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Announcements
• Homework 7 due Apr 21

• Reading
• Razavi Chapter 12
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Agenda
• Feedback Overview
• Feedback Properties
• Amplifier Types
• Sense and Return Techniques
• Feedback Polarity
• Feedback Topologies
• Effect of Nonideal I/O Impedances
• Stability
• Two-Stage Miller OTA
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Negative Feedback System

 A negative feedback system consists of four components:  
1) feedforward system, 2) sense mechanism, 3) feedback 
network, and 4) comparison mechanism.
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Close-loop Transfer Function
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Feedback Example

 A1 is the feedforward network, R1 and R2 provide the 
sensing and feedback capabilities, and comparison is 
provided by differential input of A1.
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Comparison Error

 As A1K increases, the error between the input and fed back 
signal decreases.  Or the fed back signal approaches a 
good replica of the input.
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Comparison Error 

• What happens to the closed-loop and error 
transfer function as A1  ?
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Loop Gain

 When the input is grounded, and the loop is broken at an 
arbitrary location, the loop gain is measured to be -KA1.
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Example:  Alternative Loop Gain Measurement 

testN VKAV 1
• Result should be the same wherever we break the loop as 

long as we analyze the loop in the proper signal direction
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Incorrect Calculation of Loop Gain

 Signal naturally flows from the input to the output of a 
feedforward/feedback system.  If we apply the input the 
other way around, the “output” signal we get is not a result 
of the loop gain, but due to poor isolation. 



Agenda
• Feedback Overview
• Feedback Properties
• Amplifier Types
• Sense and Return Techniques
• Feedback Polarity
• Feedback Topologies
• Effect of Nonideal I/O Impedances
• Stability
• Two-Stage Miller OTA
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Gain Desensitization

 A large loop gain is needed to create a precise gain, one that 
does not depend on A1, which can vary by ±20% with process 
and temperature variations.

 Can we make a feedback factor K with low variations?
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Ratio of Resistors

 When two resistors are composed of the same unit resistor, 
their ratio is very accurate.  Since when they vary, they will 
vary together and maintain a constant ratio.

 Consider the previous circuit
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Merits of Negative Feedback

• Bandwidth enhancement

• Modification of I/O impedances
• Reduced sensitivity to load impedance

• Linearization
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Bandwidth Enhancement

 Although negative feedback lowers the gain by (1+KA0), it 
also extends the bandwidth by the same amount.
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Bandwidth Extension Example

 As the loop gain increases, we can see the decrease of the 
overall gain and the extension of the bandwidth.
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Example:  Open Loop Parameters 
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Example:  Closed Loop Voltage Gain
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Example:  Closed Loop I/O Impedance –
Input Resistance 
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Example:  Closed Loop I/O Impedance –
Output Resistance 
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Example:  Load Desensitization 
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Linearization

• Significant distortion 
with large input signal
• A2 << A1 


























22

2
2

11

1
1

111
1

at Gain 

111
1

at Gain 

KAKKA
Ax

KAKKA
Ax

• If KA1 and KA2 remain large, 
overall gain is ~ 1/K



Agenda
• Feedback Overview
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• Stability
• Two-Stage Miller OTA
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Four Types of Amplifiers

Voltage Amplifier Transimpedance Amplifier

Transconductance Amplifier Current Amplifier
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Ideal Models of the Four Amplifier Types 

Voltage Amplifier Transimpedance Amplifier

Transconductance Amplifier Current Amplifier
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Realistic Models of the Four Amplifier Types
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Examples of the Four Amplifier Types

Voltage Amplifier Transimpedance Amplifier

Transconductance Amplifier
Current Amplifier/Buffer

Dm RgA 10 
DRR 0

1mm gG  1IA

0
 Assuming





Agenda
• Feedback Overview
• Feedback Properties
• Amplifier Types
• Sense and Return Techniques
• Feedback Polarity
• Feedback Topologies
• Effect of Nonideal I/O Impedances
• Stability
• Two-Stage Miller OTA

29



CH 12 Feedback 30

Sensing a Voltage 

 In order to sense a voltage across two terminals, a 
voltmeter with ideally infinite impedance is used.



CH 12 Feedback 31

Sensing and Returning a Voltage 

 Similarly, for a feedback network to correctly sense the 
output voltage, its input impedance needs to be large.

 R1 and R2 also provide a mean to return the voltage.

 21 RR

Feedback
Network



CH 12 Feedback 32

Sensing a Current

 A current is measured by inserting a current meter with 
ideally zero impedance in series with the conduction path.  

 The current meter is composed of a small resistance r in 
parallel with a voltmeter. 
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Sensing and Returning a Current

 Similarly for a feedback network to correctly sense the 
current, its input impedance has to be small.

 RS has to be small so that its voltage drop will not change Iout.

0SR

Feedback
Network
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Addition (Subtraction) of Two Voltage Sources

 In order to add or subtract two voltage sources, we place 
them in series.  So the feedback network is placed in series 
with the input source. 

Feedback
Network
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Practical Circuits to Subtract Two Voltage Sources

 Although not directly in series, Vin and VF are being 
subtracted since the resultant currents, differential and 
single-ended, are proportional to the difference of Vin and VF. 
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Addition (Subtraction) of Two Current Sources

 In order to add two current sources, we place them in 
parallel.  So the feedback network is placed in parallel with 
the input signal.  

Feedback
Network

Fine iii 
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Practical Circuits to Subtract Two Current Sources

 Since M1 and RF are in parallel with the input current source, 
their respective currents are being subtracted.  Note, RF has 
to be large enough to approximate a current source. 

Fine iii 



CH 12 Feedback 38

Example:  Sense a Voltage and Return a Voltage

 R1 and R2 sense and return the output voltage to 
feedforward network consisting of M1- M4.

 M1 and M2 also act as a voltage subtractor.
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Example:  Feedback Factor 
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Input Impedance of an Ideal Feedback Network

 To sense a voltage, the input impedance of an ideal 
feedback network must be infinite.

 To sense a current, the input impedance of an ideal 
feedback network must be zero. 
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Output Impedance of an Ideal Feedback Network

 To return a voltage, the output impedance of an ideal 
feedback network must be zero.

 To return a current, the output impedance of an ideal 
feedback network must be infinite. 
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Determining the Polarity of Feedback

 1)   Assume the input goes 
either up or down.

 2)  Follow the signal through 
the loop.

 3)  Determine whether the 
returned quantity enhances or 
opposes the original change.
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Polarity of Feedback Example I

inV  21 , DD II  xout VV ,  12 , DD II

Negative Feedback
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Polarity of Feedback Example II

inV  AD VI ,1  xout VV ,  AD VI ,1

Negative Feedback
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Polarity of Feedback Example III

inI  XD VI ,1  2, Dout IV  XD VI ,1

Positive Feedback

• If we are trying to build a linear amplifier, positive feedback is bad
• Circuit can latch up or oscillate
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Voltage-Voltage Feedback

• A voltage amplifier requires sensing of the output voltage 
to produce a feedback voltage

• Output voltage is sensed in parallel and feedback voltage 
applied in series with the input
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Example:  Voltage-Voltage Feedback 
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Input Impedance of a V-V Feedback 

 A better input voltage sensor, as the input impedance 
increases by 1+A0K 
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Example:  V-V Feedback Input Impedance 

 




















Dm
min

in
closedin

DDm

m
openin

Rg
RR

R
gI

VR

RR
RK

RRRRgA
g

R

21

2
,

21

2

210

,

11

 Assuming   

1

Breaking 
Feedback



CH 12 Feedback 52

Output Impedance of a V-V Feedback

 A better output voltage source, as Rout has been reduced by 
(1+A0K)-1  
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Example:  V-V Feedback Output Impedance 
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Voltage-Current Feedback

• A transimpedance amplifier requires sensing of the output 
voltage to produce a feedback current

• Output voltage is sensed in parallel and feedback current 
applied in parallel with the input
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Example:  Voltage-Current Feedback 
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Input Impedance of a V-C Feedback

 A better input current sensor, as Rin has been reduced by 
(1+KR0)-1   
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Example:  V-C Feedback Input Impedance 
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Output Impedance of a V-C Feedback

 A better output voltage source, as Rout has been reduced by 
(1+KR0)-1   

KR
R

I
V out

X

X

01 


AV

out

XX

out

AX
X

XFA

R
RKVV

R
VVI

RKVRIV

0

00

currentfeedback  small  theNeglecting









XF KVI 



CH 12 Feedback 59

Example:  V-C Feedback Output Impedance 
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Current-Voltage Feedback

• A transconductance amplifier requires sensing of the 
output current to produce a feedback voltage

• Output current is sensed in series and feedback voltage 
applied in series with the input
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Example:  Current-Voltage Feedback 
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Input Impedance of a C-V Feedback

 A better input voltage sensor, as Rin increases by 1+KGm
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Output Impedance of a C-V Feedback 

 A better output current source, as Rout increases by 1+KGm
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Laser

Example:  Current-Voltage Feedback 
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Current-Current Feedback

• A current amplifier requires sensing of the output current 
to produce a feedback current

• Output current is sensed in series and feedback current 
applied in parallel with the input

 AAI
IK
out

F    

   

I

I

in

out

outinIFinIout

KA
A

I
I

KIIAIIAI






1



CH 12 Feedback 66

Input Impedance of C-C Feedback

 A better input current sensor, as Rin decreases by (1+KAI)-1  
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Output Impedance of C-C Feedback

 A better output current source, as Rout increases by (1+KAI)
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Example:  Test of Negative Feedback 

inI  outD IV ,1  FP IV ,  outD IV ,1

Negative Feedback

Laser
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Example:  C-C Negative Feedback  

)]/(1[|
)/(1

1.1|

)/(1
|

22

21

2

2

FDmOclosedout

FMDmm
closedin

FMDm

Dm
closedI

RRRgrR
RRRgg

R

RRRg
RgA

M










Laser

 

F

M

MF

M

MF

mDopenI

R
R

RR
RK

RR

gRA










 Assuming
2,

Rout expression 
assumes that 
RM is small



Agenda
• Feedback Overview
• Feedback Properties
• Amplifier Types
• Sense and Return Techniques
• Feedback Polarity
• Feedback Topologies
• Effect of Nonideal I/O Impedances
• Stability
• Two-Stage Miller OTA
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Feedback Network Loading
• In the previous examples, we made a lot of 

simplifying assumptions that neglect the 
loading the feedback network has on the 
amplifiers I/O ports

• However, the finite feedback network 
impedance may alter the overall circuit’s 
performance

• In order to include the feedback network 
loading effects on the I/O impedances, the 
following methodology can be employed

71



Feedback Analysis Methodology 
with I/O Loading
1. Identify the forward amplifier
2. Identify the feedback network
3. Break the feedback network correctly
4. Calculate the open-loop parameters
5. Determine the feedback factor correctly
6. Calculate the closed-loop parameters

72
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How to Break a Loop

 The correct way of breaking a loop is such that the loop 
does not know it has been broken.  Therefore, we need to 
present the feedback network to both the input and the 
output of the feedforward amplifier.
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Rules for Breaking the Loop of Amplifier Types 

• Sense duplicate output is loaded with the ideal input 
impedance of the forward amplifier

• Return duplicate input is set with the ideal output 
impedance of the forward amplifier
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Intuitive Understanding of these Rules

 Since ideally, the input of the feedback network sees zero 
impedance (Zout of an ideal voltage source), the return 
replicate needs to be grounded.  Similarly, the output of the 
feedback network sees an infinite impedance (Zin of an ideal 
voltage sensor), the sense replicate needs to be open.

 Similar ideas apply to the other types.

Voltage-Voltage Feedback
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Rules for Calculating Feedback Factor

• Voltage feedback: feedback network output is opened
• Current feedback: feedback network output is shorted

Voltage Amplifier Transimpedance Amplifier

Transconductance AmplifierCurrent Amplifier
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Intuitive Understanding of these Rules

 Since the feedback senses voltage, the input of the 
feedback is a voltage source.  Moreover, since the return 
quantity is also voltage, the output of the feedback is left 
open (a short means the output is always zero).

 Similar ideas apply to the other types.

Voltage-Voltage Feedback
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Breaking the Loop Example I
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Feedback Factor Example I
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Breaking the Loop Example II
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Feedback Factor Example II
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Breaking the Loop Example IV
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Feedback Factor Example IV
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Breaking the Loop Example V 
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For a current output with feedback, the 
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with the test stimulus in series
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Breaking the Loop Example VI 
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Feedback Factor Example VI
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Breaking the Loop Example VII
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Feedback Factor Example VII
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Breaking the Loop Example VIII
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Feedback Factor Example VIII
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• Stability
• Two-Stage Miller OTA
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Bode Plot Algorithm - Phase
1. Calculate low frequency value of Phase(H(j))

a. An negative sign introduces -180 phase shift
b. A DC pole introduces -90 phase shift
c. A DC zero introduces +90 phase shift

2. Where are the poles and zeros?
a. For negative poles:  1 dec. before the pole freq., the phase will 

decrease with a slope of -45/dec. until 1 dec. after the pole 
freq., for a total phase shift of -90

b. For negative zeros:  1 dec. before the zero freq., the phase will 
increase with a slope of +45/dec. until 1 dec. after the zero 
freq., for a total phase shift of +90

c. Note, if you have positive poles or zeros, the phase change 
polarity is inverted

3. Note, the above algorithm is only valid for real poles 
and zeros.  93
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Example:  Phase Response 

 Assuming general negative (left-half plane) poles and zeros, 
the phase of H(jω) starts to drop at 1/10 of the pole, hits -45o

at the pole, and approaches -90o at 10 times the pole.

zppz  100 and 100 Assuming 21 

(dB)
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Example:  Three-Pole System 

 For a three-pole system, a finite frequency produces a 
phase of -180o, which means an input signal that operates 
at this frequency will have its output inverted.  

(dB)
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Instability of a Negative Feedback Loop

 Substitute jω for s.  If for a certain ω1, KH(jω1) reaches 
-1, the closed loop gain becomes infinite. This implies for a 
very small input signal (or inherent system noise) at ω1, the 
output can be very large.  Thus the system becomes unstable. 




 


 

0
)()( then ,1)(  If

)(1
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1
11






jHj
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“Barkhausen’s Criteria” for Oscillation

180)(
1|)(|

1

1






jKH
jKH

• We want our linear amplifiers to be stable (not oscillate)
• Thus, we don’t want this criteria to be satisfied
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Time Evolution of Instability
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Oscillation Example

 This system oscillates, since there’s a finite frequency at 
which the phase is -180o and the gain is greater than unity.  
In fact, this system exceeds the minimum oscillation 
requirement.

(dB)
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Condition for Oscillation

Un-Stable
1  ,180When  KHKH 

Stable
1  ,180When  KHKH 

(dB) (dB)



PXGX    :StabilityFor 
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Condition for Stability

 ωPX, (“phase crossover”), is the frequency at which KH=-180o

(2 above)
 ωGX, (“gain crossover”), is the frequency where |KH|=1 ( above)

(dB)
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Stability Example I
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Stability Example II
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Un-Stable vs. Marginally Stable vs. Stable

Marginally Stable StableUn-Stable
• While the middle system is “Marginally Stable”, it has a poor 

transient step response, in that it displays large ringing which 
takes a long time to die out

PXGX  
closebut 

,PXGX  

lysufficient
PXGX  
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Phase Margin
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Frequency Compensation

 Phase margin can be improved by moving ωGX closer to 
origin while maintaining ωPX unchanged.

2p

3p

stability allows and lower  a causes
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Frequency Compensation Example

 Ccomp is added to lower the dominant pole so that ωGX 
occurs at a lower frequency than before, which means 
phase margin increases.
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Frequency Compensation Procedure

 1) We identify a PM, then -180o+PM gives us the new ωGX, or ωPM.
 2) On the magnitude plot at ωPM, we extrapolate up with a slope 

of +20dB/dec until we hit the low frequency gain then we look 
“down” and the frequency we see is our new dominant pole, ωP’.
– A slope of 20dB/dec is used, as we assume that we want a PM ≥45º 

2 that Assumed pGX  
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Example:  45o Phase Margin Compensation 
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Miller Compensation

 To save chip area, Miller multiplication of a smaller 
capacitance creates an equivalent effect.

cOOmeq CrrgC )]||(1[ 655
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Two-Stage Miller OTA – DC Gain
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Two-Stage Miller OTA – Frequency Response
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• Stage 1 is a differential amplifier with 
an active load

• Stage 2 is a common-source amplifier 
with a large miller capacitor

• Using a Thevenin equivalent for Stage 
1, we can use the common-source 
equations from Lecture 6



Two-Stage Miller OTA – Frequency Response
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• The amplifier should be designed to 
yield one dominant pole, so we use the 
dominant pole approximation equations

• Lecture 6, Slide 44 
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Two-Stage Miller OTA – Phase Margin
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• Note: We are neglecting a right-
half plane (positive) zero that is 
introduced with CC, which can 
potentially degrade the amplifier 
stability

• We will talk more about this in 474



Two-Stage Miller OTA – Example
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• This is OK, as long as CC << CL
• More about this in 474

• Again, we are neglecting a 
right-half plane (positive) 
zero, which can potentially 
degrade the amplifier stability
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