1. **(20 points)** Characterize the 2N3904 NPN-BJT in Multisim. Obtain the values for β_{DC}, β_{AC}, r_π, g_m, and r_o at $I_C=0.5$ mA.
 - In order to obtain these values, 4 plots must be generated. For more details, refer to Dr. Silva’s notes posted on the website: http://www.ece.tamu.edu/~spalermo/ecen325/Chapter%20Va.pdf
 - 2 input characteristic plots (I_C vs V_{BE} & I_B vs V_{BE}) with the collector-emitter voltage fixed around 1.5 V. From the above notes, examples on how to extract g_m and $g_\pi=1/r_\pi$ are shown on pages 21 and 23, respectively.
 - 2 output characteristic plots (I_C vs V_{CE} & I_C vs I_B) with the base-emitter voltage fixed such that the I_C is within 100μA-4mA. For β_{DC} and β_{AC}, an example is shown on page 24. For $g_o=1/r_o$, an example is shown on pages 22 (bottom) and 23 (top).

2. **(20 points)** For the following circuit, bias your transistor such that $g_m R_C=10$ (gain of -10V/V); R_C is the resistance connected at the collector of the transistor. Fix the collector-emitter voltage such that the transistor operates in the active region.
 a) Simulate in Multisim and show the bias currents and voltages
 b) Simulate the circuit for AC analysis. Plot the frequency response of the circuit from 0.1Hz up to 10 MHz.
3. (15 points – 10pts calc., 5pts Multisim) BJT DC Operating Points and AC small signal parameters.
 a) For the BJT circuit below, calculate the DC values for V_C, V_B, V_E, I_C, I_B, and I_E. Compute the AC
 small signal parameters g_m, r_π, r_e. Assume the transistor $\beta=150$, $V_{BE}=0.7V$, and $V_{th}=25.9mV$.
 b) Verify the DC operating points in Multisim.

![BJT Circuit Diagram]

 a) For the common emitter amplifier below, calculate the small signal gain $A_v=v_o/v_i$ (from the transistor
 base to the output node), the input resistance R_{in}, the output resistance R_{out}, and the overall voltage gain
 $G_v=v_o/v_s$ (from the voltage source to the output node). Assume that the capacitors act as AC shorts and
 that the transistor's r_o is infinite (can be neglected). Note, you can use the small signal parameters that
 you solved for in Problem 3.
 b) Simulate in Multisim. Plot the magnitude in dB (or $db\Omega$) of A_v, G_v, R_{in}, and R_{out} versus frequency
 from 10Hz to 10MHz.

![Common Emitter Amplifier Diagram]
Repeat parts a) and b) from Problem 4 for the common collector amplifier.

Repeat parts a) and b) from Problem 4 for the common base amplifier.