ECEN 326 Lab 6

Design of Current Mirrors

Circuit Topologies

NPN Simple Current Mirror:

$$I_{o} \approx \frac{V_{CC} - 0.7}{R_{C} + R_{E1}} \frac{R_{E1}}{R_{E2}}, \quad V_{o,min} = V_{CE2,sat} + I_{o}R_{E2}$$

$$R_{o} = g'_{m2}r_{o2}R'_{E} + r_{o2} + R'_{E}$$

$$g'_{m2} = g_{m2}\frac{r_{\pi2}}{r_{\pi2} + R_{B}}, \quad R'_{E} = R_{E2} \parallel (r_{\pi2} + R_{B})$$

$$R_{B} = R_{C} \parallel (r_{e1} + R_{E1})$$

NPN Simple Current Mirror with β Helper:

$$I_{o} \approx \frac{V_{CC} - 1.4}{R_{C} + R_{E1}} \frac{R_{E1}}{R_{E2}}, \quad V_{o,min} = V_{CE2,sat} + I_{o}R_{E2}$$

$$R_{o} = g'_{m2}r_{o2}R'_{E} + r_{o2} + R'_{E}$$

$$g'_{m2} = g_{m2}\frac{r_{\pi2}}{r_{\pi2} + R_{B}}, \quad R'_{E} = R_{E2} \parallel (r_{\pi2} + R_{B})$$

$$R_{B} \geqslant R_{E2}$$

$$R_{B} = \left(\frac{R_{C}}{\beta + 1} + \frac{(\beta + 1)r_{e1}}{N}\right) \parallel \left[\frac{r_{e1} + R_{E1}}{\beta} \left(1 + \frac{(\beta + 1)^{2}r_{e1}}{NR_{C}}\right)\right] \parallel (\beta + 1)(r_{e1} + R_{E1})$$

$$N : \text{ Number of base terminals connected to the node } \bigcirc$$

NMOS Simple Current Mirror:

$$I_{D1} = \frac{V_{CC} - V_{GS1}}{R_C} = \frac{k'_n}{2} \left(\frac{W}{L}\right)_1 (V_{GS1} - V_{tn})^2, \quad V_{tn} < V_{GS1} < V_{CC}$$

$$I_o = \frac{(W/L)_2}{(W/L)_1} I_{D1}, \quad V_{o,min} = V_{GS1} - V_{tn} = V_{ov1}$$

$$R_o = r_{o2}$$

PMOS Simple Current Mirror:

$$V_{CC}$$
 M_1
 M_2
 $R_C \ge I_0$
 R_0

NMOS Cascode Current Mirror:

$$V_{CC}$$
 R_{C}
 V_{O}
 M_{3}
 M_{4}
 M_{2}
 $-V_{CC}$

$$(W/L)_{1} = (W/L)_{3}, \quad (W/L)_{2} = (W/L)_{4}$$

$$I_{D1} = \frac{2V_{CC} - 2V_{GS1}}{R_{C}} = \frac{k'_{n}}{2} \left(\frac{W}{L}\right)_{1} (V_{GS1} - V_{tn})^{2}, \quad V_{tn} < V_{GS1} < \frac{V_{CC}}{2}$$

$$I_{o} = \frac{(W/L)_{2}}{(W/L)_{1}} I_{D1}, \quad V_{o,min} = -V_{CC} + V_{GS1} + V_{ov1} = -V_{CC} + 2V_{ov1} + V_{tn}$$

$$R_{o} = g_{m4} r_{o4} r_{o2} + r_{o4} + r_{o2}$$

[©] Department of Electrical and Computer Engineering, Texas A&M University

Calculations and Simulations

The following table shows transistor device parameters. Use $V_{CC} = 5V$ for all calculations.

NPN	NMOS	PMOS	
2N3904	CD4007N	CD4007P	
$\beta = 140$	$k'_{n} = 70 \ \mu A/V^{2}$	$k_p' = 15 \mu A/V^2$	
$V_{CE,sat} = 0.2 V$	$V_{tn}=1.4~V$	$\dot{V}_{tp} = -1.65 V$	
$V_A = 75 \ V$	$W=170~\mu m$	$W = 360 \ \mu m$	
	$\mathit{L} = 10~\mu \mathit{m}$	$L=10~\mu m$	
	$\lambda_n = 0.016 \ V^{-1}$	$\lambda_{ ho}=0.01~V^{-1}$	

1. Calculate R_C , R_o , and the output operating voltage range for the current mirrors in the following table:

(a)	NPN Simple Current Mirror	$R_{E1} = R_{E2} = 100\Omega$	$I_o = 1mA$
(b)	NPN Simple Current Mirror with β Helper	$R_{E1}=R_{E2}=100\Omega$	$I_o = 1 mA$
(c)	NPN Simple Current Mirror with β Helper	$R_{E1} = 100\Omega, R_{E2} = 50\Omega, Q_2 = 2 \times Q_1^{\dagger}$	$I_o = 2mA$
(d)	NMOS Simple Current Mirror	$(W/L)_1 = (W/L)_2 = 170\mu/10\mu$	$I_o = 100 \mu A$
(e)	NMOS Simple Current Mirror	$(W/L)_1 = 170\mu/10\mu$, $(W/L)_2 = 340\mu/10\mu$	$I_o = 200 \mu A$
(f)	PMOS Simple Current Mirror	$(W/L)_1 = (W/L)_2 = 360\mu/10\mu$	$I_o = 100 \mu A$
(g)	NMOS Cascode Current Mirror	$W/L=170\mu/10\mu$	$I_o = 100 \mu A$

 $^{^{\}dagger}Q_2$ is composed of two transistors (each identical to Q_1) connected in parallel.

- **2.** For each current mirror, perform DC simulation by sweeping V_o from 0 to V_{CC} (for the cascode mirror, from $-V_{CC}$ to V_{CC}), and plot the output current I_o .
- **3.** For each current mirror, perform AC simulation while $V_{o,dc} = 2V$, and plot the output resistance R_o .
- **4.** Submit all simulation plots and the circuit schematics with DC bias points annotated (@ $V_o = 2V$).

Measurements

- 1. Construct all current mirrors you designed.
- **2.** For each circuit, measure I_o , R_o and the output operating voltage range.

Report

- 1. Include calculations, schematics, simulation plots, and measurement plots.
- **2.** Prepare a table showing calculated, simulated and measured results.
- 3. Compare the results and comment on the differences.

Demonstration

- 1. Construct all current mirrors you designed on your breadboard and bring it to your lab session.
- 2. Your name and UIN must be written on the side of your breadboard.
- 3. Submit your report to your TA at the beginning of your lab session.
- **4.** For each circuit, measure I_o , R_o and the output operating voltage range.