Texas A&M University Department of Electrical and Computer Engineering

ECEN 474/704 - (Analog) VLSI Circuit Design

Fall 2016

Exam #1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Problem	Score	Max Score	
1		40	
2		40	
3		20	
Total		100	

Name:	SAM	PALERMO		
UIN:				

Problem 1 (40 points)

For the layout below, assume that all the commonly labeled diffusion areas are connected with the appropriate metal layers. Assume that $V_A=2V$, $V_B=1.2V$, $V_C=0V$, $V_D=1.2V$, $V_E=2V$, $V_{T0}=0.7V$, $\gamma=0$, and that all Spice parameters are given (i.e. C_j , C_{jsw} , C_{jc} , C_{ox} , C_{ov}). The dimensions are given in μm , with the poly gates having an $L_D=0.1\mu m$.

- a) Draw the equivalent circuit. Combine all parallel transistors and given the total width and length of the equivalent transistors.
- b) What region(s) are the transistors operating in?
- c) For node B only, give an expression and calculate the total gate cap.
- d) For node D only, give an expression and calculate the total junction cap, including the relevant channel-bulk cap. Note for the perimeter terms, include the sides underneath the gate.

b. $M(\Rightarrow) V_{GS} = V_{OS} = 1.2V > V_{T}$ $V_{OS} > V_{GS} - V_{T} \Rightarrow S_{Atwation}$ $M_{S} = V_{S} = 0.8V = V_{T}$ $M_{S} = V_{S} = 0.8V = V_{T}$

M2 = VGS = VGS - VT => Saturation

M4 sine as M2

d. $C_{j0} = A_{0}C_{j} + P_{j}C_{js\omega} + C_{CBM4}$ = $(G_{\mu\nu})(D_{\mu\nu})(2)C_{j} + (G_{\mu\nu}+D_{\mu\nu})(2)(2)C_{js\omega}$ + $\frac{2}{3}(20\mu)(1.8\mu)C_{jc}$

(jo= 120,2C; + 64, Cjsw +24, 2C;c

 $C, For (3B \Rightarrow MI = Sat \Rightarrow (9s + fg)$ $= \frac{2}{3}(10\mu)(5.8\mu)lox + 10\mu cov$ $= 38. 7\mu^{2}(ox + 10\mu)cov$ $M3 = Sat \Rightarrow (9s + (9d)$ $= \frac{2}{3}(20\mu)(5.8\mu)(ox + 20\mu)cov + 20\mu cov$

 $= \frac{2}{3}(20\mu)(5.8\mu)(0x + 20\mu(0) + 20\mu(0)$ $= 77.3\mu^{2}(0x + 40\mu(0) + 50\mu(0)$

Total CgB = 116µ260x + 50µCov

Problem 2 (40 points)

For the circuit shown below, the transistor is operating in a fully velocity saturated region where its DC drain current is given exactly by the given equation.

a. Draw the low-frequency small-signal model of the circuit (neglecting transistor capacitors) and give an expression for the small-signal voltage gain of the circuit, $A_v=v_o/v_i$, as a function of the relevant transistor conductances and the load resistor. Note, you can assume that the input AC-coupling capacitor acts as an ideal short.

b. Assume the following DC operating points for the drain and source voltages, $V_{S,Q}=0.2V$ and $V_{D,Q}=1V$, and that $v_{sat}C_{ox}=250\mu\text{A/}(V^*\mu\text{m})$, $V_{T0}=0.7V$, $\gamma=0.45V^{1/2}$, $2\Phi_F=0.9V$, and $L_D=0.1\mu\text{m}$. Calculate the necessary transistor width W for $|A_V|=5V/V$.

$$A_{V} = (9m + 9mb)R_{0} = (1 + N)g_{m}R_{0} = (1 + N)V_{saf}(0 \times WR_{0})$$

$$W = \frac{A_{V}}{(1 + N)V_{saf}(0 \times R_{0})} = \frac{5}{(1.269)(250 \frac{M^{A}}{V_{yan}})1kN} = 15.8 \mu m$$

$$W = \frac{6.45}{2\sqrt{1.09 - 0.2}} = 0.269$$

$$W = 0.269$$

Problem 3 (20 points)

a. Poly resistor design

Design and sketch a layout of a 500 Ω poly resistor. Assume that the poly R =60 Ω / Ω , each (1 μ m x 1 μ m) contact has resistance of 10 Ω , and fabrication tolerances limit the minimum unit resistor width W \geq 3 μ m. Use at least 2 fingers in the resistor design. In the sketch clearly label the critical dimensions.

b. Poly resistor parasitic capacitance

The poly resistor has a parallel-plate parasitic capacitance to substrate of $0.1 fF/\mu m^2$. What is the total parasitic capacitance of the resistor? Include the contact area in the capacitance calculation and assume that the capacitance is only due to the parallel-plate effect, i.e. neglect any fringing capacitance.

Resistor Area is
$$(12.2\mu m + 2\mu m)(3\mu m)(2) = 86.4\mu m^2$$

 $C_{parasitic} = (86.4\mu m^2)(0.147/\mu m^2) = 8.64f F$

c. N-well resistor design

Design and sketch a layout of a 500 Ω n-well resistor. Assume that the n-well R =2k Ω / \square , each (1 μ m x 1 μ m) contact has resistance of 10 Ω , and fabrication tolerances limit the minimum unit resistor length L \geq 6 μ m. Use at least 2 fingers in the resistor design. In the sketch clearly label the critical dimensions.

$$R_{tofal} = \left(\frac{2Rc}{n} + R_{\square} \frac{L}{W}\right) F$$

$$L = \left(\frac{R_{total}}{F} - \frac{2Rc}{n}\right) \frac{W}{R_{\square}}$$

$$Set F = 2, W = SO_{MM}, n = SO$$

$$L = \left(\frac{Soq}{2} - \frac{2(10)}{50}\right) \left(\frac{SO_{MM}}{2R}\right) = 6, 24_{MM}$$

$$SO_{MM} = \frac{SO_{MM}}{SO_{MM}}$$

$$SO_{MM} = \frac{SO_{MM}}{SO_{MM}}$$

d. N-well resistor parasitic capacitance

The n-well resistor has a parallel-plate parasitic capacitance to substrate of $1 \text{FF}/\mu\text{m}^2$. What is the total parasitic capacitance of the resistor? Include the contact area in the capacitance calculation and assume that the capacitance is only due to the parallel-plate effect, i.e. neglect any fringing capacitance.

Resistor Area is
$$(6.24 \mu m^2 3 \mu m)(50 \mu m)(2) = 824 \mu m^2$$

$$(parasitic = (824 \mu m^2)(1 + 1/m m^2) = 824 f F$$

e. If we have to use the 500Ω resistor for a high-frequency application, which design should we choose, the poly or n-well design? Why?

Scratch Paper