ECEN325: Electronics
Spring 2015

Current Mirrors

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Current Source Properties

- **Output Resistance**

 - Finite output resistance degrades current source accuracy and amplifier gain

- **Other important properties:**
 - Voltage headroom (compliance voltage)
 - Accuracy
 - Noise
How Should We Bias Our Circuits?

- Resistive Biasing
 - Assuming saturation

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_G - V_{Tn})^2$$

$$= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_{G2}}{R_{G1} + R_{G2}} V_{dd} - V_{Tn} \right)^2$$

- I_D is sensitive to
 - Supply (Vdd)
 - Process (V_{Tn} and $\mu_n C_{ox} W/L$)
 - Temperature (V_{Tn} and μ_n)
IC Biasing

• In IC design we often assume that we have one precise current source and we copy its value to our circuits.
Simple Current Mirror

- That copy circuit is a current mirror
- Simple Current Mirror

\[I_D = I_{REF} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 (V_G - V_{Tn})^2 \]

\[V_G = \sqrt{\frac{2I_{REF}}{\mu_n C_{ox} \left(\frac{W}{L} \right)_1}} + V_{Tn} \]

- If VG is applied to another transistor

\[I_{out} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 \left(\sqrt{\frac{2I_{REF}}{\mu_n C_{ox} \left(\frac{W}{L} \right)_1}} + V_{Tn} - V_{Tn} \right)^2 \]

\[I_{out} = \left(\frac{W}{L} \right)^2 I_{REF} \]
Ideal Current Mirror Example

- This bias scheme reduces sensitivity to process, voltage, and temperature variations.

\[I_1 = 1\text{mA} \]
\[I_2 = 1\text{mA} \]
\[I_3 = 0.5\text{mA} \]
\[I_4 = 1.5\text{mA} \]
CS Amplifier w/ Current Source

- Need to insure that M3 remains in saturation

\[
V_s = V_G - (V_{ovl} + V_{Tn}) = \left(\frac{R_{G2}}{R_{G1} + R_{G2}} \right) Vdd - \left(\sqrt{\frac{2I_D}{\mu_n C_{ox} \left(\frac{W}{L} \right)_1}} + V_{Tn} \right)
\]