Simple OTA

Key specifications:

- $A_v \geq 20 \text{dB}$
- $G_m \approx 1 \text{mA/V}$
- $A_{cm} \leq -40 \text{dB}$

* For $G_m \approx 1 \text{mA/V}$ spec:

$$G_m = g_m = \sqrt{2 \mu C_k \left(\frac{W}{L} \right)} = 1 \text{mA/V}$$

* For $A_v \geq 20 \text{dB} = 10$ spec:

$$A_v = \frac{g_{m1}}{g_{o1} + g_{o2}} = \frac{1 \text{mA/V}}{\frac{I_b}{2} (\lambda_N + \lambda_P)} \geq 10$$

$$\Rightarrow I_b \leq \frac{2 \text{mA/V}}{10(\lambda_N + \lambda_P)}$$

* For $A_{cm} \leq -40 \text{dB}$ spec

$$A_{cm} = -\frac{1}{2g_{m2} R_{\text{TAIL}}}$$

The following design procedure and results are from Amandeep Singh.
Homework #5
Amandeep Singh
uin: 1200003377.

L_3 Since we want high gain from M_6, choose $L = 2.4 \mu H$ for M_5 & M_6.

L_3 Length for other transistors M_3-M_4 is chosen $L = 1.2 \mu H$.

L_3 Required transconductance gain, $g_m = 1 \text{mV/V}.$

L_3 For $g_m = g_m = g_m.$

L_3 Choosing a value of $g_m/I_0 = 10$ for M_3-M_4 to keep transistors in saturation and also have reasonable output swing,

$$\text{(I_0) m_1 = (I_0) m_2 = (I_0) m_3 = (I_0) m_4 = 100 \mu A}.$$

$$\omega_c = (I_0) m_5 = (I_0) m_6 = 200 \mu A.$$

L_3 For M_5 & M_6 \(L = 2.4 \mu H \) \(\omega_c = 10 \) corresponds to $f_{0.6} = 2.064 \mu m / \mu m$.

$$w_{m_5,m_6} = \frac{200 \mu A}{0.6146 \mu m} = 3.35 \mu m \text{ (rounded to quad size)}.$$

L_3 For M_1 & M_2 \(L = 1.2 \mu H \) \(\omega_c = 10 \) corresponds to $f_{0.5} = 2.223 \mu m / \mu m$.

\[w = 81.6 \mu m \text{ (rounded to quad size)} \]

L_3 For M_3 & M_4 \(L = 1.2 \mu H \) \(g_{m_0} = 10 \), $f_{0.5} = 0.522 \mu m / \mu m$.

\[w = 191 \mu m. \]
Common Mode Gain

Differential Gain
HD3 plots

Transconductance Gain:

\[V_{i} / I_{o} (\text{PLUS}) \]

\[M_{0}(1.727\, \text{Hz}, 1.064\, \text{mA}) \]

\[165.96\, \text{kHz} \quad -43.00985\, \text{mdeg} \]
Differential Pair Non-Linearity (Razavi 13.1.2)

Theory for Part C

\[
I_{01} - I_{02} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{in} \sqrt{\frac{4I_{ds}}{\mu_n C_{ox} \frac{W}{L}} - V_{in}^2}
\]

\[
= \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{in} \sqrt{4(V_{ds} - V_{th})^2 - V_{in}^2}
\]

Assuming devices remain in sat, i.e. \(|V_{in}| \leq V_{ds} - V_{th}

\[
I_{01} - I_{02} = \mu_n C_{ox} \frac{W}{L} V_{in} (V_{ds} - V_{th}) \left[1 - \frac{V_{in}^2}{4(V_{ds} - V_{th})^2} \right]
\]

Taylor Expansion \(w\) only 1 term

\[
\sqrt{1-x} \Rightarrow 1 - \frac{x}{2}
\]

\[
I_{01} - I_{02} = \mu_n C_{ox} \frac{W}{L} V_{in} (V_{ds} - V_{th}) \left[1 - \frac{V_{in}^2}{8(V_{ds} - V_{th})^2} \right]
\]

\[W'_{ih} = W_n \cos \omega t\]

\[W'_{ih} = \mu_n C_{ox} \frac{W}{L} (V_{ds} - V_{th}) \left[V_{m} \cos \omega t - \frac{V_{m}^3}{8(V_{ds} - V_{th})^2} \right]
\]

Using Trig Identity \(\cos^3 \omega t = \frac{3}{4} \cos \omega t + \frac{1}{4} \cos 3\omega t\)

\[
I_{01} - I_{02} = V_m \left[V_m - \frac{3V_m}{32(V_{ds} - V_{th})^2} \right] \cos \omega t - g_m \frac{V_m^3}{32(V_{ds} - V_{th})^2} \cos 3\omega t
\]

\[
A_{Nos} = \frac{V_m^2}{32(V_{ds} - V_{th})^2}
\]

Following Sim results from Harish Krishnamoorthy
(i) The circuit was then simulated using a sinusoidal input signal of 1 MHz, sweeping the amplitude of the differential input signal from 1 mV up to 1.5*VDSAT (184.4mV).

In the picture above, the waveform at the top is the ratio of 3rd harmonic content to the fundamental at 1MHz. It can be observed that it is a parabolic curve in this range. The below waveform is the actual fundamental current at varying input differential voltage. That is linear up to a value and then starts dipping slightly. As input voltage increases, the ratio of 3rd harmonic also increases w.r.t. to the fundamental.

(ii) Then using MS Office Excel, the formula \(HD3=(1/32)\times(Vin-peak/VDSAT)^2 \) was plotted. The graph that came is as below:
Noise Analysis - Thermal Only

\[i_{o1}^2 = \frac{8}{3} kT g_{m1} \] (1 Diff Pair Transistor)

\[i_{o2}^2 = \frac{8}{3} kT g_{m2} \] (1 Current Source Load Transistor)

Note, the noise due to any tail current source will be small. For example, if we assume a simple current mirror

\[i_{o3} = \frac{i_{n3}}{2} - g_{m2} \left[\frac{i_{n3}}{2} \left(\frac{1}{g_{m2} + g_{01} + g_{02}} \right) \right] \]

\[= \frac{i_{n3}}{2} \left[1 - \frac{g_{m2}}{g_{m2} + g_{01} + g_{02}} \right] = \frac{i_{n3}}{2} \left[\frac{g_{01} + g_{02}}{g_{m2} + g_{01} + g_{02}} \right] \]

\[= \frac{i_{n3}}{2} \frac{g_{01} + g_{02}}{g_{m2}} \]

\[i_{o3}^2 = \frac{8}{3} kT g_{m3} \left(\frac{g_{01} + g_{02}}{2 g_{m2}} \right)^2 \]

Thus, it is okay to neglect tail current source noise.
\[i_{0}^2 = 2i_{01}^2 + 2i_{02}^2 = \frac{16}{3} kT \left(\frac{g_{m1} + g_{m2}}{g_{m1}} \right) \]

To input refer the noise as \(V_{\text{in}}^2 = \frac{i_{0}^2}{g_{m1}^2} \)

\[V_{\text{in}}^2 = \frac{16}{3} kT \left(\frac{1}{g_{m1}} \right) \left(1 + \frac{g_{m2}}{g_{m1}} \right) \]

If we include Flicker (\(1/f \)) noise

\[i_{01}^2 = \frac{K_{\text{Fu}} g_{m1}^2}{W_L C_{\text{ox}} f} \]
\[i_{02}^2 (\frac{1}{f}) = \frac{K_{F} g_{m2}^2}{W_L C_{\text{ox}} f} \]
\[V_{\text{in}}^2 (\frac{1}{f}) = \frac{K_{\text{FN}}}{W_L C_{\text{ox}} f} + \frac{K_{FP}}{W_L C_{\text{ox}} f} \left(\frac{g_{m2}}{g_{m1}} \right)^2 \]

Total Noise (Thermal + Flicker)

\[V_{\text{in}}^2 = \frac{16}{3} kT \left(\frac{1}{g_{m1}} \right) \left(1 + \frac{g_{m2}}{g_{m1}} \right) \frac{K_{\text{FN}}}{(W_L) C_{\text{ox}} f} + \frac{K_{FP}}{(W_L) C_{\text{ox}} f} \left(\frac{g_{m2}}{g_{m1}} \right)^2 \]