Texas A&M University
Department of Electrical and Computer Engineering

ECEN 325 – Electronics

Spring 2017

Exam #1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 7 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Name: SAM PALERMO

UIN: ____________________________
Problem 1 (30 points)
Plot the magnitude and phase response of the following transfer functions. Label key points and slopes.

\[F(s) = \frac{(s+10^4)(s+10^6)}{10^5(s+10^5)} \]
(15 points)

DC gain = \(\frac{(10^4)(10^6)}{(10^5)(10^5)} = 1\)

High Frequency gain = \(\infty\)

2 **zeros** at \(-10^4, -10^6\)

\(\phi(F(j\omega))\) 1 **pole** at \(-10^5\)

DC gain = \(\infty\)

HF gain = \(10^{-2} = -40 \text{ dB}\)

2 **zeros** at \(-10^4, -10^6\)

2 **poles** at \(\phi \rightarrow \text{DC phase} = -90 - 90 = -180\)
Problem 2 (20 points)
Assume for problem 2 circuits that all operational amplifiers are ideal.

a) For the following circuit:
 i. Obtain the transfer function, \(\frac{v_o(s)}{v_i(s)} \)
 ii. Set the component values to achieve a 1k\(\Omega \) high frequency input resistance, 20dB high-frequency gain (magnitude), and a pole (3dB) frequency of \(\omega_{3dB} = 10 kHz \).

 \[
 HF \text{ Lin} = R_1 = 1k\Omega \\
 HF \text{ Gain} = \frac{R_3}{R_1} = 10 \Rightarrow R_3 = 10k\Omega \\
 \omega_{3dB} = \frac{1}{R_1C} = 10^4 \text{ rad/s} \\
 C = \frac{1}{(1k\Omega)(10^4 \text{ rad/s})} = 100nF
 \]

 \[
 \frac{v_o}{v_i} = -\frac{Z_{R_3}}{Z_{R_1} + Z_C} = -\frac{R_3}{R_1 + \frac{1}{sC}} \\
 \frac{v_o}{v_i} = -\frac{sCR_3}{1 + sC R_1}
 \]

b) For the following circuit obtain the expression for \(v_o \) as a function of \(v_{i1}, v_{i2}, \) and \(v_{i3} \). Assume ideal opamps. Hint: apply superposition. (20 points)

\[
V_A = -v_{i1} + 2 \frac{Z_C}{Z_R + Z_C} v_{i2}
\]

\[
V_0 = -\frac{Z_C}{Z_R} v_{i3} + \frac{1}{2} \left(1 + \frac{Z_C}{Z_R} \right) V_A
\]

\[
= -\frac{Z_C}{Z_R} v_{i3} + \frac{1}{2} \left(1 + \frac{Z_C}{Z_R} \right) \left(-v_{i1} + 2 \frac{Z_C}{Z_R + Z_C} v_{i2} \right)
\]

\[
= -\frac{1}{2} \frac{Z_R + Z_C}{Z_R} v_{i1} + \frac{Z_C}{Z_R} v_{i2} - \frac{Z_C}{Z_R} v_{i3}
\]

\[
V_0 = -\frac{1 + sRC}{c^2RC} v_{i1} + \frac{1}{SRC} v_{i2} - \frac{1}{SRC} v_{i3}
\]
Problem 3 (25 points)
Assume for problem 3 that the operational amplifier is ideal. All the resistors are the same, except for R_A.

a) Find the expression for V_o as a function of V_1 and V_2. (10 points)

b) Find the expression for the differential gain, A_d. (5 points)

c) Find the expression for the common-mode gain, A_{CM}. (5 points)

d) Find the expression for the common-mode rejection ratio (CMRR). (5 points)

e) Now assume that $R_A = R(1+\Delta)$. Find the maximum absolute value of Δ to achieve a minimum $|CMRR|$ of 60dB? (5 points)

\[V_o = -\frac{R}{R_A} V_1 + \frac{1}{2} \left(1 + \frac{R}{R_A}\right) V_2 \]

For differential gain, $V_2 = -V_1 = \frac{V_d}{2}$

\[V_o = -\frac{R}{R_A} (-\frac{V_d}{2}) + \frac{1}{2} \left(1 + \frac{R}{R_A}\right) \frac{V_d}{2} \]

\[A_d = \frac{V_o}{V_d} = \frac{1}{4} + \frac{3}{4} \left(\frac{R}{R_A}\right) \]

For common-mode gain, $V_2 = V_1 = V_{cm}$

\[V_o = -\frac{R}{R_A} V_{cm} + \frac{1}{2} \left(1 + \frac{R}{R_A}\right) V_{cm} \]

\[A_{CM} = \frac{V_o}{V_{cm}} = \frac{1}{2} - \frac{1}{2} \left(\frac{R}{R_A}\right) \]

\[CMRR = \frac{1}{4 + \frac{3}{4} \left(\frac{R}{R_A}\right)} \]

\[\frac{1}{2} - \frac{1}{2} \left(\frac{R}{R_A}\right) \]

\[\frac{1}{4} \frac{R(1+\Delta)}{R(1+\Delta)} + \frac{\frac{3}{4} R}{\frac{1}{2} R(1+\Delta) - \frac{1}{2} R} = 10^3 \]

\[1 + \frac{\Delta}{4} = 10^3 \]

\[\frac{\Delta}{2} = 10^3 (\frac{\Delta}{2}) - \frac{\Delta}{4} = 1 \]

\[\Delta = \frac{1}{10^{\frac{1}{2}} - \frac{1}{4}} = 2,000 \times 10^{-1} \]

\[\Delta \approx 0.2\% \]
Problem 4 (15 points)
The operational amplifier used in the remainder of the problem has the following open-loop transfer function

\[A(s) = \frac{10^5}{1 + \frac{s}{10}} \]

a) Sketch the open-loop magnitude response of the operational amplifier. Make sure to label the unity-gain frequency.

b) The finite gain-bandwidth operational amplifier from part (a) is used in the following amplifier circuit. Find the expression for the closed-loop transfer function \(v_o/v_i \).

c) What is the closed-loop -3dB frequency (bandwidth) of the total amplifier circuit?

d) Sketch the closed-loop magnitude response of the amplifier circuit. Make sure to label the unity-gain frequency.

\[V_o \approx \frac{-R_1}{R_2} \frac{5}{1 + \frac{s}{10^6}} \]

where \(\omega_{PI} = \frac{\omega_u}{1 + \frac{R_1}{R_2}} = \frac{10^6}{6} \)

\[\frac{V_o}{V_i} \approx -\frac{5}{1 + \frac{s(1)}{10^6}} \]

\[\omega_{PI} = \frac{10^6}{6} \text{ rad/s} \]
Problem 5 (10 points)
Assume that the operational amplifier below is ideal, except that it has a finite slew rate of 1V/μs. What is the maximum input amplitude V_p that produces an output without distortion?

\[v_i = V_p \sin(10^3 t) \]

\[v_o = - \frac{1}{SR} \cdot v_i \]

\[\Rightarrow - \frac{1}{RC} \int v_i(t) \, dt \]

\[= - \frac{1}{RC} \left(\frac{1}{10^3} \right) V_p \left(- \cos 10^3 t \right) \]

\[V_o(t) = \frac{V_p}{RC \cdot 10^3} \cos 10^3 t \]

\[\left| \frac{dV_o(t)}{dt} \right|_{\text{max}} \leq SR \]

\[\frac{dV_o(t)}{dt} = - \frac{V_p}{RC} \sin 10^3 t \]

\[\left| \frac{dV_o(t)}{dt} \right|_{\text{max}} = \frac{V_p}{RC} \leq SR \]

\[V_p \leq SR(\frac{1}{RC}) = \left(\frac{1}{10^3} \right) \left(\frac{1}{100 \mu s} \right) (1 \text{ nF}) \]

\[V_p \leq 0.1V \]

Max $V_p = 0.1V$
Scratch Paper