, the voltage gain needed depends on the absolute values of the 
resistors used, as shown in table below 
 

ZF/Zi AV 
100/10 > 1000 
10k/1k > 1001 

1M/100k >1100 
10M/1M >2000 

 
Notice that the errors are important when the input impedance Z1 is comparable with the OPAMP input impedance 
Zi. Another important limiting factor is of course the desired amplifier gain ZF/Zi. Notice that 3.31b can also be re-
written as  
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Effects of the OPAMP Finite bandwidth. Unfortunately the OPAMP bandwidth is very limited; believe or not, the 
bandwidth of the 741 is around 6 Hz only while he open-loop DC gain is around 2x105V/V. The product of the 
open-loop DC gain and bandwidth is defined as OPAMP’s Gain-BandWidth product GBW. For the OPAMP 741, 
GBW~1.2 MHz. These parameters are illustrated in the following plot 
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Fig. 3.14b. Typical open-loop magnitude response of an OPAMP  

 
The OPAMP open-loop voltage gain can be modeled by a finite DC gain and a low-frequency pole as 
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  (3.34b) 

 
Notice that GBW=ADCxP; it is also known as the unity gain frequency u. This frequency is important because it 
defines the upper limit for the operation of the OPAMP: beyond this frequency the OPAMP is not longer an 
amplifier but an attenuator. That does not mean that you can always use the OPAMP until u! Usually the useful 
frequency range is well below this limit. We learn in the previous discussion that an error is introduced if the open-
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loop gain of the OPAMP is finite. For the inverting configuration, the error determined by equation 3.33b. If Av is 
frequency dependent, then using 3.34b we can obtain a general form for the error function including the effects of 
the finite OPAMP bandwidth as shown in the following expression: 
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  (3.33b) 

 
 Therefore, the pole of the OPAMP leads to a zero for the error transfer function as shown below. Therefore, the 
higher the bandwidth the larger the error is.  
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Fig. 3.15b. OPAMP open-loop magnitude response and error response for an inverting amplifier. 

 
For the example discussed on the previous section we have: ADC=105v/v, ZF/Z1=10, Zi=1M then it folows: 
 

Z1/Zi /P error 
0.001 0.01 ~ 10-4 
0.001 1 ~1.4x10-4 
0.001 10 ~10-3 
0.001 100 ~10-2 
0.001 1000 ~10-1 
0.01 100 ~10-2 
0.1 100 ~10-2 
1 100 ~2x10-2 

 
Notice that the error increases further for high frequency applications. This is a result of the limited bandwidth of the 
OPAMP; we have to remember that the open-loop voltage gain reduces proportional to the frequency. The error is 
less than 1 % if and only if the frequency of the applied signal is below 100 times the OPAMP pole’s frequency. For 
the OPAMP 741; fP=6 Hz; hence the signal’s frequency has to be less than 600 Hz for an ideal amplification factor 
of -10.  
The effects of the OPAMP finite input impedance are not very relevant if the used impedances Z1 and ZF are lesser 
than Zi/10.  
 

 Slew-rate limitations: will be discussed in class. 

 Common-mode signals: will be discussed in class. 
 


