ECEN326: Electronic Circuits Fall 2022

Lecture 3: Differential Amplifiers

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University

Announcements

- HW
 - HW3 due today

- Reading
 - Razavi Chapter 10

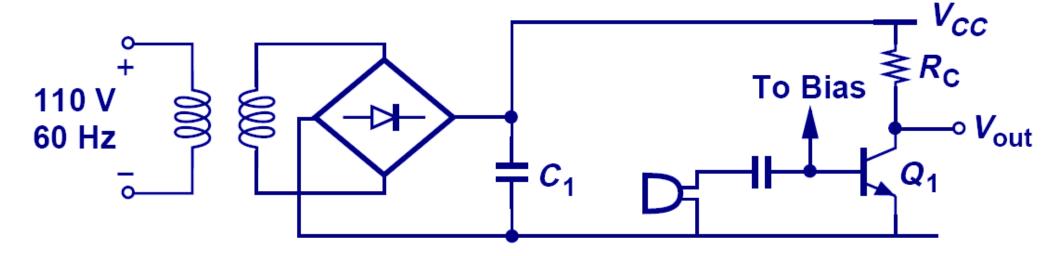
Exam 1

- In class on Feb 24
- 9:35 11:00 (10 extra minutes)
- Closed book w/ one standard note sheet
- 8.5"x11" front & back
- Bring your calculator
- Covers through Lecture 3
- Sample Exam1s posted on website

Agenda

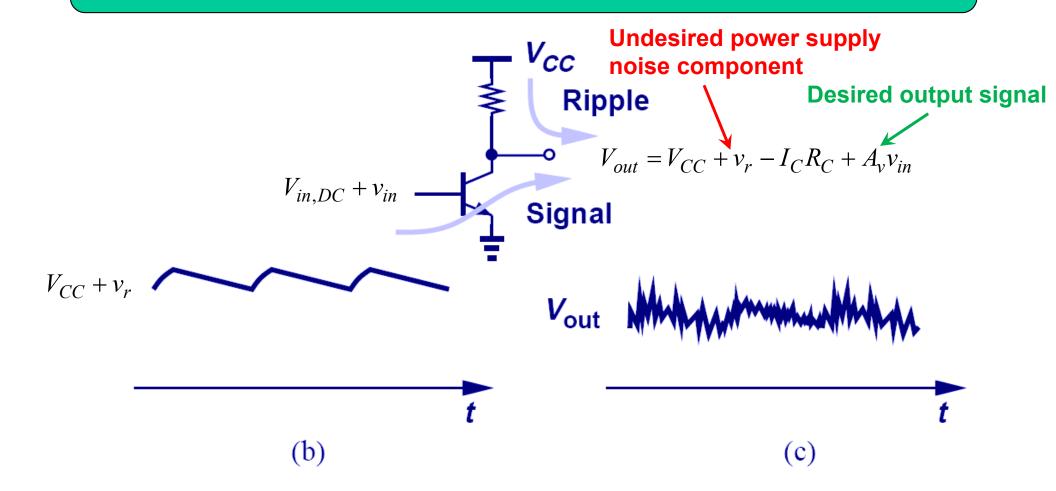
- General considerations
- Bipolar differential pair
- MOS differential pair
- Cascode differential amplifiers
- Common-mode rejection
- Differential pair with active load

Audio Amplifier Example



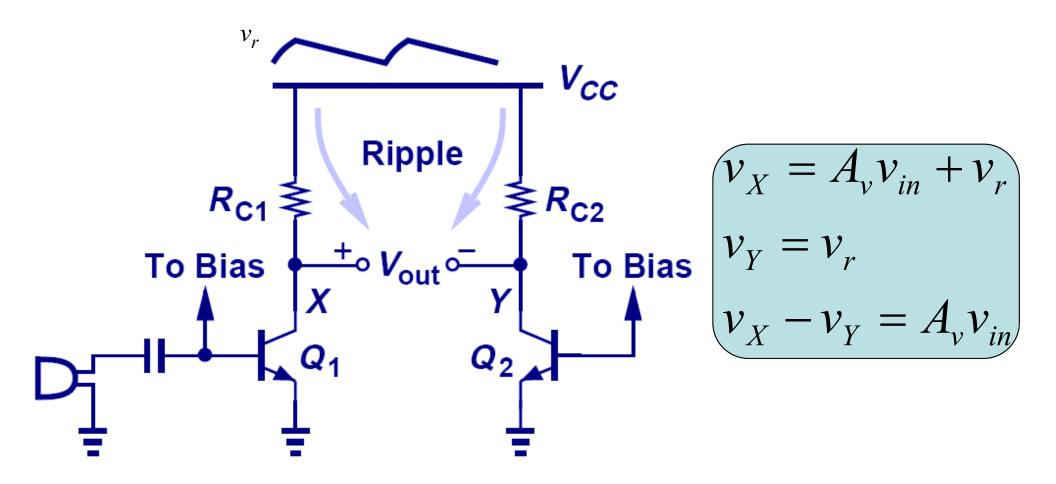
An audio amplifier is constructed above that takes on a rectified AC voltage as its supply and amplifies an audio signal from a microphone.

"Humming" Noise in Audio Amplifier Example



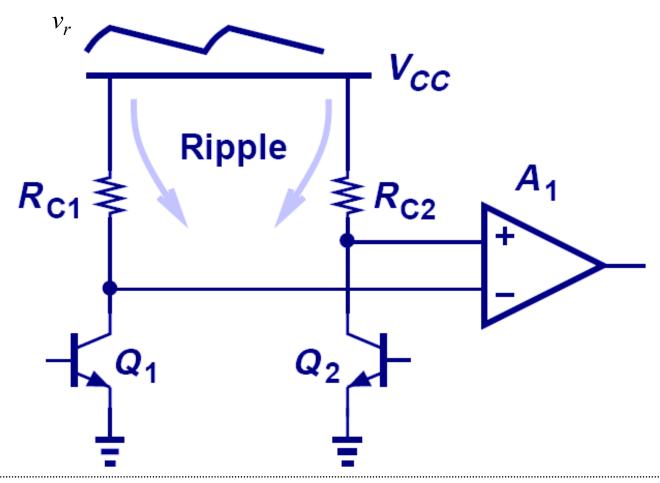
➤ However, V_{CC} contains a ripple from rectification that leaks to the output and is perceived as a "humming" noise by the user.

Supply Ripple Rejection



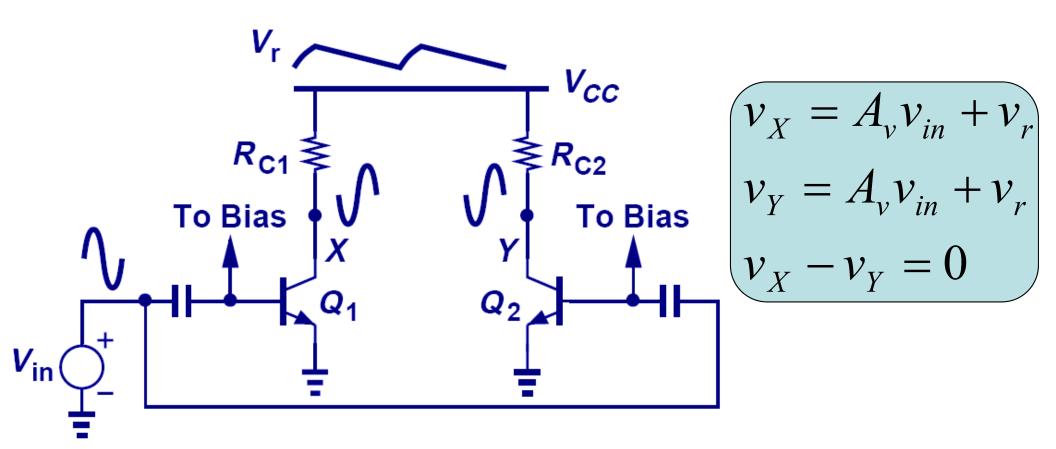
Since both node X and Y contain the ripple, v_r, their difference will be free of ripple.

Ripple-Free Differential Output



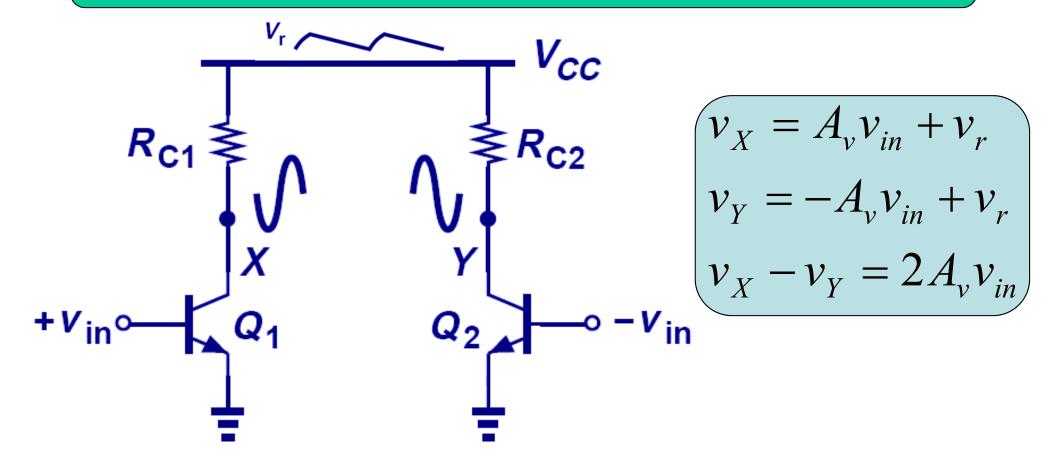
- Since the signal is taken as a difference between two nodes, an amplifier that senses differential signals is needed.
- How can we construct this differential amplifier?

Common Inputs to Differential Amplifier



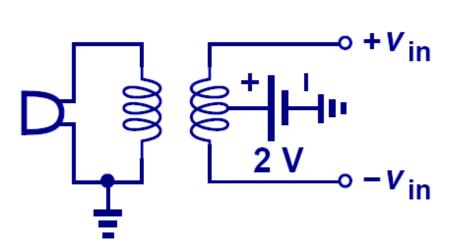
Signals cannot be applied in phase to the inputs of a differential amplifier, since the outputs will also be in phase, producing zero differential output.

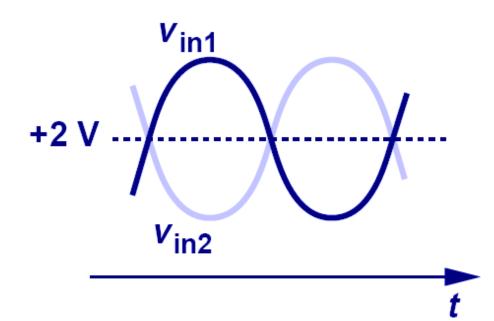
Differential Inputs to Differential Amplifier



- When the inputs are applied differentially, the outputs are 180° out of phase; enhancing each other when sensed differentially.
- Provides twice the output swing of the original amplifier

Differential Signals

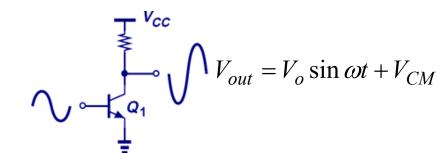




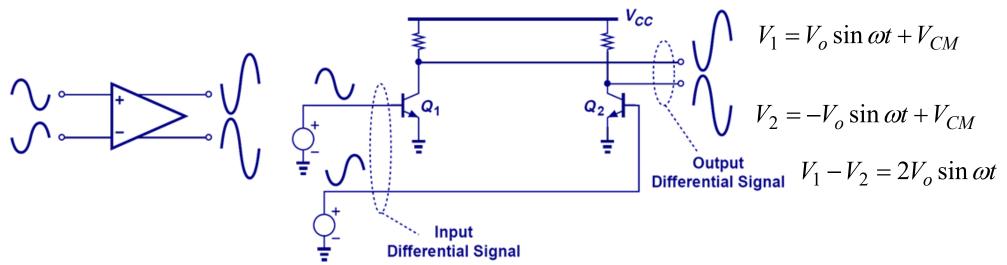
- A pair of differential signals can be generated, among other ways, by a transformer.
- Differential signals have the property that they share the same average value to ground and are equal in magnitude but opposite in phase.

Single-ended vs. Differential Signals

- Single-Ended Signals
 - Measured with respect to the common ground
- $\begin{array}{c|c}
 & & \\
 & \downarrow \\
 & V_{\text{in}} & \\
 & \overline{} & \overline{} \\
 & \overline{} & \overline{} \\
 & \overline{} & \overline{} & \overline{} \\
 & \overline{} & \overline{} & \overline{} \\
 & \overline{} & \overline{} & \overline{} & \overline{} \\
 & \overline{} & \overline{} & \overline{} & \overline{} & \overline{} \\
 & \overline{} & \overline{} & \overline{} & \overline{} & \overline{} & \overline{} \\
 & \overline{} \\
 & \overline{} & \overline{}$



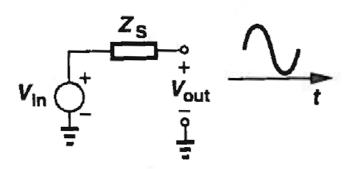
- Reside on one "line" or node
- Differential Signals
 - Measured between two nodes
 - Reside on two differential "lines" or nodes



Single-Ended & Differential Signals

- A single-ended signal is measured with respect to a fixed potential (ground)
- A differential signal is measured between two equal and opposite signals which swing around a fixed potential (common-mode level)
- You can decompose differential signals into a differential mode (difference) and a common-mode (average)

Single-Ended Signal



Differential Signal

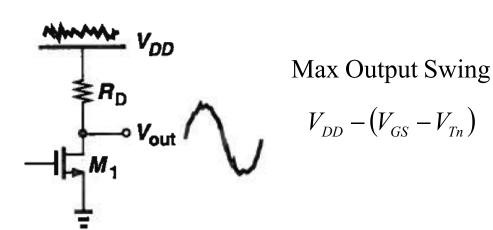
$$V_{\text{in1}} = \frac{Z_{\text{S}}}{\text{CM}} + V_{\text{out}} - \frac{Z_{\text{S}}}{\text{Vout}}$$

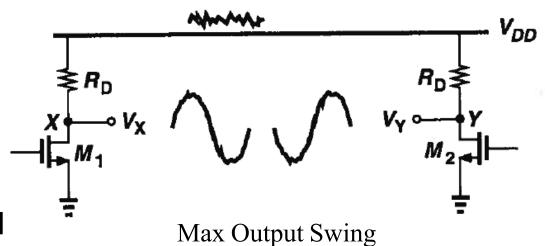
$$V_{\text{in2}} = V_{\text{out}}^{+} - V_{\text{out}}^{-}$$

$$V_{\text{CM}} = \frac{V_{\text{out}}^{+} + V_{\text{out}}^{-}}{2}$$

Single-Ended & Differential Amplifiers

- Differential signaling advantages
 - Common-mode noise rejection
 - Higher (ideally double) potential output swing
 - Simpler biasing
 - Improved linearity
- Main disadvantage is area, which is roughly double
 - Although, to get the same performance in single-ended designs, we often have to increase the area dramatically

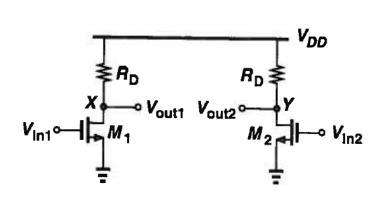


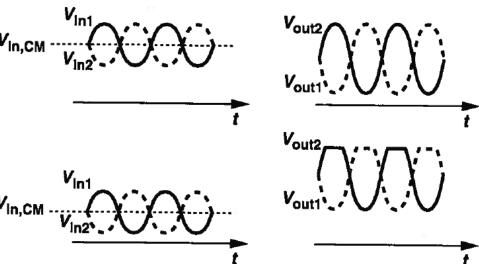


 $2(V_{DD} - (V_{GS} - V_{Tn}))$

Common-Mode Level Sensitivity

- A design which uses two single-ended amplifiers to realize a differential amplifier is very sensitive to the common-mode input level
- The transistors' bias current and transconductance can vary dramatically with the common-mode input
 - Impacts small-signal gain
 - Changes the output common-mode, which impacts the maximum output swing

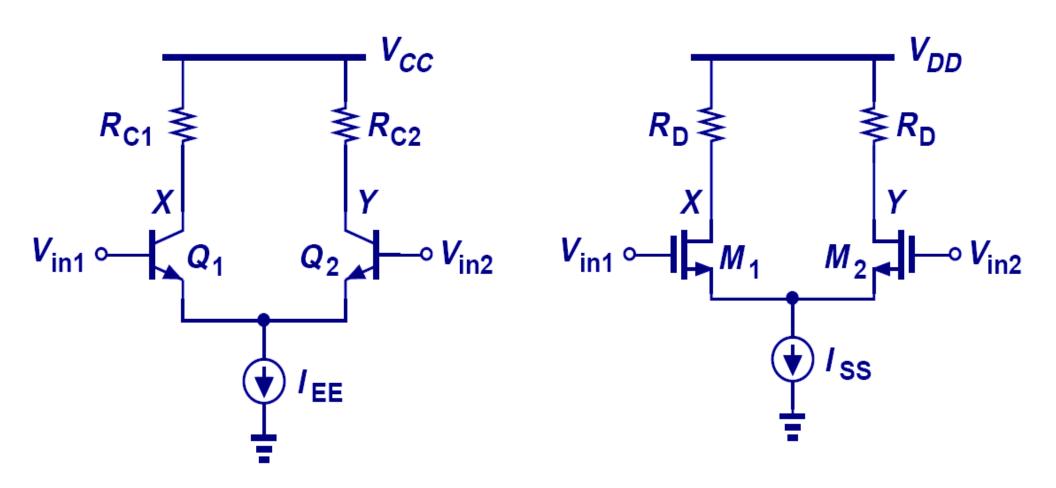




Agenda

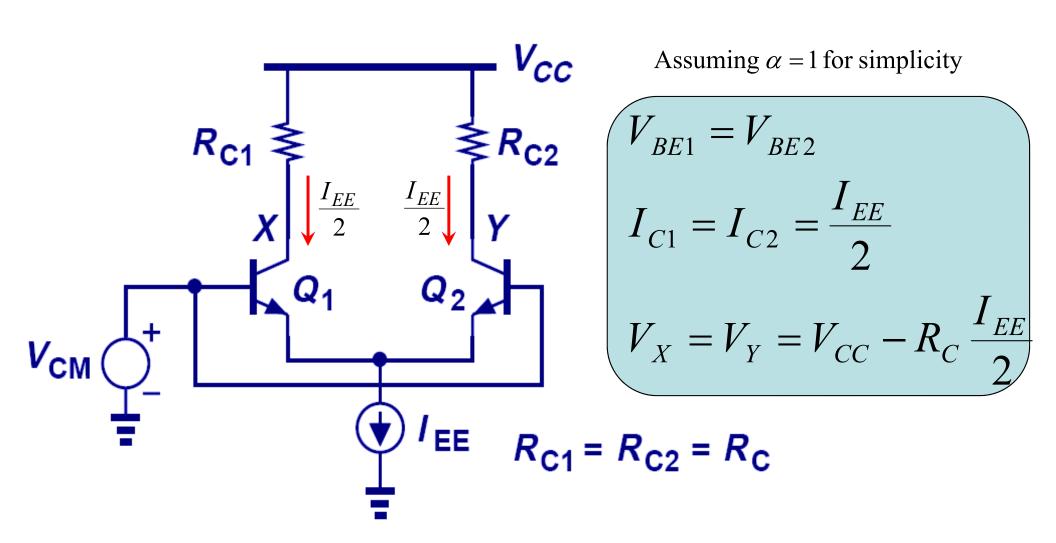
- General considerations
- Bipolar differential pair
- MOS differential pair
- Cascode differential amplifiers
- Common-mode rejection
- Differential pair with active load

Differential Pair



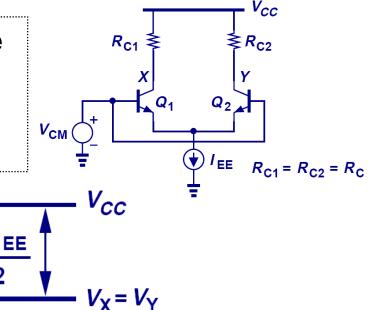
With the addition of a tail current, the circuits above operate as an elegant, yet robust differential pair.

Common-Mode Response



Common-Mode Rejection

Due to the fixed tail current source, the input common-mode value can vary without changing the output commonmode value.

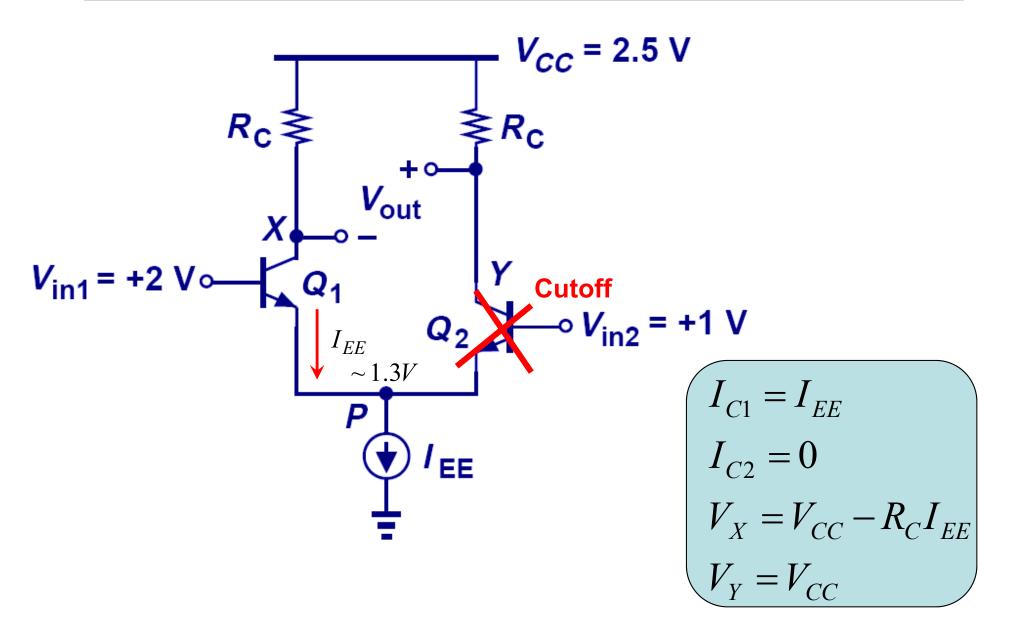


Upper Limit of V_{CM} to Avoid Saturation V_{CM2}

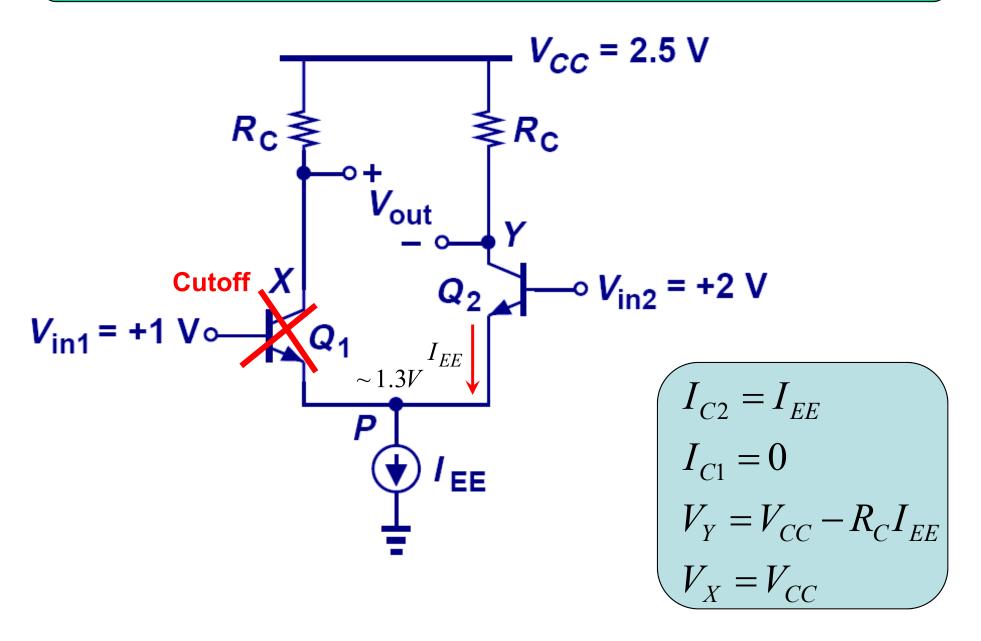
Lower limit of V_{CM} also occurs due to the requirement of a minimum "compliance" voltage across a real current source

- Assuming $V_{BC}=0$ for saturation $(V_{CE}\sim 0.7V)$
- Often we allow for $V_{BC}=0.4V$ or $V_{CE}\sim0.3V$ and still consider "active" mode operation, although this is formally "soft saturation"
- In any problems, I'll make it clear what assumptions to use

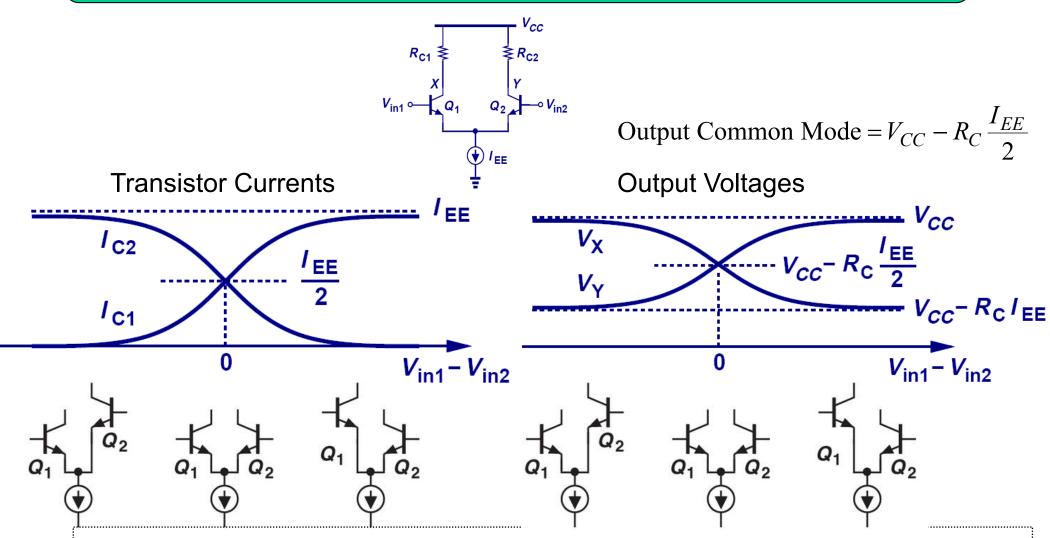
Differential Response I – Big Differential Input



Differential Response II – Big Differential Input

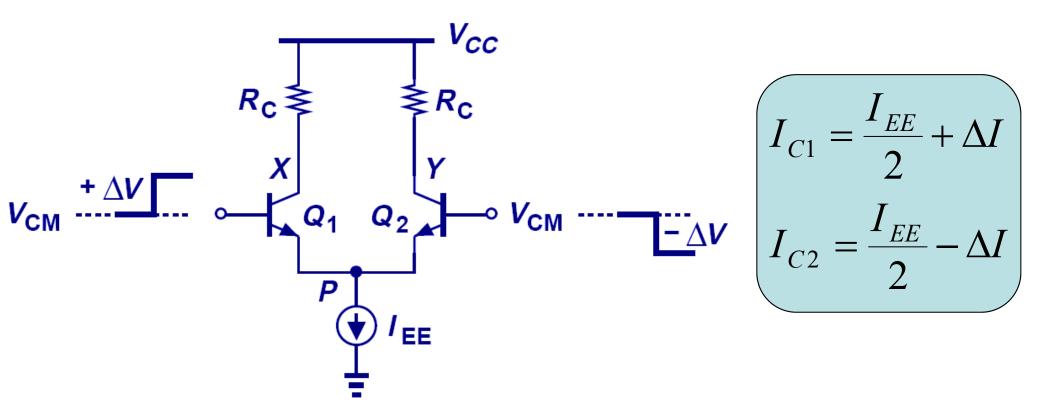


Differential Pair Characteristics



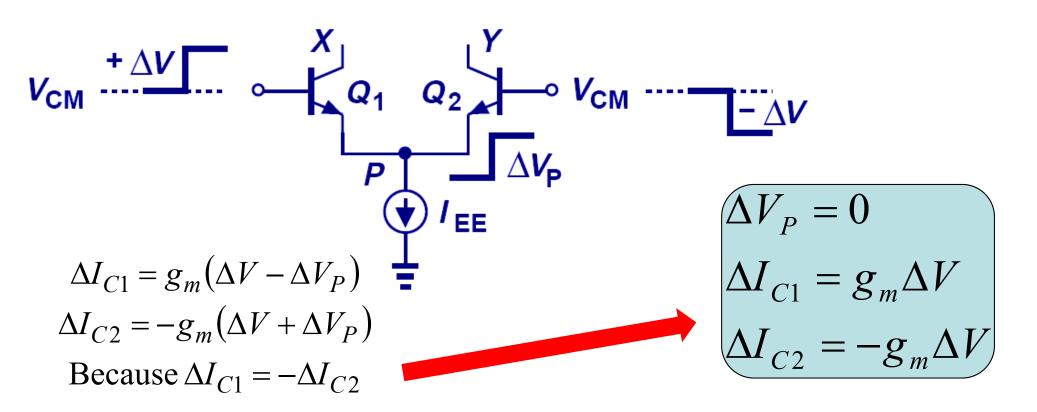
None-zero differential input produces variations in output currents and voltages, whereas common-mode input produces no variations.

Small-Signal Analysis



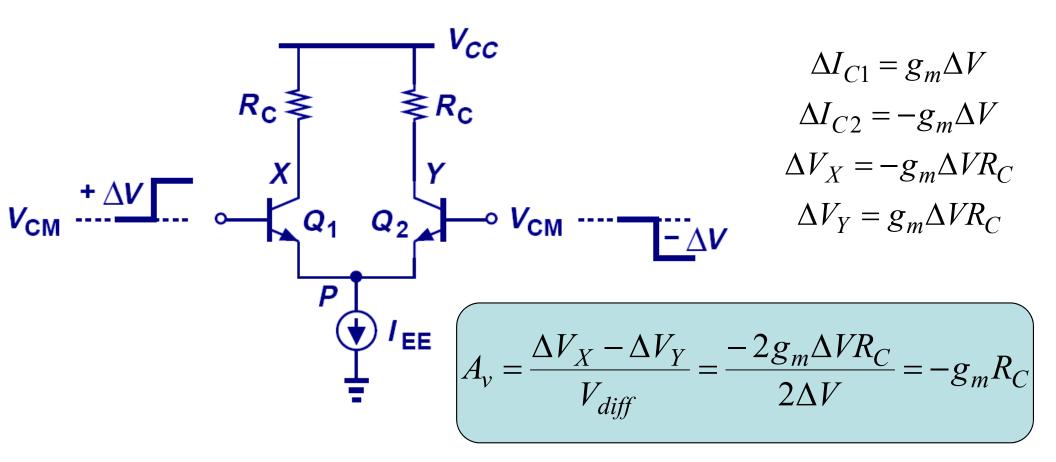
Since the input to Q_1 and Q_2 rises and falls by the same amount, and their bases are tied together, the rise in I_{C1} has the same magnitude as the fall in I_{C2} .

Virtual Ground



For small changes at inputs, the g_m's are the same, and the respective increase and decrease of I_{C1} and I_{C2} are the same, node P must stay constant to accommodate these changes. Therefore, node P can be viewed as AC ground.

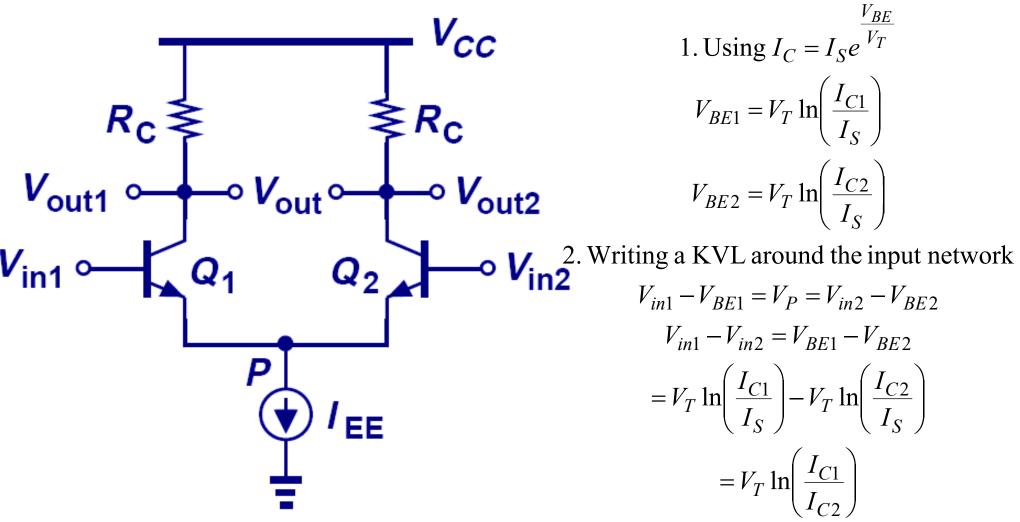
Small-Signal Differential Gain



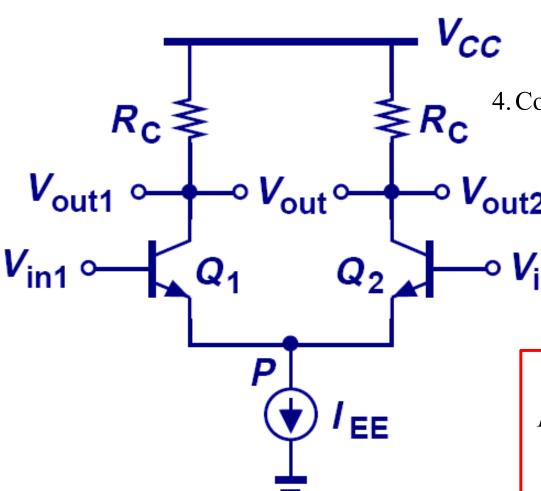
Since the output changes by $-2g_m\Delta VR_C$ and input by $2\Delta V$, the small signal gain is $-g_mR_C$, similar to that of the CE stage. However, to obtain same gain as the CE stage, power dissipation is doubled.

Large Signal Analysis

- Objective: Find expressions for I_{C1} and I_{C2} as a function of the differential input V_{in1}-V_{in2}
 - This can then be used to find the differential output voltage



Large Signal Analysis



3. Writing a KCL at node P

$$I_{C1} + I_{C2} = I_{EE}$$

4. Combining previous KVL equation with the KCL

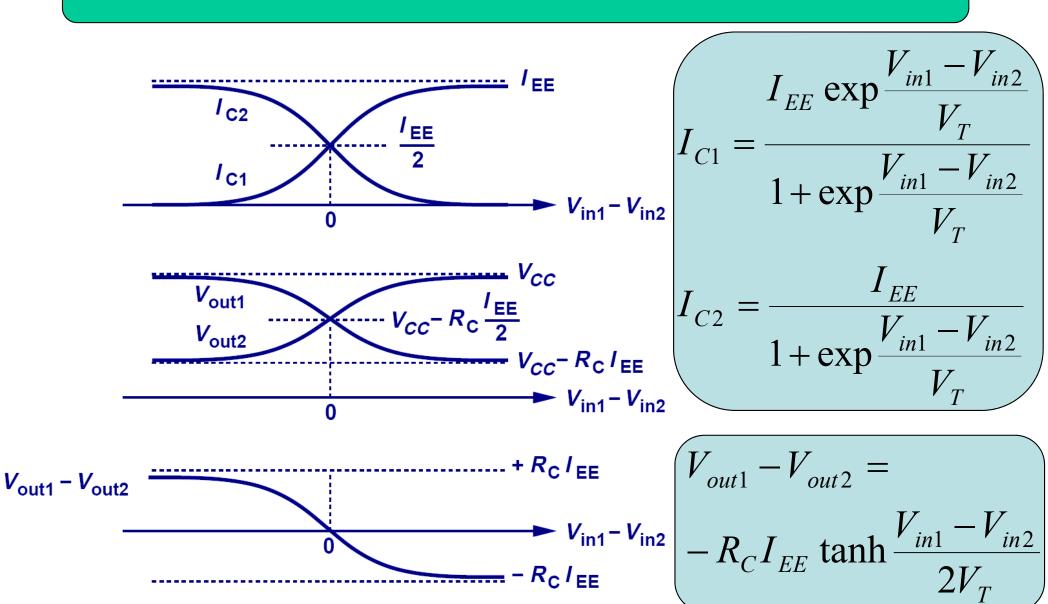
$$I_{C2} \exp \frac{V_{in1} - V_{in2}}{V_T} + I_{C2} = I_{EE}$$

$$I_{C2} = \frac{I_{EE}}{1 + \exp{\frac{V_{in1} - V_{in2}}{V_T}}}$$

5. From circuit symmetry

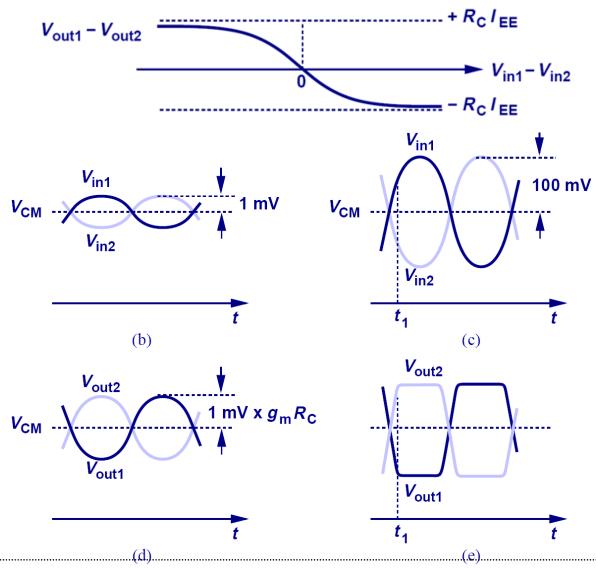
$$I_{C1} = \frac{I_{EE}}{1 + \exp{\frac{V_{in2} - V_{in1}}{V_T}}} = \frac{I_{EE} \exp{\frac{V_{in1} - V_{in2}}{V_T}}}{1 + \exp{\frac{V_{in1} - V_{in2}}{V_T}}}$$

Input/Output Characteristics



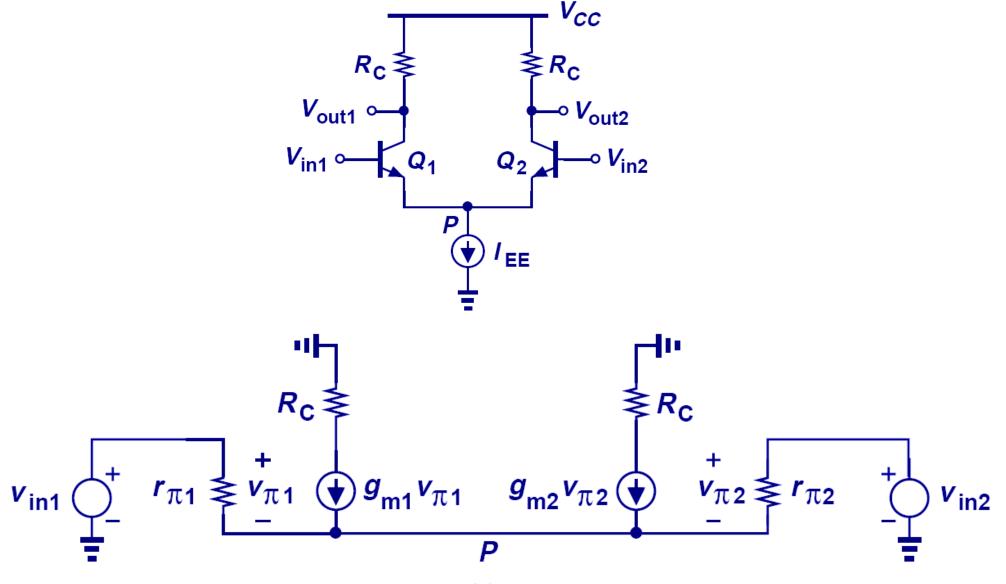
• If V_{in1} - $V_{in2} \ge 4V_T = 104$ mV, the majority of the current is steered through Q_1 CH 10 Differential Amplifiers

Linear/Nonlinear Regions



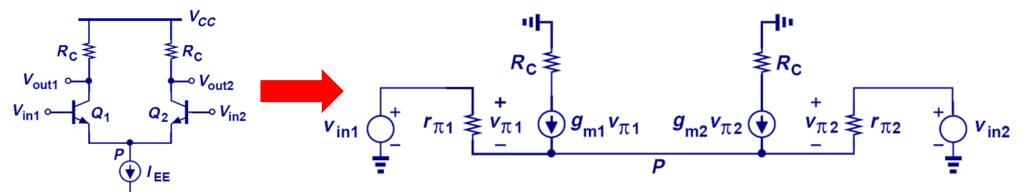
The left column operates in linear region, whereas the right column operates in nonlinear region.

Small-Signal Model



We can use the virtual GND concept discussed in Slide 23 to simplify this

Virtual GND Proof



1. KVL around the input networks

$$v_{in1} - v_{\pi 1} = v_P = v_{in2} - v_{\pi 2}$$

2. KCL at node P

$$\frac{v_{\pi 1}}{r_{\pi 1}} + g_{m1}v_{\pi 1} + \frac{v_{\pi 2}}{r_{\pi 2}} + g_{m2}v_{\pi 2} = 0$$

For small signals $r_{\pi 1} = r_{\pi 2}$ and $g_{m1} = g_{m2}$

$$v_{\pi 1} = -v_{\pi 2}$$

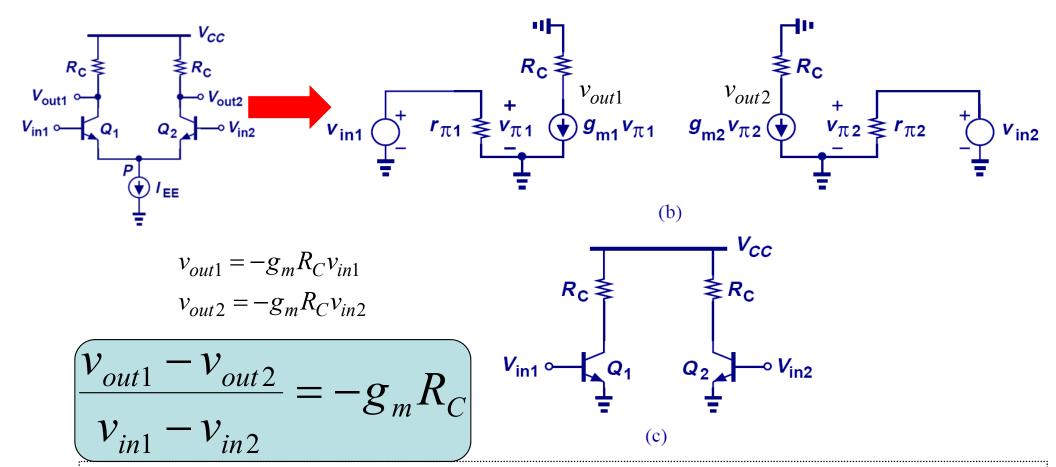
For differential operation $v_{in1} = -v_{in2}$, and using the above KVL

$$2v_{in1} = 2v_{\pi 1}$$

which implies that

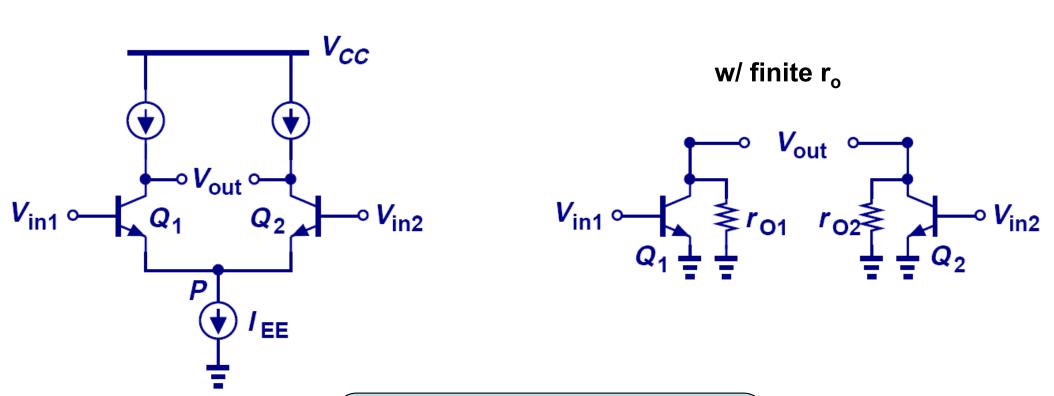
$$v_P = v_{in1} - v_{\pi 1} = 0$$

Half Circuits



- Since V_P is grounded, we can treat the differential pair as two CE "half circuits", with half the output swing on either side
- If the circuit is symmetrical, we can just analyze the half-circuit with a virtual ground to get the gain equation

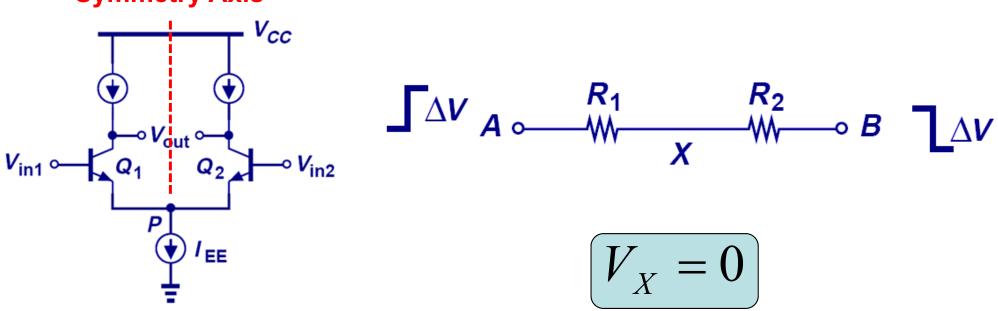
Example: Differential Gain



$$\frac{v_{out1} - v_{out2}}{v_{in1} - v_{in2}} = -g_m r_0$$

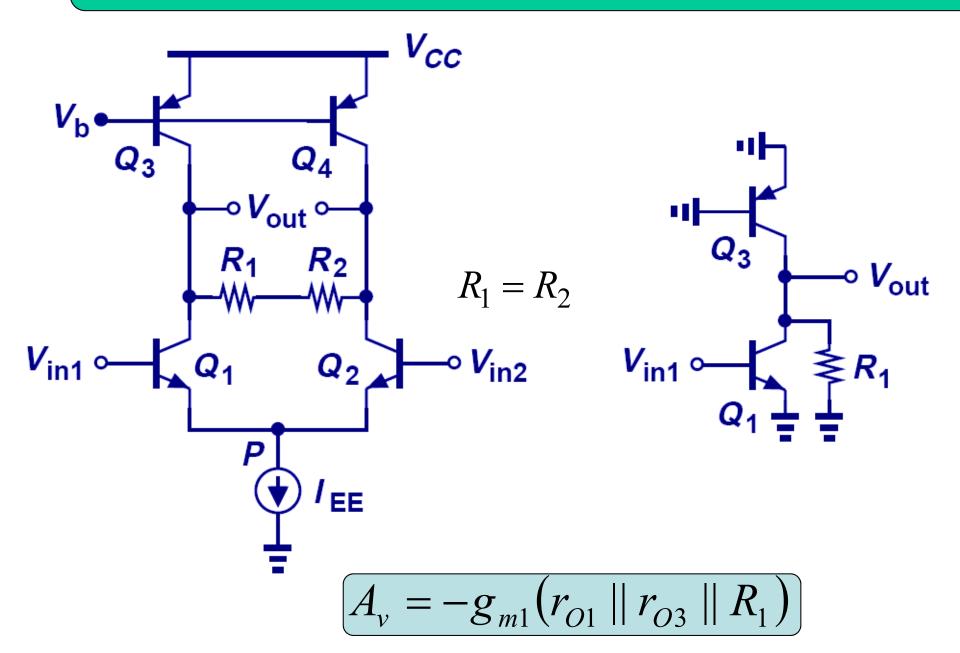
Extension of Virtual Ground

Symmetry Axis

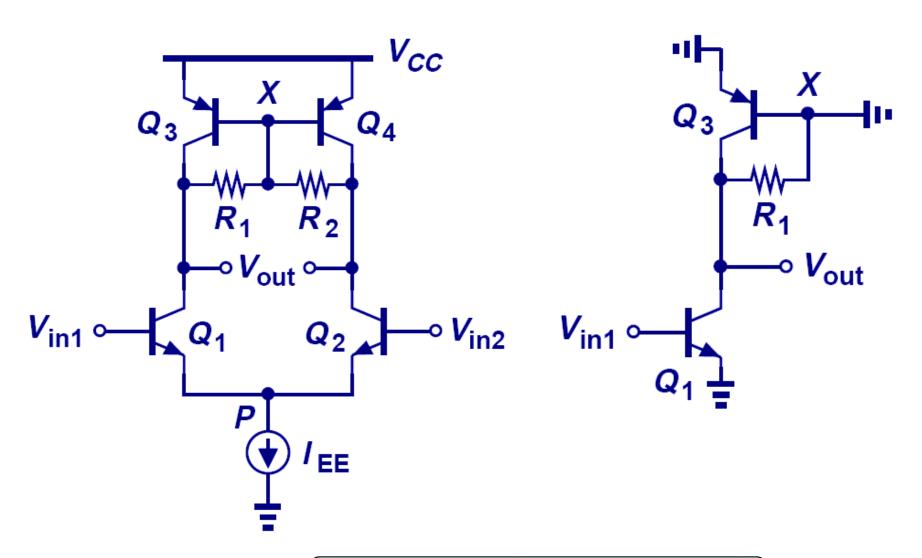


It can be shown that if $R_1 = R_2$, and points A and B go up and down by the same amount respectively, V_X does not move.

Half Circuit Example I

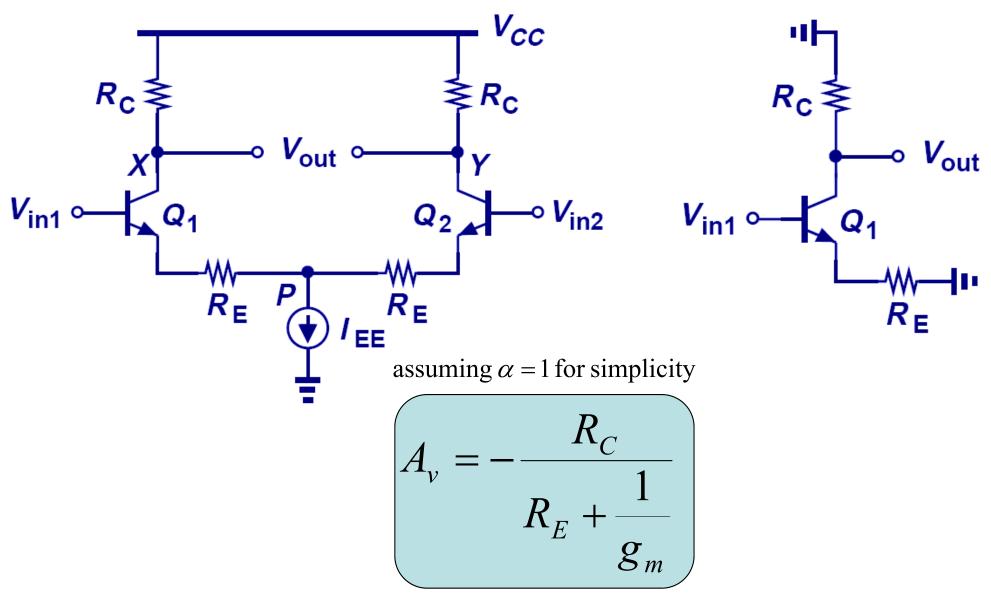


Half Circuit Example II

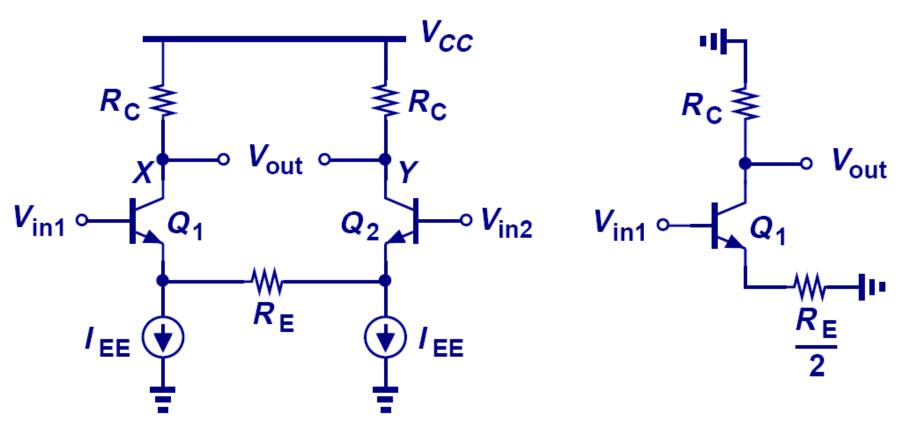


$$\left[A_{v} = -g_{m1}(r_{O1} \parallel r_{O3} \parallel R_{1})\right]$$

Half Circuit Example III



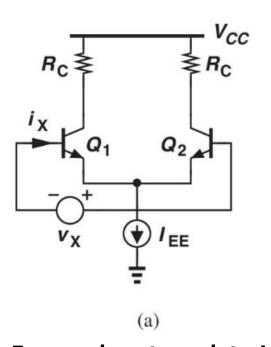
Half Circuit Example IV

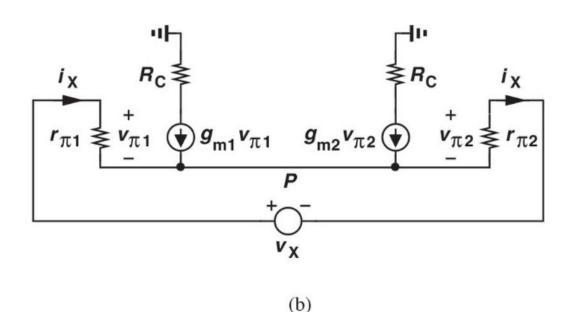


assuming $\alpha = 1$ for simplicity

$$A_{v} = -\frac{R_{C}}{\frac{R_{E}}{2} + \frac{1}{g_{m}}}$$

BJT Differential Pair Input Resistance





• In order to obtain the differential input resistance, apply a test differential voltage v_X and find the developed current i_X

$$\frac{v_{\pi 1}}{r_{\pi 1}} = i_X = -\frac{v_{\pi 2}}{r_{\pi 2}}$$

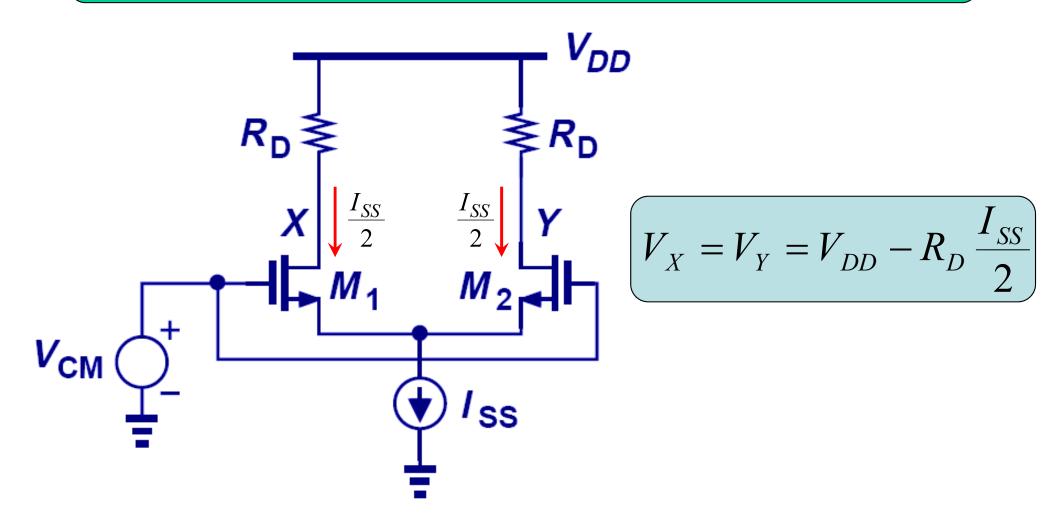
$$v_X = v_{\pi 1} - v_{\pi 2} = 2r_{\pi}i_X$$

Differential
$$R_{in} = \frac{v_X}{i_X} = 2r_{\pi}$$

Agenda

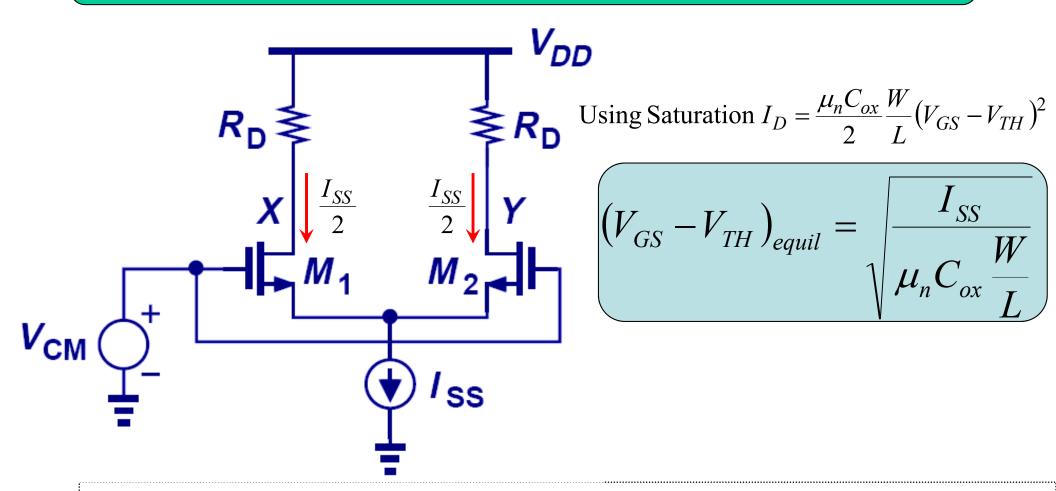
- General considerations
- Bipolar differential pair
- MOS differential pair
- Cascode differential amplifiers
- Common-mode rejection
- Differential pair with active load

MOS Differential Pair's Common-Mode Response



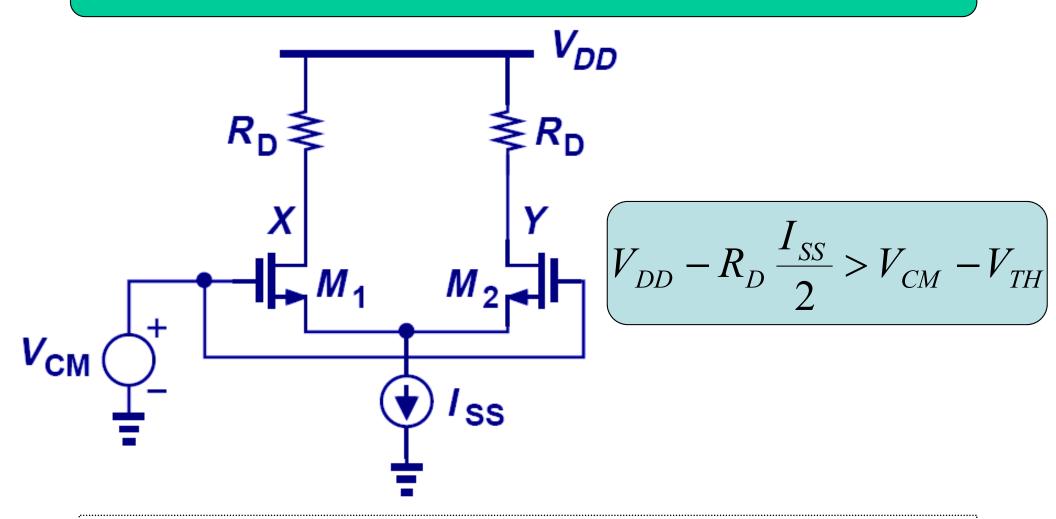
 \triangleright Similar to its bipolar counterpart, MOS differential pair produces zero differential output as V_{CM} changes.

Equilibrium Overdrive Voltage



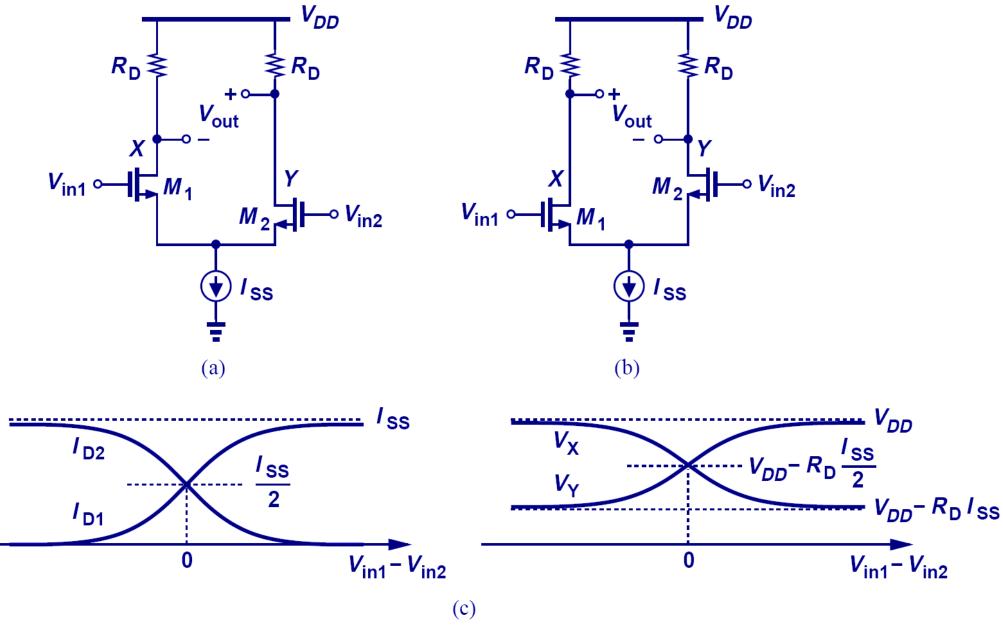
- ➤ The equilibrium overdrive voltage is defined as the overdrive voltage seen by M₁ and M₂ when both carry an I_{SS}/2 current
- Larger tail current or smaller W/L results in a larger equilibrium overdrive voltage

Minimum Common-mode Output Voltage

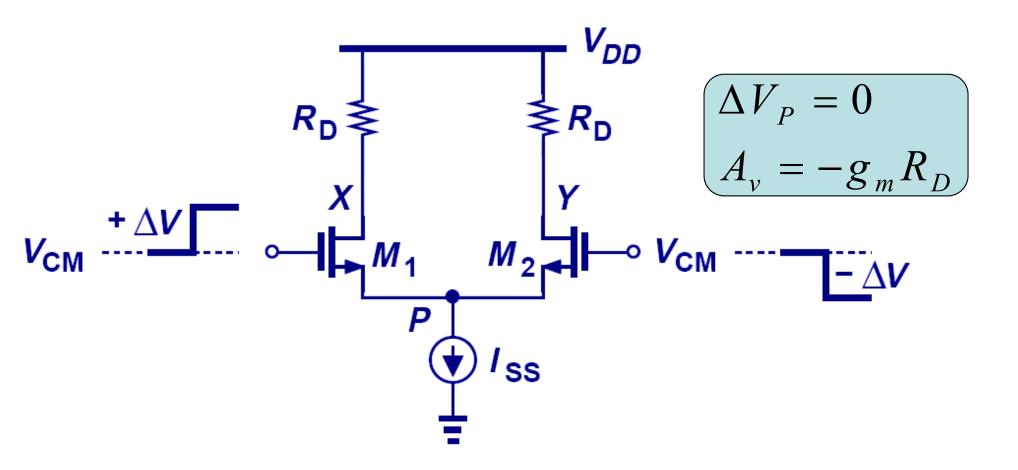


- In order to maintain M_1 and M_2 in saturation, the commonmode output voltage cannot fall below the value above.
- This value usually limits voltage gain.

Differential Response

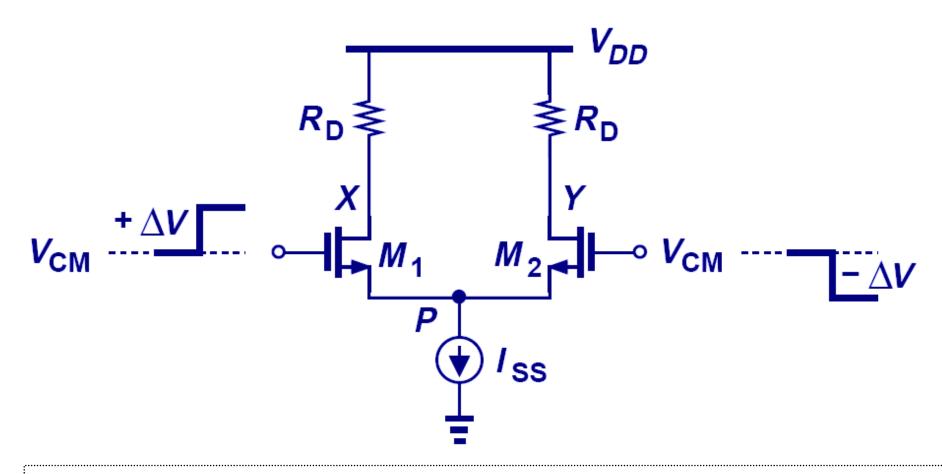


Small-Signal Response



Similar to its bipolar counterpart, the MOS differential pair exhibits the same virtual ground node and small signal gain.

Power and Gain Tradeoff



In order to obtain the source gain as a CS stage, a MOS differential pair must dissipate twice the amount of current (assuming the same MOSFET overdrive voltage). This power and gain tradeoff is also echoed in its bipolar counterpart.

MOS Differential Pair's Large-Signal Response

1. Writing a KVL around the input network

$$V_{in1} - V_{GS1} = V_{in2} - V_{GS2}$$

2. Writing a KCL at the tail node

$$I_{D1} + I_{D2} = I_{SS}$$

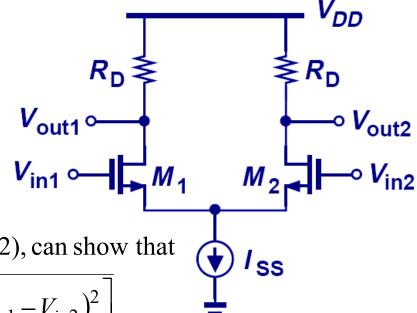
Using
$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{GS} - V_{TH})^2$$
 and $V_{GS} = V_{TH} + \sqrt{\frac{2I_D}{\mu_n C_{ox}} \frac{W}{L}}$

$$V_{in1} - V_{in2} = V_{GS1} - V_{GS2} = \sqrt{\frac{2}{\mu_n C_{ox} \frac{W}{L}}} \left(\sqrt{I_{D1}} - \sqrt{I_{D2}} \right)$$

Squaring both sides

$$(V_{in1} - V_{in2})^2 = \frac{2}{\mu_n C_{ox} \frac{W}{L}} (I_{D1} + I_{D2} - 2\sqrt{I_{D1}I_{D2}}) = \frac{2}{\mu_n C_{ox} \frac{W}{L}} (I_{SS} - 2\sqrt{I_{D1}I_{D2}})$$

MOS Differential Pair's Large-Signal Response



After some algebraic manipulations (see Razavi 10.3.2), can show that

$$I_{D1} = \frac{I_{SS}}{2} + \frac{V_{in1} - V_{in2}}{4} \sqrt{\mu_n C_{ox} \frac{W}{L} \left[4I_{SS} - \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2 \right]}$$

$$I_{D2} = \frac{I_{SS}}{2} + \frac{V_{in2} - V_{in1}}{4} \sqrt{\mu_n C_{ox} \frac{W}{L} \left[4I_{SS} - \mu_n C_{ox} \frac{W}{L} (V_{in2} - V_{in1})^2 \right]}$$

$$I_{D1} - I_{D2} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox}} \frac{W}{L}} - (V_{in1} - V_{in2})^2}$$

*Note, this equation is only valid for a certain maximum input differential voltage V_{in1} – V_{in2}

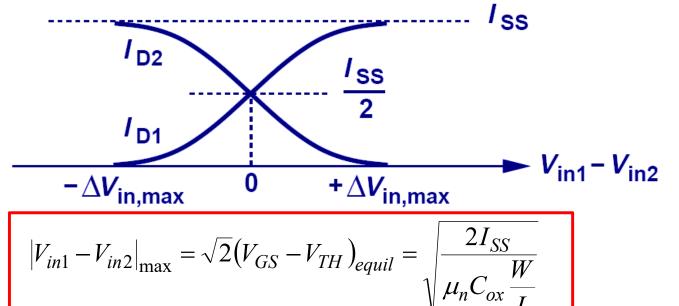
Maximum Differential Input Voltage

$$I_{D1} - I_{D2} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox}} \frac{W}{L}} - (V_{in1} - V_{in2})^2}$$

The above equation is only valid when both M_1 and M_2 are on.

This stops when $V_{GS2} = V_{TH}$ and V_{GS1} supports a full I_{SS} value.

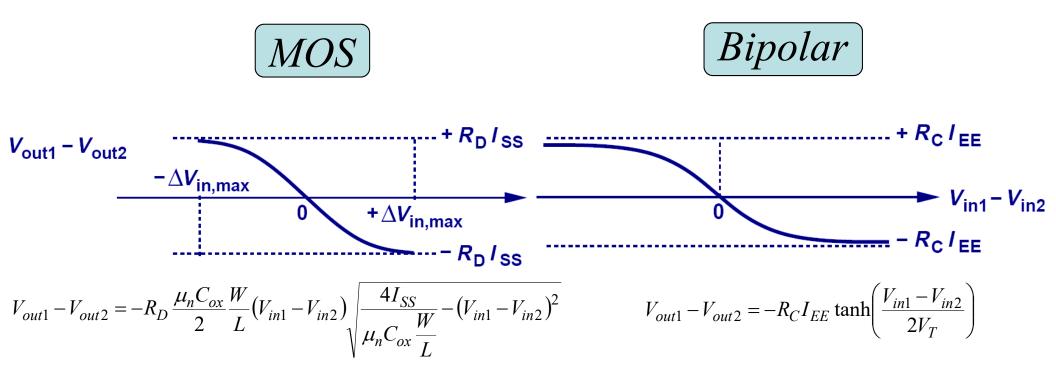
$$V_{GS1} = V_{TH} + \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$$



There exists a finite differential input voltage that completely steers the tail current from one transistor to the other. This value is known as the maximum differential input voltage.

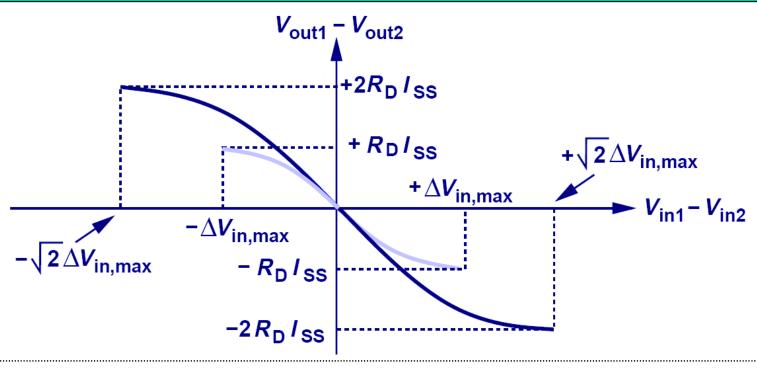
CH 10 Differential Amplifiers

Contrast Between MOS and Bipolar Differential Pairs



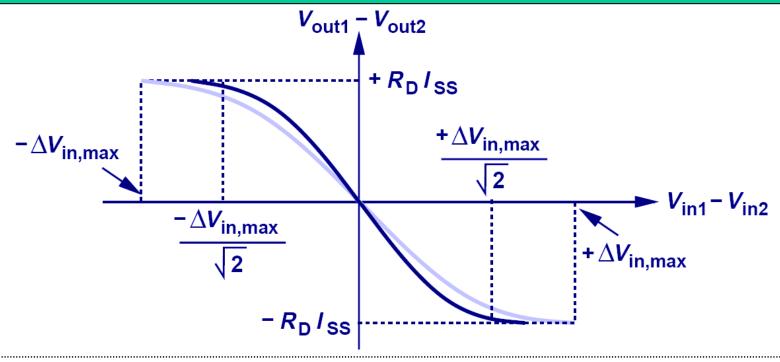
In a MOS differential pair, there exists a finite differential input voltage to completely switch the current from one transistor to the other, whereas, in a bipolar pair that voltage is infinite.

The effects of Doubling the Tail Current



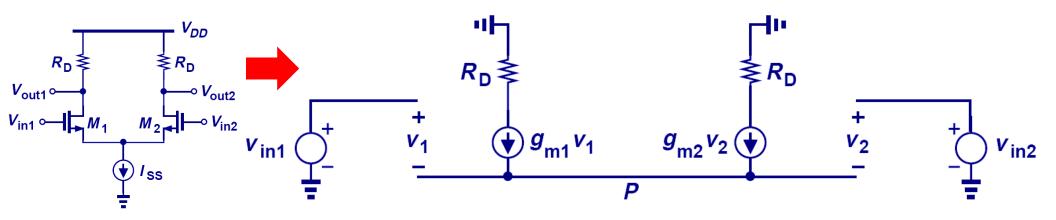
- Since I_{SS} is doubled and W/L is unchanged, the equilibrium overdrive voltage for each transistor must increase by $\sqrt{2}$ to accommodate this change, thus $\Delta V_{in,max}$ increases by $\sqrt{2}$ as well. Moreover, since I_{SS} is doubled, the differential output swing will double.
- ightharpoonup Small signal gain also increases by $\sqrt{2}$
- Linear input range increases, assuming RD value is small enough to keep transistors in saturation

The effects of Doubling W/L



- Since W/L is doubled and the tail current remains unchanged, the equilibrium overdrive voltage will be lowered by $\sqrt{2}~$ to accommodate this change, thus $\Delta V_{in,max}$ will be lowered by $\sqrt{2}~$ as well. Moreover, the differential output swing will remain unchanged since neither I_{SS} nor R_D has changed
- > Small signal gain increases by $\sqrt{2}$
- Linear input range decreases

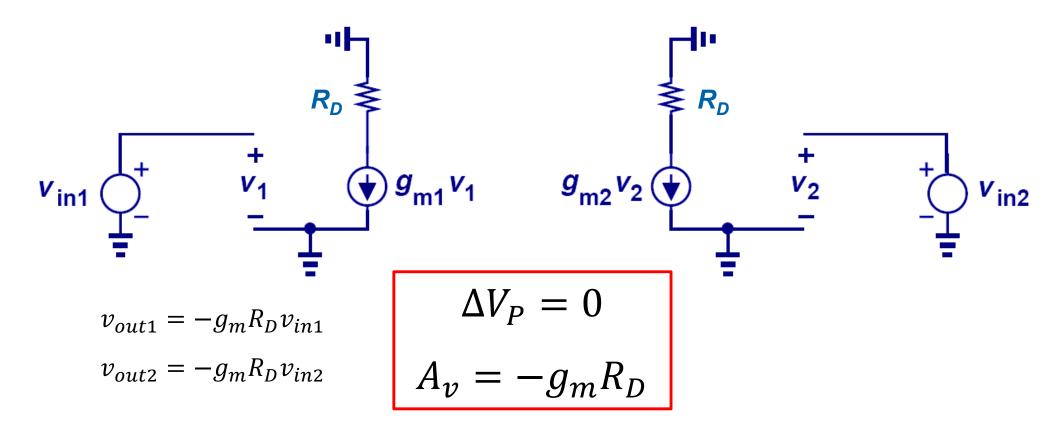
Small-Signal Analysis of MOS Differential Pair



$$\begin{split} I_{D1} - I_{D2} &= \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox}} \frac{W}{L}} - (V_{in1} - V_{in2})^2} \\ &\approx \frac{\mu_n C_{ox}}{2} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{ox}} \frac{W}{L}} = \sqrt{\frac{I_{SS}}{\mu_n C_{ox}} \frac{W}{L} 2 \left(\frac{I_{SS}}{2}\right)} (V_{in1} - V_{in2}) = g_m (V_{in1} - V_{in2}) \end{split}$$

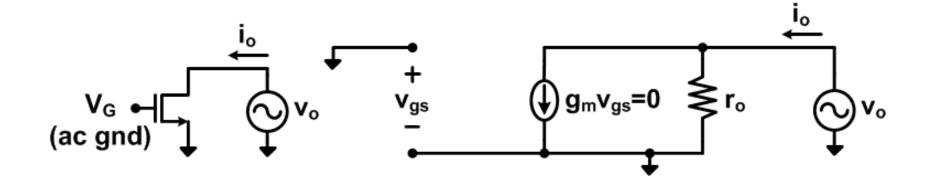
When the input differential signal is small compared to $4l_{SS}/\mu_nC_{ox}(W/L)$, the output differential current is linearly proportional to it, and small-signal model can be applied.

Virtual Ground and Half Circuit



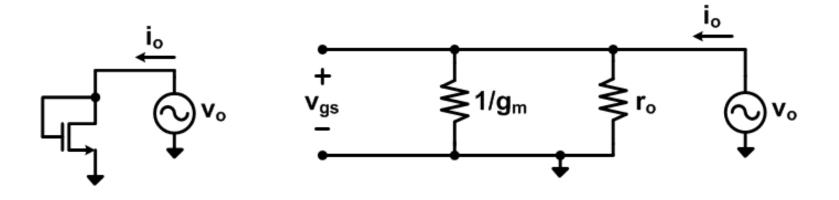
Applying the same analysis as the bipolar case, we will arrive at the same conclusion that node P will not move for small input signals and the concept of half circuit can be used to calculate the gain.

Small-Signal Impedance: Simple Current Source (Finite r_o)



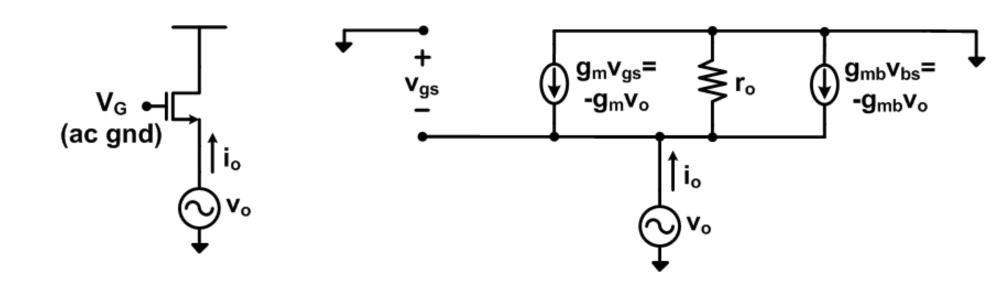
$$r_{out} = \frac{1}{g_o}$$

Small-Signal Impedance: "Diode" Load (Finite r_o)



$$r_{out} = \frac{1}{g_m} \left| r_o = \frac{1}{g_m + g_o} \approx \frac{1}{g_m} \right|$$

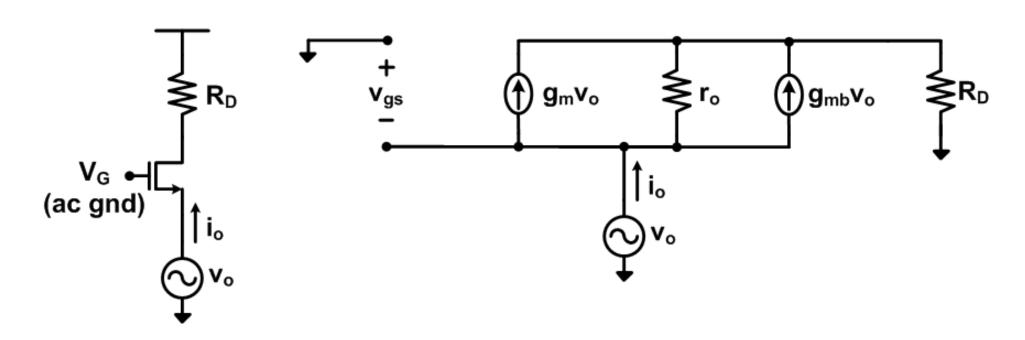
Small-Signal Impedance: Looking Into Source (Finite r_o and g_{mb})



$$i_{o} = (g_{m} + g_{mb})v_{o} + \frac{v_{o}}{r_{o}} = (g_{m} + g_{mb} + g_{o})v_{o}$$

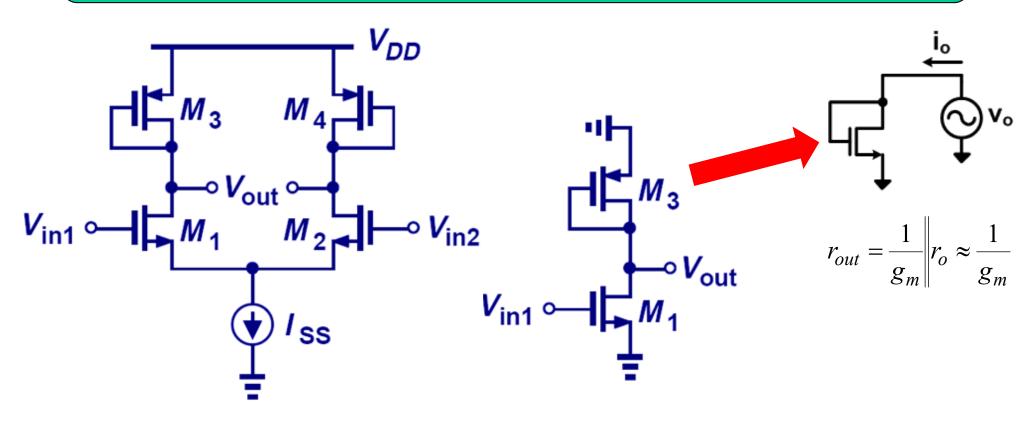
$$r_{out} = \frac{1}{g_{m} + g_{mb} + g_{o}} = \frac{1}{g_{m}} \left\| \frac{1}{g_{mb}} \right\| r_{o} \approx \frac{1}{g_{m}}$$

Small-Signal Impedance: Looking Into Source w/ R_D (Finite r_o and g_{mb})



$$r_{out} = \frac{1}{g_m + g_{mb} + g_o} \left(1 + \frac{R_D}{r_o} \right)$$

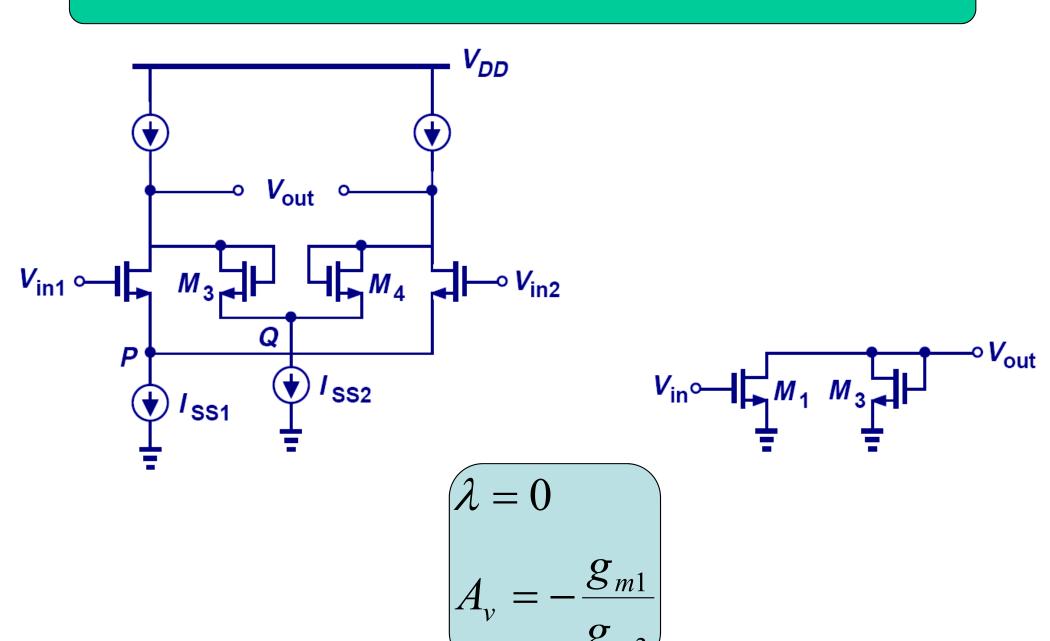
MOS Differential Pair Half Circuit Example I



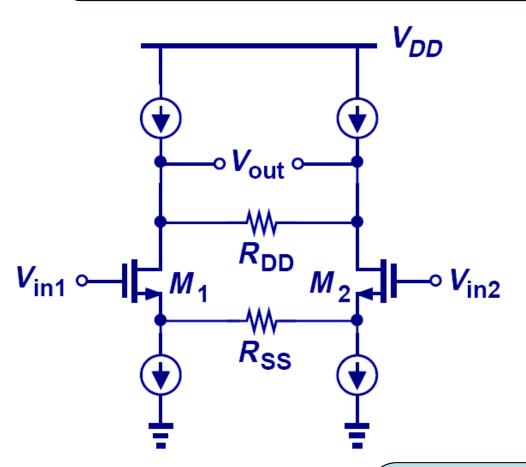
$$\lambda \neq 0$$

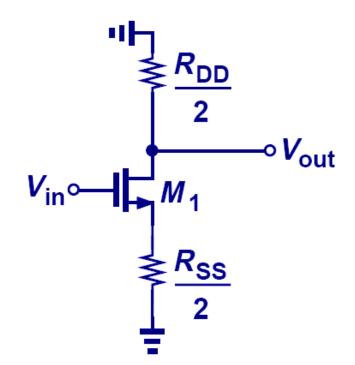
$$A_{v} = -g_{m1} \left(\frac{1}{g_{m3}} \| r_{O3} \| r_{O1} \right) \approx -\frac{g_{m1}}{g_{m3}}$$

MOS Differential Pair Half Circuit Example II



MOS Differential Pair Half Circuit Example III





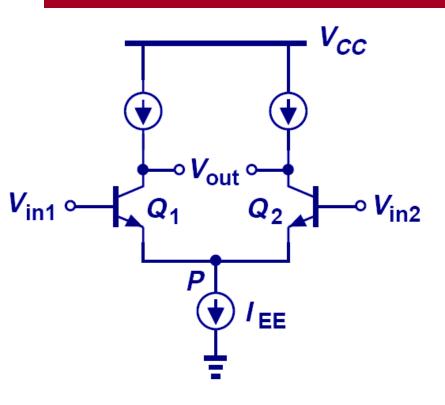
$$(\lambda = 0)$$

$$A_{v} = -\frac{R_{DD}/2}{R_{SS}/2 + 1/g_{m}}$$

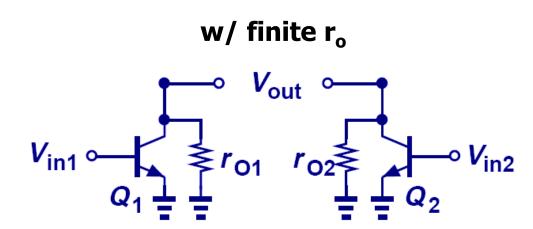
Agenda

- General considerations
- Bipolar differential pair
- MOS differential pair
- Cascode differential amplifiers
- Common-mode rejection
- Differential pair with active load

Maximum Differential Amplifier Gain

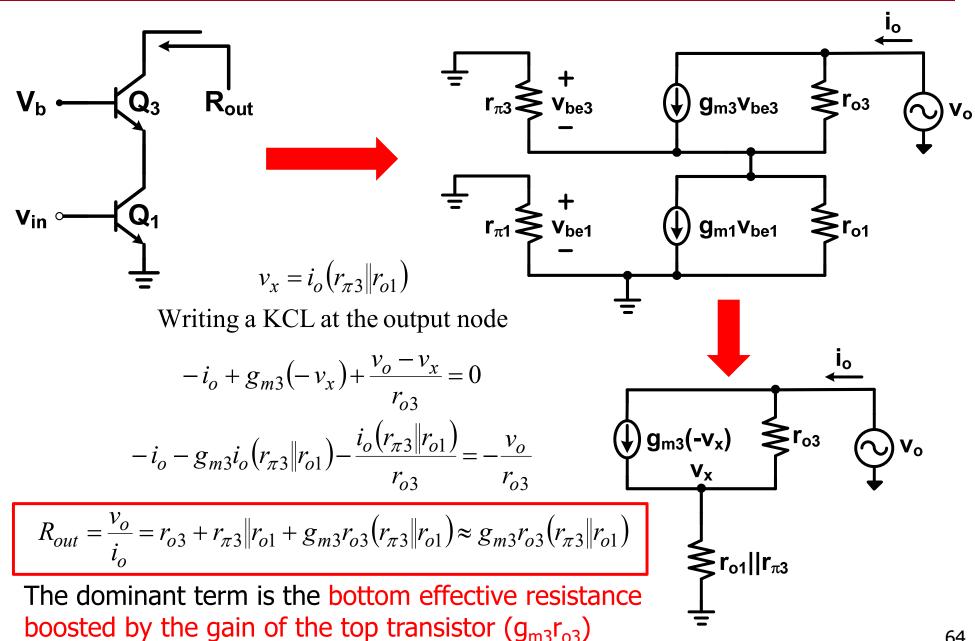


$$\frac{v_{out1} - v_{out2}}{v_{in1} - v_{in2}} = -g_m r_0$$



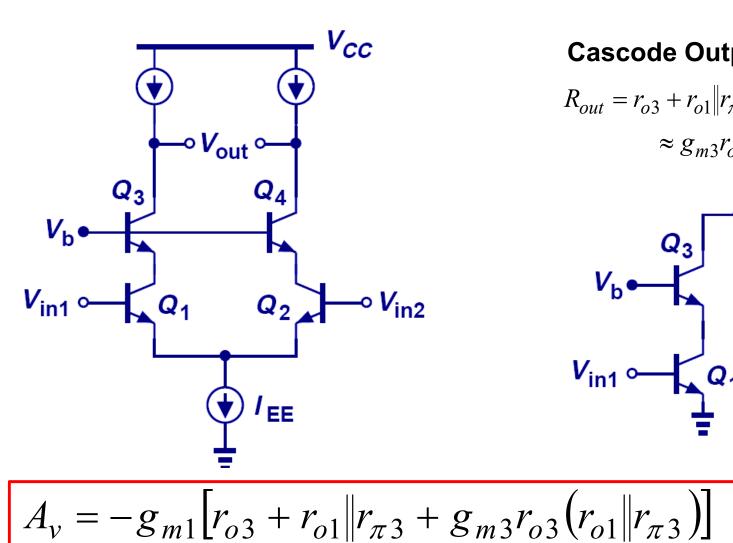
- With ideal current source loads, the differential gain is limited by the intrinsic transistor gain (g_mr_o)
- How to increase the gain further?
 - Use a topology which boosts the output resistance

Bipolar Cascode Topology



64

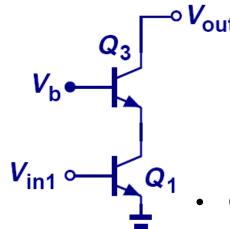
Bipolar Cascode Differential Pair



Cascode Output Resistance

$$R_{out} = r_{o3} + r_{o1} || r_{\pi 3} + g_{m3} r_{o3} (r_{o1} || r_{\pi 3})$$

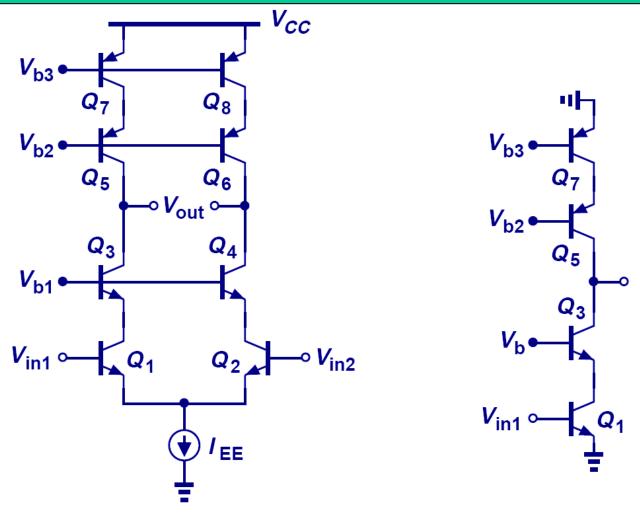
$$\approx g_{m3} r_{o3} (r_{o1} || r_{\pi 3})$$



- Gain is roughly squared relative to the simple differential pair
- Trade-off is reduced output voltage swing range

 $\approx -g_{m1}g_{m3}r_{o3}(r_{o1}||r_{\pi 3})$

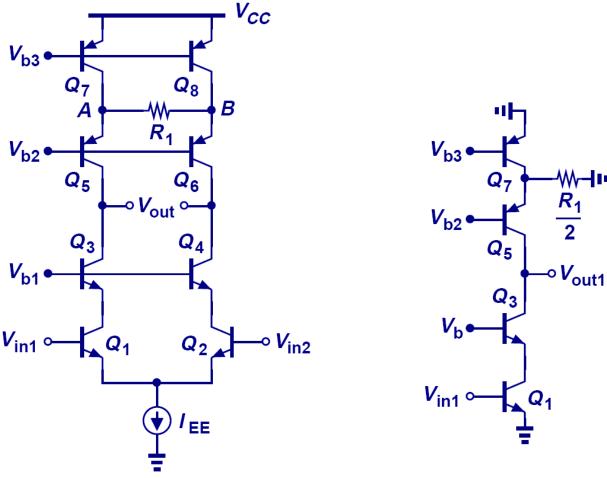
Bipolar Telescopic Cascode



$$A_{v} = -g_{m1} \left[(r_{o3} + r_{o1} \| r_{\pi 3} + g_{m3} r_{o3} (r_{o1} \| r_{\pi 3})) \| (r_{o5} + r_{o7} \| r_{\pi 5} + g_{m5} r_{o5} (r_{o7} \| r_{\pi 5})) \right]$$

$$\approx -g_{m1} \left[(g_{m3} r_{o3} (r_{o1} \| r_{\pi 3})) \| (g_{m5} r_{o5} (r_{o7} \| r_{\pi 5})) \right]$$

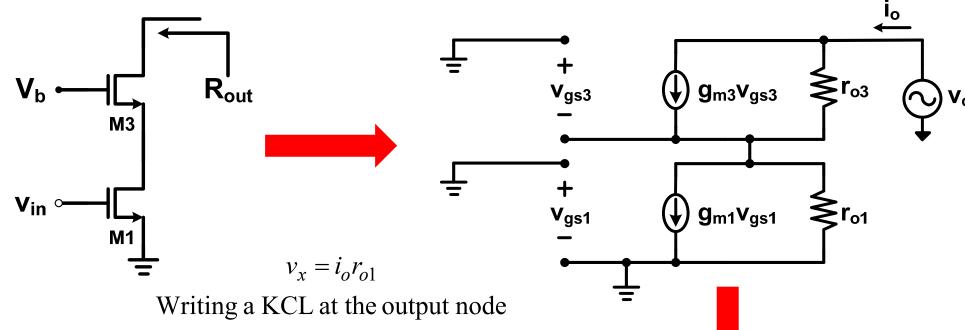
Example: Bipolar Telescopic Parasitic Resistance



$$R_{op} = r_{O5} \left[1 + g_{m5} \left(r_{O7} \parallel r_{\pi 5} \parallel \frac{R_1}{2} \right) \right] + r_{O7} \parallel r_{\pi 5} \parallel \frac{R_1}{2} \approx g_{m5} r_{O5} \left(r_{O7} \parallel r_{\pi 5} \parallel \frac{R_1}{2} \right) \right]$$

$$A_v = -g_{m1} \left[g_{m3} r_{O3} (r_{O1} \parallel r_{\pi 3}) \right] \parallel R_{op}$$

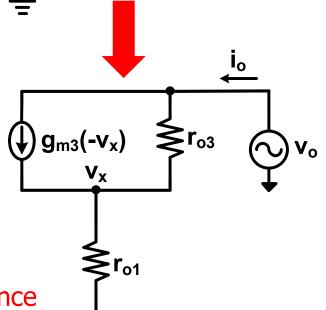
MOS Cascode Topology



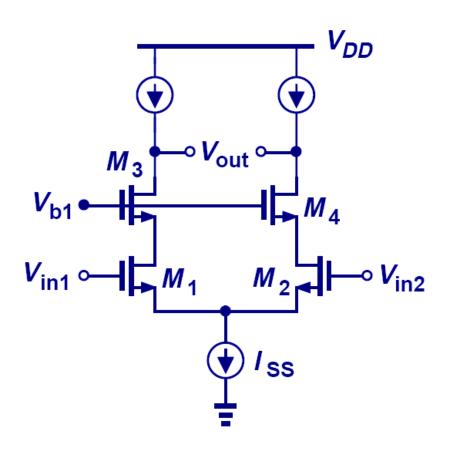
$$-i_o + g_{m3}(-v_x) + \frac{v_o - v_x}{r_{o3}} = 0$$
$$-i_o - g_{m3}i_o r_{o1} - \frac{i_o r_{o1}}{r_{o3}} = -\frac{v_o}{r_{o3}}$$

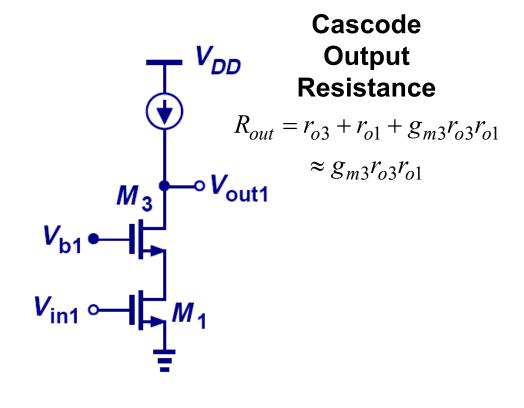
$$R_{out} = \frac{v_o}{i_o} = r_{o3} + r_{o1} + g_{m3}r_{o3}r_{o1} \approx g_{m3}r_{o3}r_{o1}$$

The dominant term is the bottom effective resistance boosted by the gain of the top transistor $(g_{m3}r_{o3})$



MOS Cascode Differential Pair



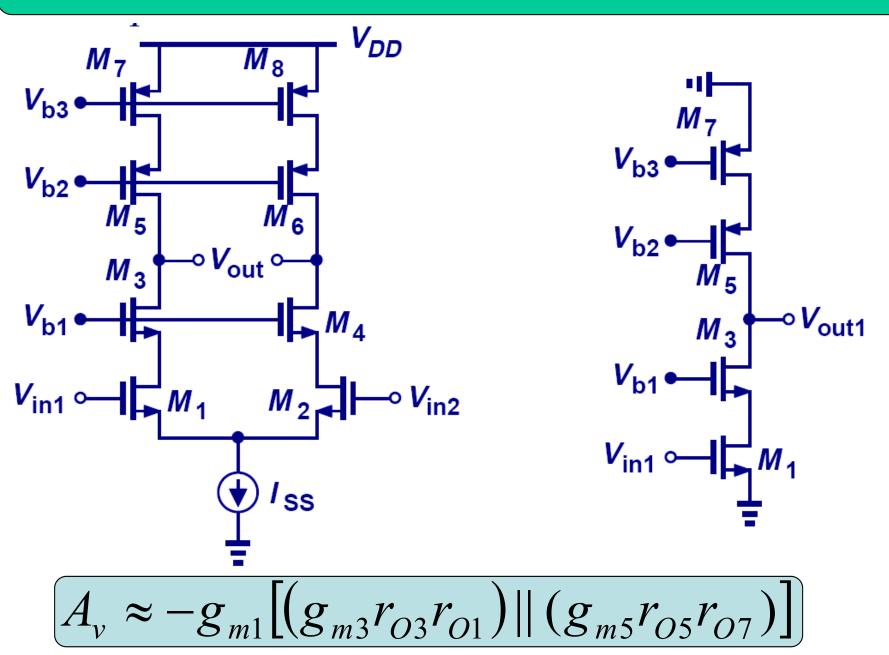


$$A_{v} = -g_{m1}[r_{o3} + r_{o1} + g_{m3}r_{o3}r_{o1}]$$

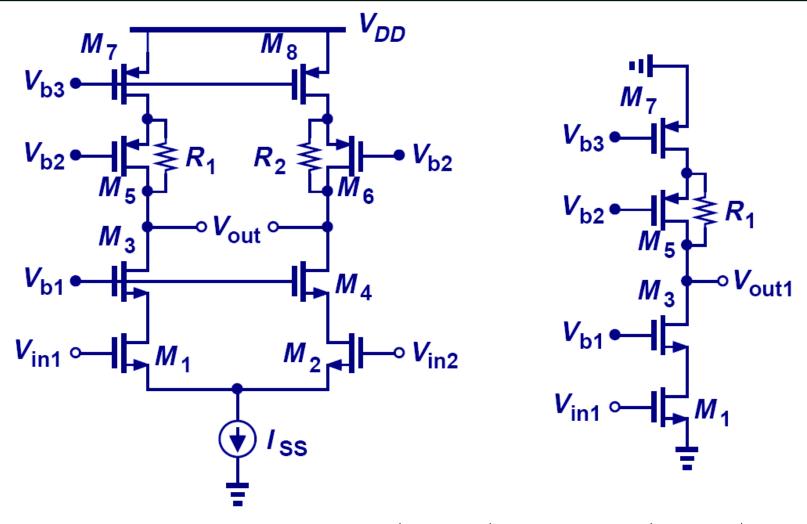
$$\approx -g_{m1}g_{m3}r_{o3}r_{o1}$$

- Gain is roughly squared relative to the simple differential pair
- Trade-off is reduced output voltage swing range

MOS Telescopic Cascode



Example: MOS Telescopic Parasitic Resistance

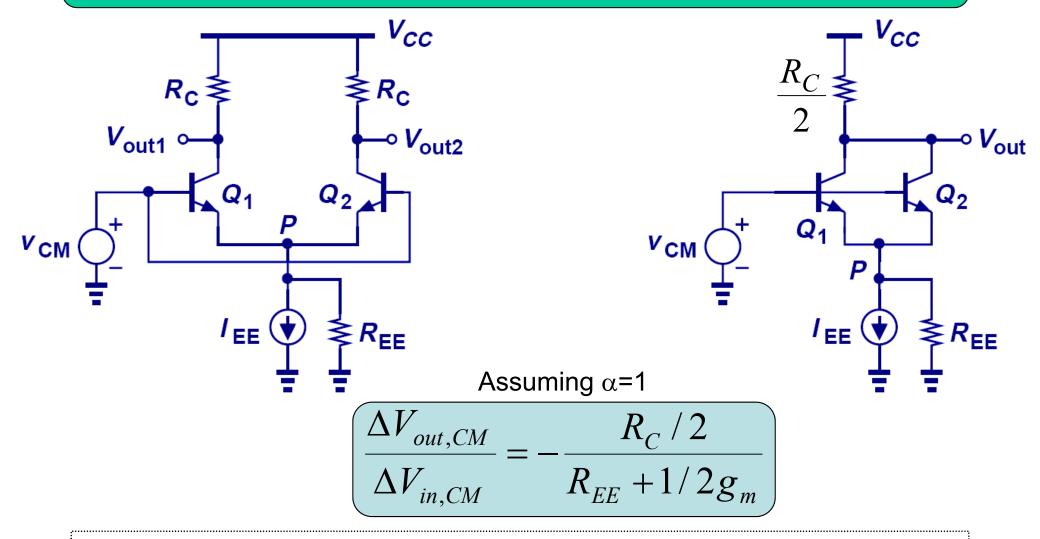


$$R_{op} = r_{o5} \| R_1 + r_{o7} + g_{m5} (r_{o5} \| R_1) r_{o7} \approx g_{m5} (r_{o5} \| R_1) r_{o7}$$
$$A_v \approx -g_{m1} [g_{m3} r_{o3} r_{o1} \| g_{m5} (r_{o5} \| R_1) r_{o7}]$$

Agenda

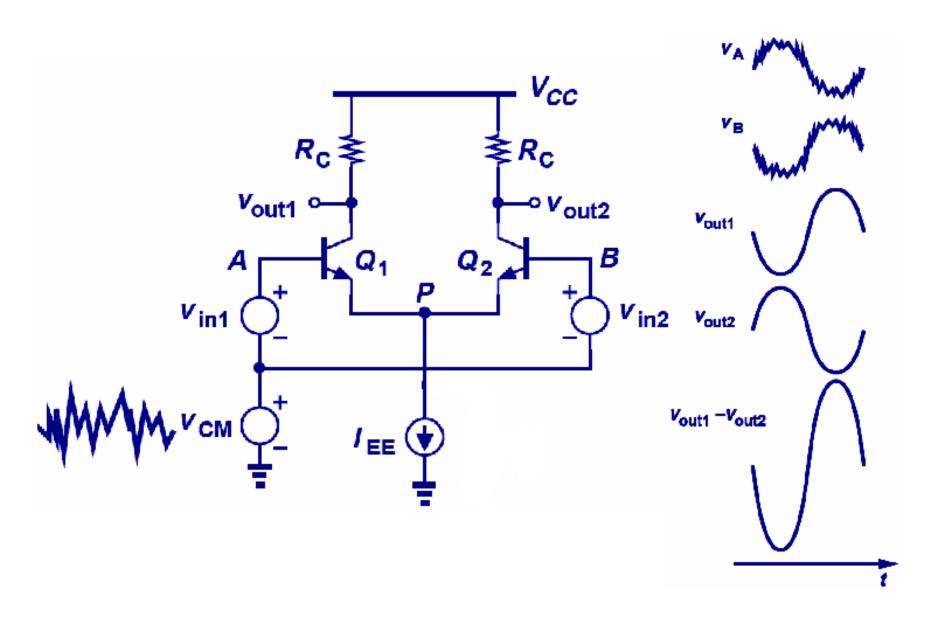
- General considerations
- Bipolar differential pair
- MOS differential pair
- Cascode differential amplifiers
- Common-mode rejection
- Differential pair with active load

Effect of Finite Tail Impedance

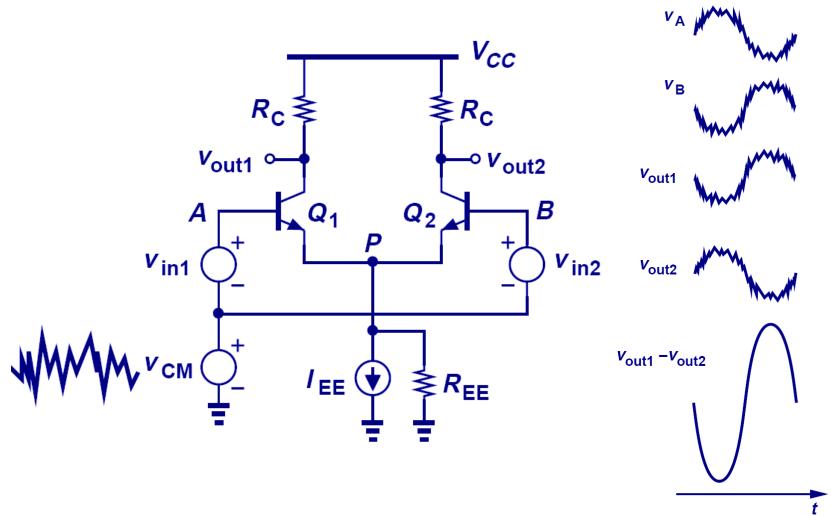


▶ If the tail current source is not ideal, then when a input CM voltage is applied, the currents in Q₁ and Q₂ and hence output CM voltage will change.

Input CM Noise with Ideal Tail Current

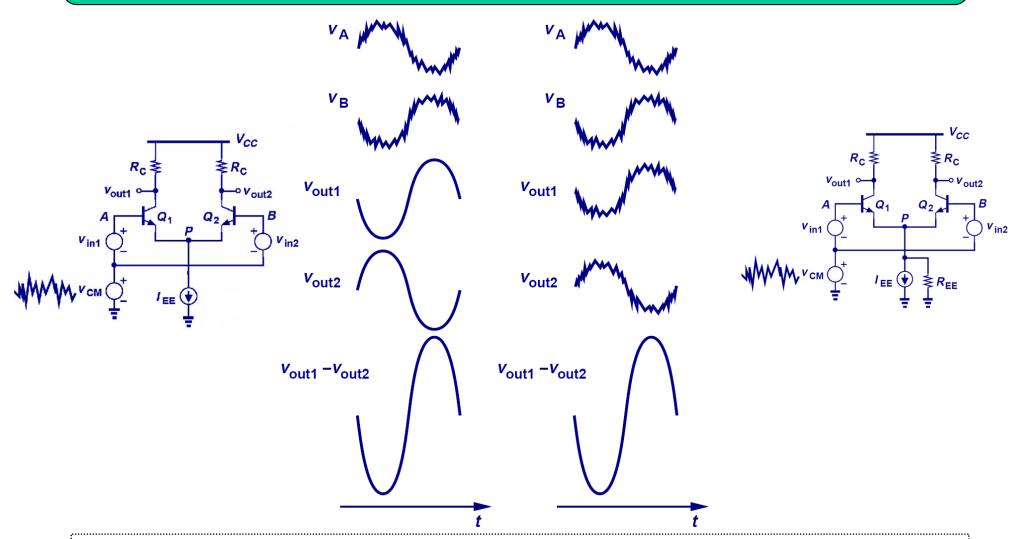


Input CM Noise with Non-ideal Tail Current



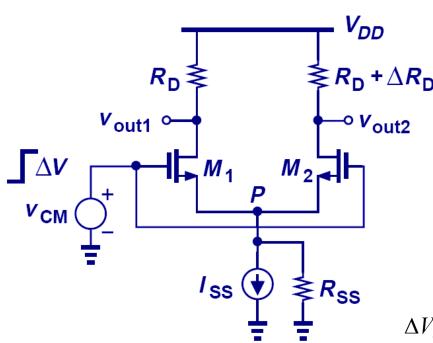
- Common-mode noise is now transferred to the single-ended outputs
- However, output differential signal is still ideally unaffected by commonmode noise

Comparison



As it can be seen, the differential output voltages for both cases are the same. So for small input CM noise, the differential pair is not affected.

CM to DM Conversion, A_{CM-DM}



Assuming high r_o in the diff. pair transistors

$$\Delta I_{D1} = \Delta I_{D2} = \Delta I_D$$
 and $\Delta V_{GS1} = \Delta V_{GS2} = \Delta V_{GS}$

 $R_D + \Delta R_D$ A net current of $2\Delta I_D$ will flow through R_{SS}

$$\Delta V_{CM} = \Delta V_{GS} + 2\Delta I_D R_{SS}$$

$$\Delta V_{CM} = \Delta I_D \left(\frac{1}{g_m} + 2R_{SS} \right)$$

$$\Delta I_D = \frac{\Delta V_{CM}}{\frac{1}{g_m} + 2R_{SS}}$$

$$\Delta V_{out} = \Delta V_{out1} - \Delta V_{out2} = \Delta I_D R_D - \Delta I_D (R_D + \Delta R_D) = -\Delta I_D \Delta R_D$$

If finite tail impedance and asymmetry are both present, then the differential output signal will contain a portion of input common-mode signal.

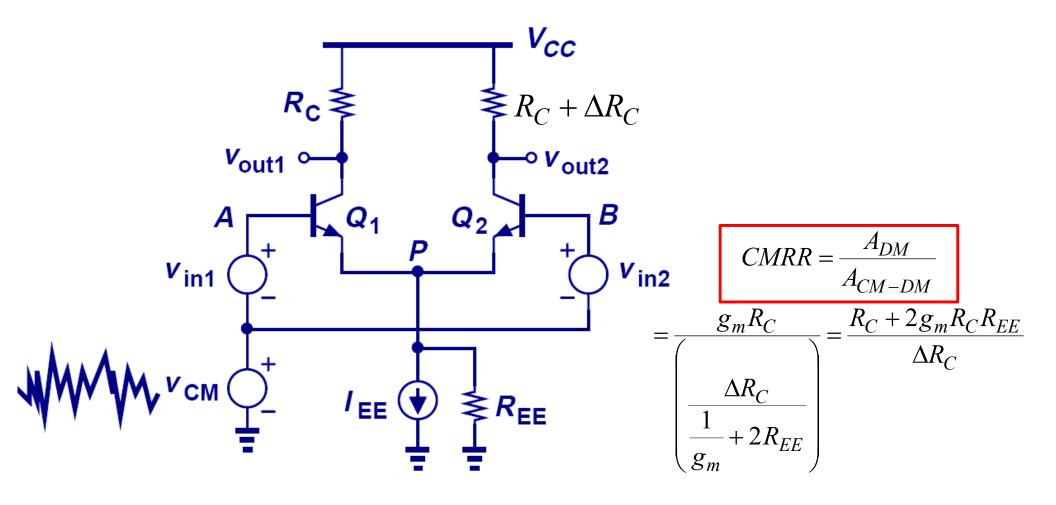
$$\Delta V_{out} = -\frac{\Delta V_{CM}}{\frac{1}{g_m} + 2R_{SS}} \Delta R_D$$

$$\left| \frac{\Delta V_{out}}{\Delta V_{CM}} \right| = \frac{\Delta R_D}{\frac{1}{g_m} + 2R_{SS}}$$

Example: A_{CM-DM}

$$V_{\text{CM}} = \frac{A_{C} + \Delta R_{\text{C}}}{A_{CM-DM}} = \frac{\Delta V_{out}}{\Delta V_{CM}} = \frac{\Delta R_{C}}{\frac{1}{g_{m1}} + 2R_{out3}} = \frac{\Delta R_{C}}{\frac{1}{g_{m1}} + 2R_{out3}} = \frac{\Delta R_{C}}{\frac{1}{g_{m1}} + 2[r_{o3} + R_{1} || r_{\pi 3} + g_{m3}r_{o3}(R_{1} || r_{\pi 3})]}$$

CMRR

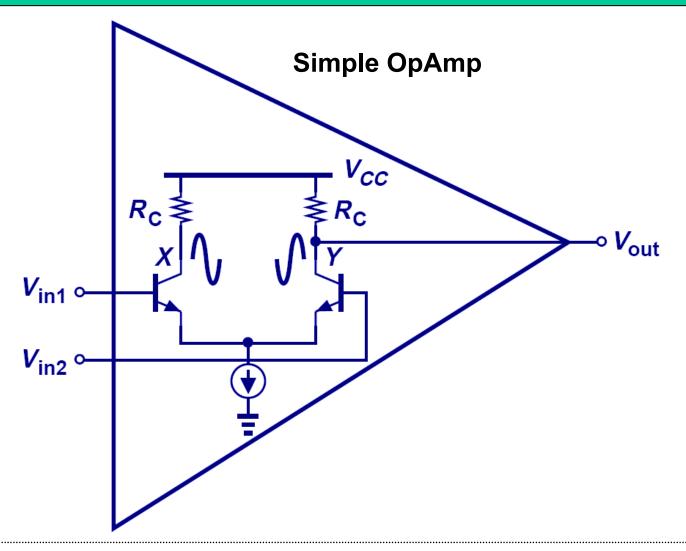


CMRR defines the ratio of wanted amplified differential input signal to unwanted converted input common-mode noise that appears at the output.

Agenda

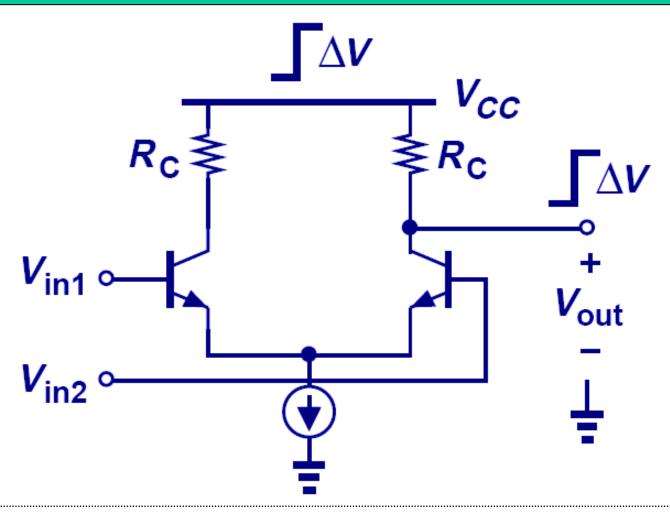
- General considerations
- Bipolar differential pair
- MOS differential pair
- Cascode differential amplifiers
- Common-mode rejection
- Differential pair with active load

Differential to Single-ended Conversion



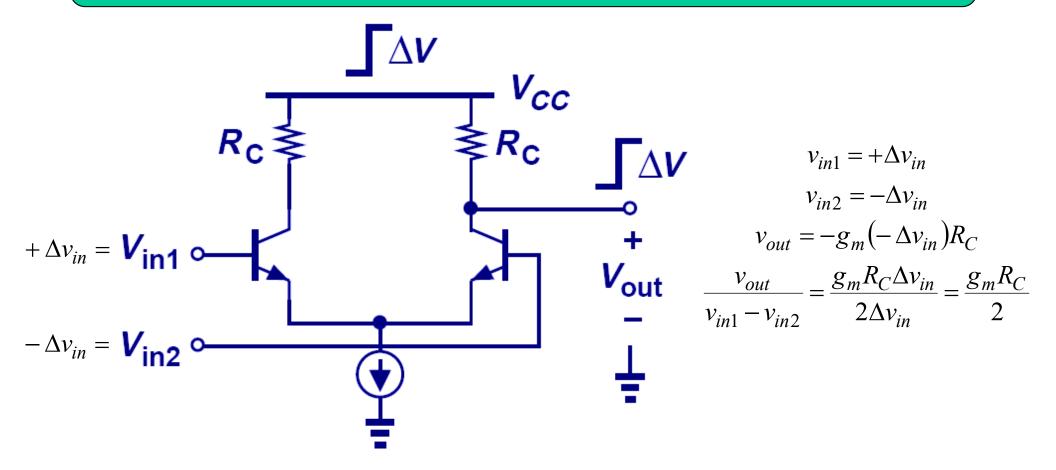
Many circuits require a differential to single-ended conversion, however, the above topology is not very good.

Supply Noise Corruption



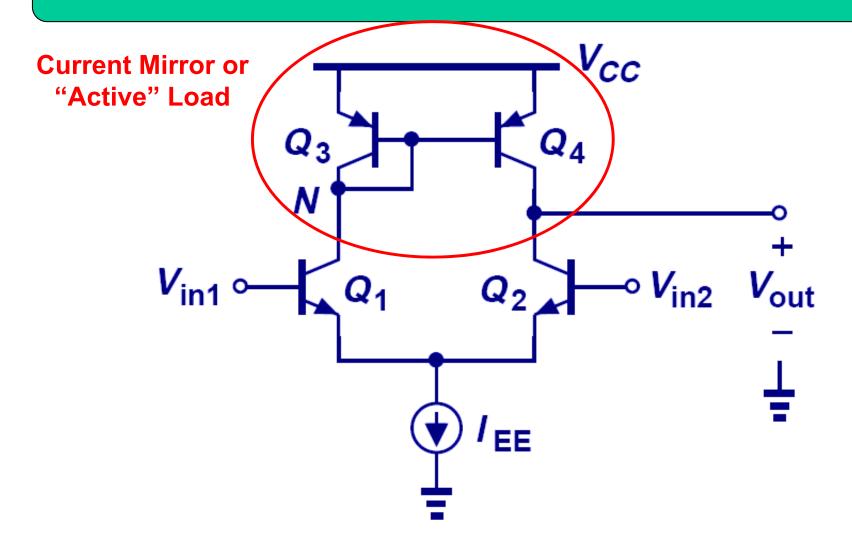
The most critical drawback of this topology is supply noise corruption, since no common-mode cancellation mechanism exists. Also, we lose half of the signal.

Gain Reduction



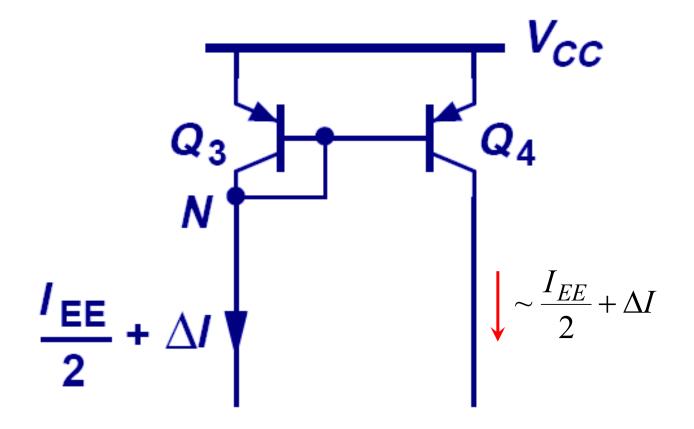
The most critical drawback of this topology is supply noise corruption, since no common-mode cancellation mechanism exists. Also, we lose half of the signal.

Better Alternative



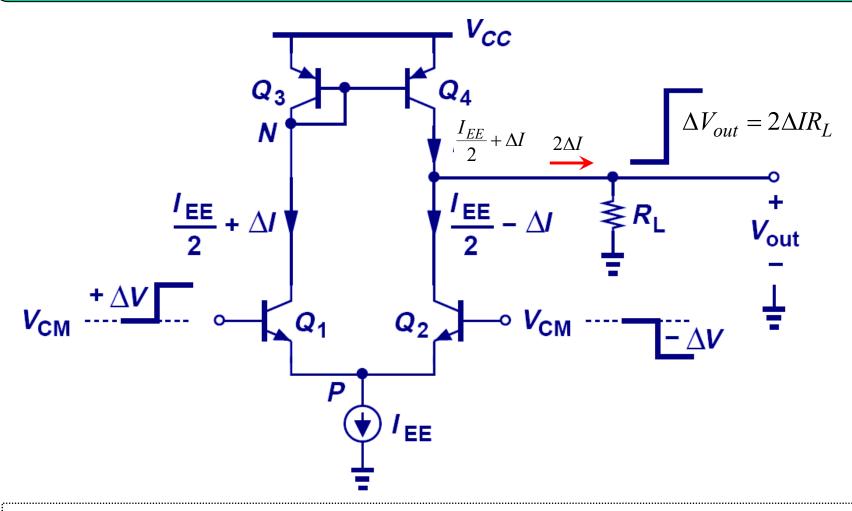
> This circuit topology performs differential to single-ended conversion with no loss of gain.

Active Load



- With current mirror used as the load, the signal current produced by the Q_1 can be replicated onto Q_4 .
- ➤ This type of load is different from the conventional "static load" and is known as an "active load".

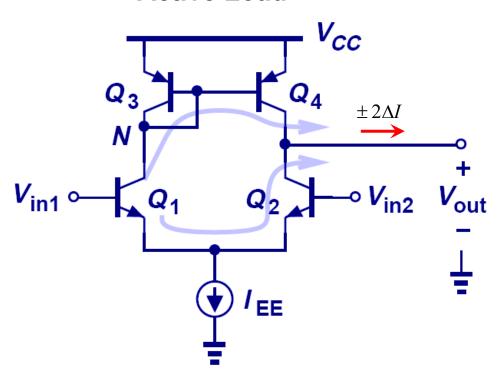
Differential Pair with Active Load



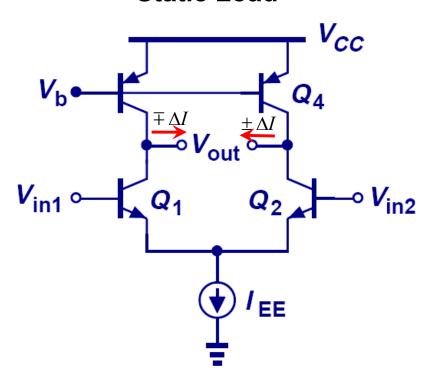
The input differential pair decreases the current drawn from R_L by ΔI and the active load pushes an extra ΔI into R_L by current mirror action; these effects enhance each other.

Active Load vs. Static Load

Active Load

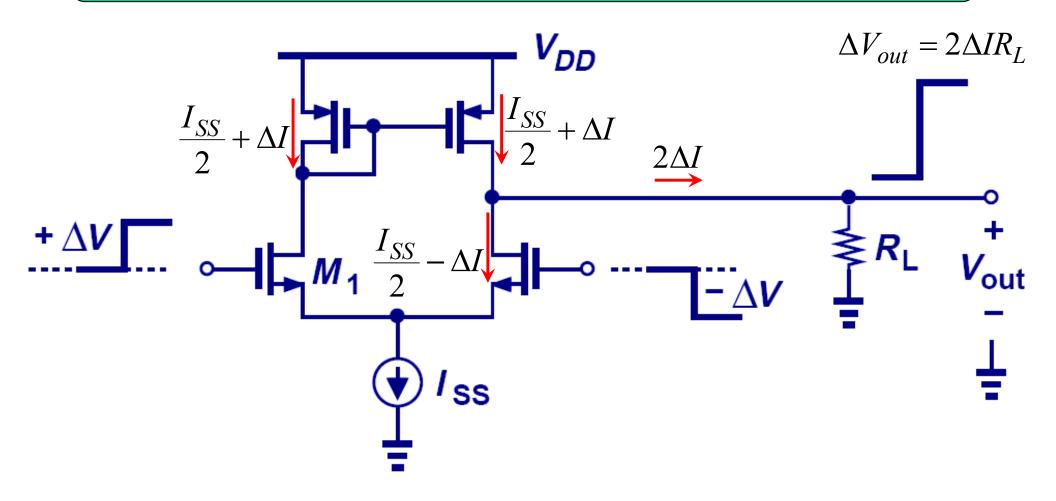


Static Load



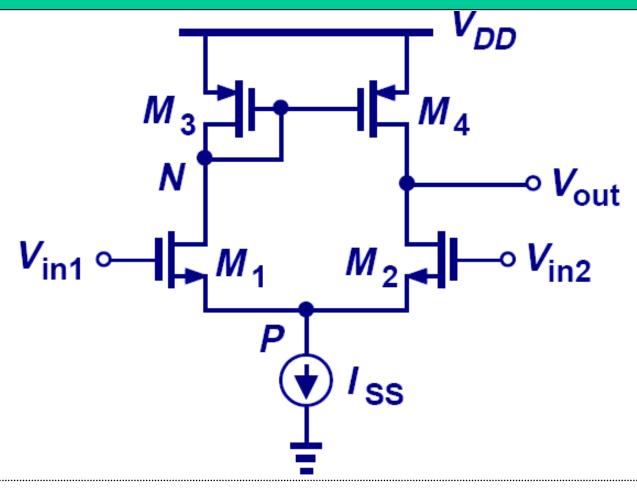
➤ The load on the left responds to the input signal and enhances the single-ended output, whereas the load on the right does not.

MOS Differential Pair with Active Load



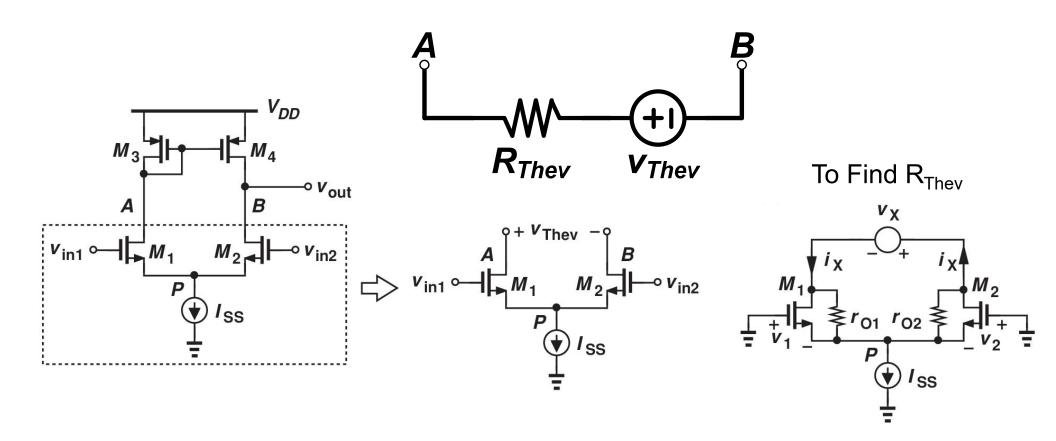
Similar to its bipolar counterpart, MOS differential pair can also use active load to enhance its single-ended output.

Asymmetric Differential Pair



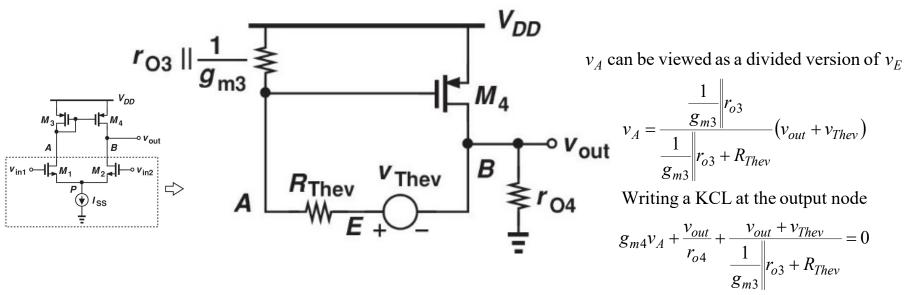
▶ Because of the vastly different resistance magnitude at the drains of M₁ and M₂, the voltage swings at these two nodes are different and therefore node P cannot be viewed as a virtual ground.

Thevenin Equivalent of the Input Pair



$$\begin{pmatrix}
v_{Thev} = -g_{mN} r_{oN} (v_{in1} - v_{in2}) \\
R_{Thev} = 2r_{oN}
\end{pmatrix}$$

Simplified Differential Pair with Active Load



$$v_{A} = \frac{\frac{1}{g_{m3}} \left\| r_{o3} - \left(v_{out} + v_{Thev} \right) \right\|_{g_{m3}}}{\frac{1}{g_{m3}} \left\| r_{o3} + R_{Thev} \right\|_{g_{m3}}}$$

$$g_{m4}v_A + \frac{v_{out}}{r_{o4}} + \frac{v_{out} + v_{Thev}}{\frac{1}{g_{m3}}} = 0$$

$$\left(g_{m4} \frac{\frac{1}{g_{m3}} \Big\| r_{o3}}{\frac{1}{g_{m3}} \Big\| r_{o3} + R_{Thev}} + \frac{1}{\frac{1}{g_{m3}} \Big\| r_{o3} + R_{Thev}} \right) (v_{out} + v_{Thev}) + \frac{v_{out}}{r_{o4}} = 0$$

since $1/g_{m3} \ll r_{o3}$ and $1/g_{m3} \ll R_{Thev}$ and $g_{m3} = g_{m4} = g_{mP}$ and $r_{o3} = r_{o4} = r_{oP}$

$$\frac{v_{out}}{v_{in1} - v_{in2}} = g_{mN}(r_{ON} || r_{OP})$$

$$\frac{\frac{2}{R_{Thev}}(v_{out} + v_{Thev}) + \frac{v_{out}}{r_{oP}} = 0$$

$$\frac{v_{out}}{v_{in1} - v_{in2}} = g_{mN}(r_{oN} || r_{oP})$$

$$\frac{2}{R_{Thev}} (v_{out} + v_{Thev}) + \frac{v_{out}}{r_{oP}} = 0$$

$$\frac{v_{out}}{v_{in1} - v_{in2}} = g_{mN} (r_{oN} || r_{oP})$$

Next Time

- Cascode Stages & Current Mirrors
 - Razavi Chapter 9