# Texas A&M University Department of Electrical and Computer Engineering

## **ECEN 326 - Electronic Circuits**

#### Fall 2017

## Exam #2

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 4 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

| Problem | Score | Max Score |  |
|---------|-------|-----------|--|
| 1       |       | 50        |  |
| 2       |       | 50        |  |
| Total   |       | 100       |  |

| Name:         | SAM | PALERMO |  |
|---------------|-----|---------|--|
| U <b>I</b> N: |     |         |  |

Problem 1 (50 points)

For the circuit shown below, assume that all transistors are operating in the active region.

a) Give an expression for the output resistance,  $R_{out}$ , as a function of  $I_{E2}$ . Assume that  $V_A = \infty$ .

$$I_{REF} \bigvee v_{in} \circ Q_{2} \quad R_{out} \qquad R_{out} = r_{e2} = V_{T}$$

$$I_{E2}$$

$$A_{E} \quad Q_{3} \quad Q_{1} = 0$$

b) Give the value of  $I_{REF}$  to achieve  $R_{out}$ =25 $\Omega$ . Make sure to include the impact of mirroring error due to the relevant transistor base currents. Use the following transistor parameters.  $\beta$ =100,  $V_{BE}$ =0.7V,  $V_{T}$ =25.9mV,  $V_{A}$ = $\infty$ 

$$I_{E2} = \frac{V_T}{Rout}$$

$$I_{E2} = I_{C1} = \frac{n \cdot I_{REF}}{1 + \frac{n+1}{B}} = \frac{V_T}{Rout}$$

$$I_{REF} = \frac{V_T \left(1 + \frac{n+1}{B}\right)}{n \cdot Rout} = \frac{25.9 \text{mV} \left(1 + \frac{5+1}{100}\right)}{5 \cdot (25/2)}$$

$$= 219.6 \mu A$$

#### Problem 2 (50 points)

For the circuit shown below, assume that all transistors are operating in the saturation region and that  $\lambda > 0$ . Obtain expressions for the following

- a) Low-frequency gain, A<sub>v</sub>=V<sub>out</sub>/V<sub>in</sub>
- b) The circuit's poles, including the appropriate transistor capacitors. Where relevant, use the Miller approximation to estimate the poles.
- c) Using the answers from part (a) and (b), the circuit's transfer function  $V_{out}(s)/V_{in}(s)$ . Note, you can ignore any potential zeros in the transfer function.

Vin Word Query gain = 
$$-g_{m2}(r_{02}||r_{01})$$

Vin Word Query gain =  $-g_{m2}(r_{02}||r_{01})$ 

Vin Word b. 2 poles at node (1) and Vost

Node 1:  $|W_{Pl}| = R_{s} c_{l}$  where  $c_{l} = c_{G_{02}} + c_{G_{02}}(l + g_{m2}(r_{02}||r_{01}))$ 

Node Vost!  $|W_{Post}| = \frac{1}{(r_{02}||r_{01})}c_{OST}$  where  $c_{OST} = c_{OS_{02}} + c_{G_{02}}(l + g_{m2}(r_{02}||r_{01}))$ 
 $|W_{OS_{02}}| + c_{G_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{02}}||W_{OS_{0$ 

$$C. \frac{V_{\text{out}(s)}}{V_{\text{in}(s)}} = \frac{Av}{\left(1 + \frac{s}{\omega_{\text{post}}}\right)\left(1 + \frac{s}{s}R_{s}C_{1}\right)\left(1 + s\left(\frac{l_{\text{out}}}{l_{\text{out}}}\right)C_{\text{out}}\right)}$$

# **Scratch Paper**