Texas A&M University Department of Electrical and Computer Engineering

ECEN 326 - Electronic Circuits

Fall 2015

Exam #1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 5 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Prof. Sam Palermo

Problem	Score	Max Score
1		40
2		60
Total		100

Name:	SAM	PALERMO	
UIN:			

Problem 1 (40 points)

For the circuit shown below, assume that all transistors are operating in the active region and that $V_A=\infty$ for all transistors. Obtain expressions for the following:

- a) Short-circuit transconductance, G_m . Here use the book convention where i_{sc} flowing into the circuit is positive.
- b) Output resistance, Rout
- c) Small-signal gain, Av=Vout/Vin
- d) Input resistance, Rin

b. SSM
$$V_{0} \stackrel{i_{0}}{\rightleftharpoons} R$$

$$-\alpha i_{0} \stackrel{i_{0}}{\rightleftharpoons} R$$

$$-\alpha i_{0} \stackrel{i_{0}}{\rightleftharpoons} R$$

$$C. Av = -G_{m}R_{0}+ = -g_{m_{1}}(R+r_{e_{1}})$$

$$d. SSM$$

$$V_{i} \stackrel{i_{1}}{\rightleftharpoons} R_{m_{1}}$$

$$R_{in} = I_{\pi_{1}}$$

Problem 2 (60 points)

For the circuit shown below, assume that all transistors are operating in the saturation region. Use the following transistor parameters

$$KP_N = \mu_n C_{ox} = 200 \mu A/V^2$$
, $V_{TH,N} = 0.4 V$

$$\lambda_1 = \lambda_2 = 0$$
 $\lambda_3 = \lambda_4 = 0.1 V^{-1}$

$$T_{01} = T_{02} = \frac{T_{03}}{2} = 250 \mu A$$

$$\int_{1}^{5} \frac{M^{2}}{V_{ir}} V_{ir} = \int_{2}^{1} \frac{M^{2}}{L} \left(V_{05} - V_{T} \right)^{2} = \frac{200 \pi}{2} \left(\frac{5}{1} \right) \left(1.4 \cdot 0.4 \right)^{2} = 500 \mu A$$

common-mode is sufficient to keep all the transistors operating in the saturation region. Also,

b) Calculate the small-signal differential mode gain, $A_{DM} = v_{out}/(v_i^+ - v_i^-)$. Include λ effects, if necessary.

you can neglect λ effects for this part.

c) As shown in the circuit below, during manufacturing a mismatch appears in the load resistors. Calculate the common-mode to differential-mode conversion gain, A_{CM-DM} . Include λ effects, if necessary.

Include
$$\lambda$$
 errects, it necessary.

10k Ω

10k Ω

10.5k Ω

10.

d) Calculate the common-mode rejection ration, $CMRR = (A_{DM}/A_{CM-DM})$. Here you can use the A_{DM} calculated in part (b).

$$CMRR = Acm-pm = \frac{7.07}{567 \times 10^{-6}} = 12.5 \times 10^{3} = 81,9 dB$$

Scratch Paper