ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 2: MOS Transistor Modeling

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

 If you haven't already, turn in your 0.18um NDA form ASAP

- Lab 1 starts Jan 31
- Current Reading
 - Razavi Chapters 2 & 17

Agenda

- MOS Transistor Modeling
 - Physical Structure
 - Threshold Voltage, V_T
 - DC I-V Equations
 - Body Effect
 - Subthreshold Region

NMOS Physical Structure

CMOS Physical Structure

Threshold Voltage, V_{T}

 Applying a positive voltage to the gate repels holes in the p-substrate under the gate, leaving negative ions (depletion region) to mirror the gate charge

- Before a "channel" forms, the device acts as 2 series caps from the oxide cap and the depletion cap
- If V_G is increased to a sufficient value the area below the gate is "inverted" and electrons flow from source to drain

V_{T} Definition

 $V_T = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep}}{C_{or}} = \Phi_{MS} + 2\Phi_F + \gamma \sqrt{2\Phi_F}$

 For an NMOS this is when the concentration of electrons equals the concentration of holes in the p⁻ substrate

 Φ_{MS} is the difference between the work functions of the polysilicon gate and the silicon substrate

$$\Phi_F$$
 is the Fermi potential, $\Phi_F = \frac{kT}{q} \ln\left(\frac{N_{sub}}{n_i}\right)$

 N_{sub} is substrate doping density, n_i is undoped silicon electron density

 Q_{dep} is the depletion region charge, $Q_{dep} = \sqrt{4q\varepsilon_{si}} |\Phi_F| N_{sub}$

 C_{ox} is the gate cap/area, $C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$

Note, γ will be defined later

MOSFET in Accumulation Mode

- If a negative gate voltage is applied w.r.t. the source, then positive charge "accumulates" below the gate
- In this Accumulation Mode, no current flows and the device is often used as a capacitor with the drain shorted to the source
- This capacitor consists of parallel plate capacitance below the gate and overlap/fringing capacitance near the drain/source regions

$$C_{G,acc} = WL_{eff}C_{ox} + 2WC_{ov}$$

MOSFET in Inversion Mode

MOS Equations in Triode Region (Small V_{DS})

[Sedra/Smith]

Capacitance per unit gate area : $C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$

Electron mobility: μ_n

Current from Source to Drain : $I = \frac{dQ}{dt} = \frac{dQ}{dx}\frac{dx}{dt} = Q_d(x)\upsilon$ Incremental Charge Density: $Q_d(x) = -C_{OX}W(V_{GC}(x) - V_T)$ Gate - to - Channel Voltage: $V_{GC}(x) - V_T = V_{GS} - V_{CS}(x) - V_T$ Electron Velocity: $\upsilon = -\mu_n E(x) = \mu_n \frac{dv(x)}{dx}$ $I_{DS} = -I = C_{OX} W (V_{GS} - V_{CS}(x) - V_T) \mu_n \frac{dv(x)}{dx}$ $\int_{0}^{L} I_{DS} dx = \int_{0}^{V_{DS}} \mu_n C_{OX} W(V_{GS} - V_T - V_{CS}(x)) dv(x)$ $I_{DS}L = \mu_n C_{OX} W (V_{GS} - V_T) V_{DS} - \mu_n C_{OX} W \left(\frac{1}{2} V_{DS}^2\right)$ $I_{DS} = \mu_n C_{OX} \frac{W}{L} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS}$

Triode or Linear Region

- Channel depth and transistor current is a function of the overdrive voltage, $V_{GS}\text{-}V_{T}\text{,}$ and V_{DS}
- Because V_{DS} is small, V_{GC} is roughly constant across channel length and channel depth is roughly uniform

$$I_{DS} = \frac{W}{L} \mu_n C_{OX} (V_{GS} - V_{Tn} - 0.5V_{DS}) V_{DS}$$

For small V_{DS}
$$R_{DS} \approx \frac{1}{\frac{W}{L} \mu C_{ox} (V_{GS} - V_{Tn})}$$

MOS Equations in Triode Region (Large V_{DS})

Triode Region Channel Profile

• Recall that the channel charge density is $\propto (V_{GC}(x) - V_T)$

 If V_{GC} is always above V_T throughout the channel length, the transistor current obeys the triode region current equation

Saturation Region Channel Profile

$$V_{GC}(x) - V_T = V_{GS} - V(x) - V_T = V_{OV} - V_{DS} \frac{x}{L}$$

• When $V_{DS} \ge V_{GS} - V_T = V_{OV}$, V_{GC} no longer exceeds V_T , resulting in the channel "pinching off" and the current saturating to a value that is no longer a function of V_{DS} (ideally)

Saturation Region

- Channel "pinches-off" when $V_{DS} = V_{GS} V_T$ and the current saturates
- After channel charge goes to 0, the high lateral field "sweeps" the carriers to the drain and drops the extra V_{DS} voltage

NMOS $I_D - V_{DS}$ Characteristics

MOS "Large-Signal" Output Characteristic

What about the PMOS device?

 The current equations for the PMOS device <u>are</u> <u>the same</u> as the NMOS **EXCEPT** you swap the current direction and all the voltage polarities

NMOS

PMOS

Linear:
$$I_{DS} = \frac{W}{L} \mu_n C_{OX} (V_{GS} - V_{Tn} - 0.5V_{DS}) V_{DS}$$
 $I_{SD} = \frac{W}{L} \mu_p C_{OX} (V_{SG} - |V_{Tp}| - 0.5V_{SD}) V_{SD}$
Saturation: $I_{DS} = \frac{W}{2L} \mu_n C_{OX} (V_{GS} - V_{Tn})^2$ $I_{SD} = \frac{W}{2L} \mu_p C_{OX} (V_{SG} - |V_{Tp}|)^2$

PMOS $I_D - V_{SD}$ Characteristics

Body Effect

[Razavi]

$$V_{T} = V_{T0} + \gamma \left(\sqrt{\left| 2\Phi_{F} + V_{SB} \right|} - \sqrt{\left| 2\Phi_{F} \right|} \right)$$

Body effect coefficient,
$$\gamma = \frac{\sqrt{2q\varepsilon_{si}N_{sub}}}{C_{ox}}$$

 γ typically ranges from 0.3 to 0.4V^{1/2}

If the body and source potential are equal, a certain $V_G = V_{T0}$ is required to form an inversion layer

$$V_{T0} = \Phi_{MS} + 2\Phi_F + \frac{Q_{dep0}}{C_{ox}} = \Phi_{MS} + 2\Phi_F + \gamma \sqrt{2\Phi_F}$$

- As V_S becomes positive w.r.t.
 V_B, a larger depletion region forms, which requires a higher
 V_G to form a channel
- The net result is that V_T increases due to this "body effect"
- Note, it also works in reverse, as if you increase V_B w.r.t. V_S, then V_T lowers

MOS MODEL: SPICE LEVEL-II

NMOS:
$$I_{DS} = \frac{W}{L} \mu_n C_{OX} (V_{GS} - V_{Tn} - 0.5 V_{DS}) V_{DS}$$

PMOS: $I_{SD} = \frac{W}{L} \mu_p C_{OX} (V_{SG} - |V_{Tp}| - 0.5 V_{SD}) V_{SD}$

•Drain Current, Saturation region

NMOS:
$$I_{DS} = \frac{W}{2L} \mu_n C_{OX} (V_{GS} - V_{Tn})^2$$

PMOS: $I_{SD} = \frac{W}{2L} \mu_p C_{OX} (V_{SG} - |V_{Tp}|)^2$

•Threshold voltage (zero bias)

•Drain current, Triode region

$$V_{T0} = \Phi_{MS} + 2\Phi_F + \gamma \sqrt{2\Phi_F}$$

•**Threshold voltage**
$$V_T = V_{T0} + \gamma \left[\sqrt{2\Phi_F + V_{SB}} - \sqrt{2\Phi_F} \right] \Longrightarrow V_{T0} \Big|_{V_{SB}=0}$$

•**KP** and
$$\gamma$$
 (**Spice Model**) $KP = \mu C_{OX}; \quad \gamma = \frac{\sqrt{2q\varepsilon_{si}N_{sub}}}{C_{OX}}$

Subthreshold Region

- So far we have assumed that $I_D = 0$ when $V_{GS} < V_T$
- However, in reality an exponentially decreasing current exists for V_{GS} < V_T
 Square
 Law

decade

Exponential

80 mV

V_{TH}

In subthreshold region :
$$I_D = I_0 \exp\left(\frac{V_{GS}q}{\zeta kT}\right)$$

where I_0 is a scale current

 $\zeta > 1$ is a nonideality factor

The steepest subthreshold slope is 1 dec./60mV with $\zeta = 1$

[Razavi]

VGS

- V_T values are often set by extrapolating above threshold data to current values of zero or infinite R_{on}
- A rough value often used is the V_{GS} which yields $I_D/W\!=\!1\mu A/\mu m$

Subthreshold Current & V_T Scaling

- This subthreshold current prevents lowering V_T excessively
- Assuming V_T=300mV and has an 80mV subthreshold slope, then the I_{on}/I_{off} ratio is only on the order of 10^{(300/80)=5.6e3}
- Reducing V_T to 200mV drops the I_{on}/I_{off} ratio to near 316
- If we have a large number of "off" transistors on our chip these subthreshold currents add up quickly, resulting in significant power dissipation
- This is a huge barrier in CMOS technology scaling and one of the main reasons Vdd scaling has slowed

Next Time

- MOS Transistor Modeling
 - Small-Signal Model
 - Spice Models