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Announcements
• HW

• HW3 due today

• Reading
• Razavi Chapter 10
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Exam 1
• In class on Feb 24
• 9:35 – 11:00 (10 extra minutes)
• Closed book w/ one standard note sheet
• 8.5”x11” front & back
• Bring your calculator
• Covers through Lecture 3
• Sample Exam1s posted on website
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Agenda
• General considerations
• Bipolar differential pair
• MOS differential pair
• Cascode differential amplifiers
• Common-mode rejection
• Differential pair with active load
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Audio Amplifier Example

 An audio amplifier is constructed above that takes on a 
rectified AC voltage as its supply and amplifies an audio 
signal from a microphone.  
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“Humming” Noise in Audio Amplifier Example 

 However, VCC contains a ripple from rectification that leaks 
to the output and is perceived as a “humming” noise by the 
user.

rCC vV 

invCCrCCout vARIvVV 
inDCin vV ,

Desired output signal

Undesired power supply 
noise component
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Supply Ripple Rejection

 Since both node X and Y contain the ripple, vr, their 
difference will be free of ripple.

invYX

rY

rinvX

vAvv
vv

vvAv
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Ripple-Free Differential Output

 Since the signal is taken as a difference between two 
nodes, an amplifier that senses differential signals is 
needed.

 How can we construct this differential amplifier?

rv
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Common Inputs to Differential Amplifier

 Signals cannot be applied in phase to the inputs of a 
differential amplifier, since the outputs will also be in phase, 
producing zero differential output.
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Differential Inputs to Differential Amplifier

 When the inputs are applied differentially, the outputs are 
180° out of phase; enhancing each other when sensed 
differentially.

 Provides twice the output swing of the original amplifier

invYX
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rinvX

vAvv
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Differential Signals

 A pair of differential signals can be generated, among other 
ways, by a transformer.

 Differential signals have the property that they share the 
same average value to ground and are equal in magnitude 
but opposite in phase.
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Single-ended vs. Differential Signals

• Single-Ended Signals
• Measured with 

respect to the 
common ground

• Reside on one “line” 
or node

CMoout VtVV  sin

• Differential Signals
• Measured between two nodes
• Reside on two differential “lines” or nodes

CMo VtVV  sin1

CMo VtVV  sin2

tVVV o sin221 



• A single-ended signal is measured with respect to a fixed 
potential (ground)

• A differential signal is measured between two equal and 
opposite signals which swing around a fixed potential 
(common-mode level)

• You can decompose differential signals into a differential 
mode (difference) and a common-mode (average)

Single-Ended & Differential Signals

132
          


 

 outout
CMoutoutDM

VVVVVV

Differential SignalSingle-Ended Signal



Single-Ended & Differential Amplifiers
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• Differential signaling 
advantages
• Common-mode noise 

rejection
• Higher (ideally double) 

potential output swing
• Simpler biasing
• Improved linearity

• Main disadvantage is area, 
which is roughly double
• Although, to get the same 

performance in single-ended 
designs, we often have to 
increase the area 
dramatically

 TnGSDD VVV 

SwingOutput Max 

  TnGSDD VVV 2

SwingOutput Max 



Common-Mode Level Sensitivity

15

• A design which uses two single-ended amplifiers to realize a 
differential amplifier is very sensitive to the common-mode 
input level

• The transistors’ bias current and transconductance can vary 
dramatically with the common-mode input
• Impacts small-signal gain
• Changes the output common-mode, which impacts the maximum 

output swing



Agenda
• General considerations
• Bipolar differential pair
• MOS differential pair
• Cascode differential amplifiers
• Common-mode rejection
• Differential pair with active load
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Differential Pair

 With the addition of a tail current, the circuits above operate 
as an elegant, yet robust differential pair.
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Common-Mode Response
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Common-Mode Rejection

 Due to the fixed tail current source, the 
input common-mode value can vary 
without changing the output common-
mode value.

• Assuming VBC=0 for saturation (VCE~0.7V)
• Often we allow for VBC=0.4V or VCE~0.3V and still consider “active” mode 

operation, although this is formally “soft saturation”
• In any problems, I’ll make it clear what assumptions to use

Lower limit of VCM also occurs 
due to the requirement of a 
minimum “compliance” voltage 
across a real current source
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Differential Response I – Big Differential Input
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Differential Response II – Big Differential Input
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Differential Pair Characteristics

 None-zero differential input produces variations in output 
currents and voltages, whereas common-mode input produces 
no variations.

Transistor Currents Output Voltages
2

  ModeCommon Output EE
CCC
IRV 
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Small-Signal Analysis

 Since the input to Q1 and Q2 rises and falls by the same 
amount, and their bases are tied together, the rise in IC1 has 
the same magnitude as the fall in IC2. 
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Virtual Ground

 For small changes at inputs, the gm’s are the same, and the 
respective increase and decrease of IC1 and IC2 are the 
same, node P must stay constant to accommodate these 
changes.  Therefore, node P can be viewed as AC ground.   
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Small-Signal Differential Gain

 Since the output changes by -2gmVRC and input by 2V, 
the small signal gain is –gmRC, similar to that of the CE 
stage.  However, to obtain same gain as the CE stage, 
power dissipation is doubled. 
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Large Signal Analysis
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• Objective: Find expressions for IC1 and IC2 as a function of the differential 
input Vin1-Vin2

• This can then be used to find the differential output voltage 
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Large Signal Analysis
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Input/Output Characteristics
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• If Vin1-Vin2 ≥ 4VT = 104mV, the majority of the current is steered through Q1
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Linear/Nonlinear Regions

 The left column operates in linear region, whereas the right 
column operates in nonlinear region.  
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Small-Signal Model

• We can use the virtual GND concept discussed in Slide 23 to simplify this



Virtual GND Proof
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Half Circuits

 Since VP is grounded, we can treat the differential pair as two CE 
“half circuits”, with half the output swing on either side

 If the circuit is symmetrical, we can just analyze the half-circuit 
with a virtual ground to get the gain equation

1outv 2outv
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Example: Differential Gain
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Extension of Virtual Ground

 It can be shown that if R1 = R2, and points A and B go up 
and down by the same amount respectively, VX does not 
move.

0XV

Symmetry Axis
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Half Circuit Example I

 1311 |||| RrrgA OOmv 

21 RR 
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Half Circuit Example II

 1311 |||| RrrgA OOmv 
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Half Circuit Example III
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Half Circuit Example IV
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BJT Differential Pair Input Resistance

39

• In order to obtain the differential input resistance, apply a 
test differential voltage vX and find the developed current iX
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Agenda
• General considerations
• Bipolar differential pair
• MOS differential pair
• Cascode differential amplifiers
• Common-mode rejection
• Differential pair with active load
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MOS Differential Pair’s Common-Mode Response

 Similar to its bipolar counterpart, MOS differential pair 
produces zero differential output as VCM changes.
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Equilibrium Overdrive Voltage

 The equilibrium overdrive voltage is defined as the overdrive 
voltage seen by M1 and M2 when both carry an ISS/2 current

 Larger tail current or smaller W/L results in a larger equilibrium 
overdrive voltage
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Minimum Common-mode Output Voltage

 In order to maintain M1 and M2 in saturation, the common-
mode output voltage cannot fall below the value above.  

 This value usually limits voltage gain.

THCM
SS

DDD VVIRV 
2
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Differential Response
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Small-Signal Response

 Similar to its bipolar counterpart, the MOS differential pair 
exhibits the same virtual ground node and small signal 
gain.
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Power and Gain Tradeoff 

 In order to obtain the source gain as a CS stage, a MOS 
differential pair must dissipate twice the amount of current 
(assuming the same MOSFET overdrive voltage).  This power 
and gain tradeoff is also echoed in its bipolar counterpart.
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MOS Differential Pair’s Large-Signal Response
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MOS Differential Pair’s Large-Signal Response
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Maximum Differential  Input Voltage

 There exists a finite differential input voltage that completely 
steers the tail current from one transistor to the other.  This 
value is known as the maximum differential input voltage.
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Contrast Between MOS and Bipolar Differential Pairs

 In a MOS differential pair, there exists a finite differential 
input voltage to completely switch the current from one 
transistor to the other, whereas, in a bipolar pair that 
voltage is infinite. 

MOS Bipolar
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The effects of Doubling the Tail Current

 Since ISS is doubled and W/L is unchanged, the equilibrium 
overdrive voltage for each transistor must increase by       
to accommodate this change, thus Vin,max increases by    
as well.  Moreover, since ISS is doubled, the differential 
output swing will double. 

 Small signal gain also increases by 
 Linear input range increases, assuming RD value is small 

enough to keep transistors in saturation
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The effects of Doubling W/L

 Since W/L is doubled and the tail current remains 
unchanged, the equilibrium overdrive voltage will be 
lowered by      to accommodate this change, thus Vin,max
will be lowered by    as well.  Moreover, the differential 
output swing will remain unchanged since neither ISS nor RD
has changed 

 Small signal gain increases by 
 Linear input range decreases
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Small-Signal Analysis of  MOS Differential Pair

 When the input differential signal is small compared to 
4ISS/nCox(W/L), the output differential current is linearly 
proportional to it, and small-signal model can be applied.
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Virtual Ground and Half Circuit

 Applying the same analysis as the bipolar case, we will 
arrive at the same conclusion that node P will not move for 
small input signals and the concept of half circuit can be 
used to calculate the gain.  
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Small-Signal Impedance:
Simple Current Source (Finite ro)
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Small-Signal Impedance:
“Diode” Load (Finite ro)
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Small-Signal Impedance:
Looking Into Source (Finite ro and gmb)

57

   

m
o

mbmombm
out

oombm
o

o
ombmo

g
r

ggggg
r

vggg
r
vvggi

1111









Small-Signal Impedance:
Looking Into Source w/ RD (Finite ro and gmb)
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MOS Differential Pair Half Circuit Example I
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MOS Differential Pair Half Circuit Example II
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MOS Differential Pair Half Circuit Example III
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Agenda
• General considerations
• Bipolar differential pair
• MOS differential pair
• Cascode differential amplifiers
• Common-mode rejection
• Differential pair with active load
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Maximum Differential Amplifier Gain

• With ideal current source 
loads, the differential gain is 
limited by the intrinsic 
transistor gain (gmro)

• How to increase the gain 
further?
• Use a topology which boosts 

the output resistance
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Bipolar Cascode Topology
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The dominant term is the bottom effective resistance 
boosted by the gain of the top transistor (gm3ro3)
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Bipolar Cascode Differential Pair
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• Gain is roughly 
squared relative 
to the simple 
differential pair

• Trade-off is 
reduced output 
voltage swing 
range

Slight approximation here. More when we study Cascodes in detail.
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Bipolar Telescopic Cascode
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Example: Bipolar Telescopic Parasitic Resistance
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MOS Cascode Topology
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The dominant term is the bottom effective resistance 
boosted by the gain of the top transistor (gm3ro3)
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MOS Cascode Differential Pair
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• Gain is roughly squared 
relative to the simple 
differential pair

• Trade-off is reduced output 
voltage swing range
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MOS Telescopic Cascode
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Example: MOS Telescopic Parasitic Resistance
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Agenda
• General considerations
• Bipolar differential pair
• MOS differential pair
• Cascode differential amplifiers
• Common-mode rejection
• Differential pair with active load
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Effect of Finite Tail Impedance

 If the tail current source is not ideal, then when a input CM 
voltage is applied, the currents in Q1 and Q2 and hence 
output CM voltage will change.
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Input CM Noise with Ideal Tail Current
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Input CM Noise with Non-ideal Tail Current 

• Common-mode noise is now transferred to the single-ended outputs
• However, output differential signal is still ideally unaffected by common-

mode noise
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Comparison 

 As it can be seen, the differential output voltages for both 
cases are the same.  So for small input CM noise, the 
differential pair is not affected.
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CM to DM Conversion, ACM-DM

 If finite tail impedance and 
asymmetry are both present, 
then the differential output 
signal will contain a portion of 
input common-mode signal.
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Example: ACM-DM
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CMRR 

 CMRR defines the ratio of wanted amplified differential 
input signal to unwanted converted input common-mode 
noise that appears at the output.
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Agenda
• General considerations
• Bipolar differential pair
• MOS differential pair
• Cascode differential amplifiers
• Common-mode rejection
• Differential pair with active load
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Differential to Single-ended Conversion

 Many circuits require a differential to single-ended 
conversion, however, the above topology is not very good.

Simple OpAmp
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Supply Noise Corruption

 The most critical drawback of this topology is supply noise 
corruption, since no common-mode cancellation 
mechanism exists. Also, we lose half of the signal.
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Gain Reduction

 The most critical drawback of this topology is supply noise 
corruption, since no common-mode cancellation 
mechanism exists. Also, we lose half of the signal.
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Better Alternative

 This circuit topology performs differential to single-ended 
conversion with no loss of gain.

Current Mirror or 
“Active” Load
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Active Load

 With current mirror used as the load, the signal current 
produced by the Q1 can be replicated onto Q4.

 This type of load is different from the conventional “static 
load” and is known as an “active load”. 
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Differential Pair with Active Load

 The input differential pair decreases the current drawn from 
RL by I and the active load pushes an extra I into RL by 
current mirror action; these effects enhance each other.
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Active Load vs. Static Load

 The load on the left responds to the input signal and 
enhances the single-ended output, whereas the load on the 
right does not.

Active Load Static Load

I 2 I I
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MOS Differential Pair with Active Load

 Similar to its bipolar counterpart, MOS differential pair can 
also use active load to enhance its single-ended output.
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Asymmetric Differential Pair

 Because of the vastly different resistance magnitude at the 
drains of M1 and M2, the voltage swings at these two nodes 
are different and therefore node P cannot be viewed as a 
virtual ground.  
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Thevenin Equivalent of the Input Pair
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Simplified Differential Pair with Active Load
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Next Time
• Cascode Stages & Current Mirrors

• Razavi Chapter 9
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