ECEN 325
Homework #5

Due: 03-24-2015, 5:00PM
Homeworks will not be received after due.
Instructor: Sam Palermo

1. **(50 points)** Characterize the 2N2222 NPN-BJT in PSpice. Obtain the values for β_{DC}, β_{AC}, r_π, g_m, and r_o at $I_C=0.5$ mA.
 - In order to obtain these values, **4 plots must be generated**. For more details, refer to Dr. Silva’s notes posted on the website: http://www.ece.tamu.edu/~spalermo/ecen325/Chapter%20Va.pdf
 - **2 input characteristic plots** (I_C vs V_{BE} & I_B vs V_{BE}) with the collector-emitter voltage fixed around 1.5 V. From the above notes, examples on how to extract g_m and $g_{\pi}=1/r_\pi$ are shown on pages 21 and 23, respectively.
 - **2 output characteristic plots** (I_C vs V_{CE} & I_C vs I_B) with the base-emitter voltage fixed such that the I_C is within 100µA-4mA. For β_{DC} and β_{AC}, an example is shown on page 24. For $g_o=1/r_o$, an example is shown on pages 22 (bottom) and 23 (top).

2. **(50 points)** For the following circuit, bias your transistor such that $g_mR_C=10$ (gain of -10V/V); R_C is the resistance connected at the collector of the transistor. Fix the collector-emitter voltage such that the transistor operates in the active region.
 a) Simulate in PSpice and show the bias currents and voltages
 b) Simulate the circuit for AC analysis. Plot the frequency response of the circuit from 10Hz up to 10 MHz.

![Diagram](image)

Explain the bode plots, and justify the presence of zeros and poles, if any.