Texas A\&M University Department of Electrical and Computer Engineering

EDEN 326 - Electronic Circuits

Spring 2022

Exam \#1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 5 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Problem	Score	Max Score
1		50
2		50
Total		$\mathbf{1 0 0}$

Name: \quad SAM PALERMO
UN:

Problem 1 (50 points)
For the circuit shown below, assume that all transistors are operating in the active region and that $\mathrm{V}_{\mathrm{A}}=\infty$ for all transistors. Obtain expressions for the following:
a) Short-circuit transconductance, $\mathbf{G}_{\mathbf{m}}$.
b) Output resistance, $\mathbf{R}_{\text {out }}$
c) Small-signal gain, $\mathbf{A}_{\mathbf{v}}=\mathbf{v}_{\text {out }} / \mathbf{v i n}_{\text {in }}$
d) Input resistance, $\mathbf{R}_{\mathbf{i n}}$

$$
\begin{gathered}
i s c=\alpha i=\frac{\alpha v_{i n}}{r_{e 1}+R_{E}} \\
G_{m m}=\frac{15 c}{v_{i n}}=\frac{\alpha}{r_{e_{1}}+R_{E}}=\frac{g_{m 1}}{1+\frac{9 m R_{E}}{\alpha}}
\end{gathered}
$$

$$
R_{03}=r_{\pi 2} \| R_{c}
$$

c. $A_{V}=-G_{m} R_{\Delta u t}=\frac{-\alpha\left(R_{c} \| l_{\pi 2}\right)}{r_{c_{1}}+R_{E}}=\frac{-g_{m}\left(R_{c}\left(l_{\pi 2}\right)\right.}{1+\frac{g_{m,} R_{E}}{\alpha}}$ d. $R_{\text {in }}=r_{\pi_{1}}+(\beta+1) R_{E}$

Problem 2 (50 points)
For the circuit shown below, assume that all transistors are operating in the saturation region. Use the following transistor parameters

$$
\begin{aligned}
& K P_{\mathrm{N}}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TH}, \mathrm{~N}}=0.4 \mathrm{~V} \\
& \mathrm{~K} P_{\mathrm{P}}=\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TH}, \mathrm{P}}=-0.4 \mathrm{~V} \\
& \lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=\lambda_{6}=0 \\
& \lambda_{7}=0.1 \mathrm{~V}^{-1}
\end{aligned}
$$

5V

a) Calculate (give numbers) the DC current flowing through the transistors requested below. Here assume that the input common-mode is sufficient to keep all the transistors operating in the saturation region. Also, you can neglect $\boldsymbol{\lambda}$ effects for this part.

$$
I_{D 1}=180 \mu \mathrm{~A}
$$

$$
\begin{aligned}
& I_{D 7}=\frac{\mu_{D} C_{0<}}{2} \frac{W}{L}\left(V_{G O}-V_{T N}\right)^{2}=\frac{200 \mu}{2}(10)(1 V-0.4 V)^{2}=360 \mu \mathrm{~A} \\
& I_{D 1}=\frac{I_{D T}}{2}=180 \mu \mathrm{~A} \\
& I_{D S}=\frac{\mu_{P}(0 x}{2} \frac{W}{L}\left(V_{S C}-\left|V_{T P}\right|\right)^{2}=\frac{100 \mu}{2}(2)(1.4 V-1-0.4 V \mid)^{2}=100 \mu \mathrm{~A} \\
& I_{D 3}=I_{D 1}-I_{D 5}=80 \mu \mathrm{~A}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{D} 3}=80 \mu \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{D} 5}=100 \mu \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{D} 7}=360 \mu \mathrm{~A}
$$

Calculate (give numbers) the following. Include $\boldsymbol{\lambda}$ effects, if necessary.
b) Small-signal differential mode gain, $\left.\mathbf{A d m}_{\mathbf{d m}}=\mathbf{v}_{\mathbf{o u t}} /\left(\mathbf{v}^{\mathbf{+}}-\mathbf{v}_{\mathbf{i}}\right)^{-}\right)$.
c) Tail current source impedance, $\mathbf{R}_{\text {tail }}$
d) Common-mode gain, $\mathbf{A c m}=\mathbf{V}_{\text {out, }} \mathbf{C m} / \mathbf{V}_{\text {in, }}, \mathrm{Cm}$

Equivalent $1 / 2$ Circuit

$$
\omega / \lambda_{1}-\lambda_{3}=\lambda_{5}=0
$$

b,

$$
\begin{gathered}
G_{m}=g_{m 1} \quad R_{0 u t}=\frac{1}{g m_{3}} \\
A_{v}=\frac{v_{0}^{+}}{v_{i}+}=-\frac{v_{0}^{-}}{v_{i}^{+}}=-\left(-G_{m} R_{0} v+\right)=\frac{0, m 1}{0, m 3}
\end{gathered}
$$

$$
\begin{aligned}
& g_{m_{1}}=\sqrt{\mu_{1}\left(0 \times \frac{N}{L} 2 I_{n 1}\right.}=\sqrt{(200 \mu)(10)(2)\left(180_{\mu}\right)}=849 \mu \mathrm{~A} / \mathrm{v} \\
& g_{m_{3}}=\sqrt{\mu_{n} \operatorname{Cox} \frac{W}{L} 2 I_{03}}=\sqrt{200_{\mu}(1)(2)(80 \mu)}=174 \mu \mathrm{~A} / \mathrm{s} \\
& A_{v}=\frac{g_{m_{1}}}{g_{m 3}}=\frac{849 \mu \mathrm{a} / \mathrm{v}}{179 \mu \mathrm{~s} / \mathrm{s}}=4.74 \mathrm{~V} / \mathrm{v} \\
& R_{\text {tai: }}:=r_{07}=\frac{1}{\lambda I_{07}}=\frac{1}{\left(0.1 V^{-1}\right)(360 \mu \mu)}=27.8 \mathrm{kR} \\
& \text { C. } R_{\text {ta. }}: 1=r_{07}=\lambda I_{01}=\left(0.1 V^{-1}\right)(360 \mu \mathrm{~A})
\end{aligned}
$$

di CM Equivalent Circuit

$$
\begin{aligned}
& V_{B} \rightarrow L_{2 m 5} G_{2 m 3} \quad V_{0 M}=\frac{2 g_{m i}}{1+2 g_{m, 1} R_{R A T L}} \quad R_{0 N T}=\frac{1}{2 g_{m 3}} \\
& v_{\text {IN,M }}+1 \square_{i}^{2 m i} \\
& A_{c m}=-G_{m} R_{o v t}=\frac{-\frac{g_{m}}{g_{m 3}}}{1+2 g_{m 1} G_{\text {atm }}} \\
& A_{\text {cm }}=\frac{-4.74 \mathrm{v} / \mathrm{s}}{1+2(849 \mathrm{ma} / \mathrm{c})(27.8 \mathrm{kn})}-188.3 \times 10^{-3 \mathrm{~V}}
\end{aligned}
$$

Scratch Paper

