ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 6: Current Mirrors

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements & Agenda

- Reading
 - Razavi Chapter 5
- Biasing in ICs
- Simple Current Mirror
- Cascode Current Mirror
- Low-Voltage Cascode Current Mirror

Current Source Properties

- Finite output resistance degrades current source accuracy and amplifier gain
- Other important properties:
 - Voltage headroom (compliance voltage)
 - Accuracy
 - Noise

How Should We Bias Our Circuits?

- Resistive Biasing
 - Assuming saturation

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{G} - V_{Tn})^{2}$$
$$= \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left(\frac{R_{G2}}{R_{G1} + R_{G2}} V dd - V_{Tn} \right)^{2}$$

- I_D is sensitive to
 - Supply (Vdd)
 - Process (V_{Tn} and $\mu_n C_{ox} W/L$)
 - Temperature (V_{Tn} and μ_n)

IC Biasing

 In IC design we often assume that we have one precise current source and we copy its value to our circuits

Simple Current Mirror

- That copy circuit is a current mirror
- Simple Current Mirror

• If VG is applied to another transistor

Ideal Current Mirror Example

 This bias scheme reduces sensitivity to process, voltage, and temperature variations

CS Amplifier w/ Current Source

Need to insure that M3 remains in saturation

$$V_{s} = V_{G} - (V_{ov1} + V_{Tn}) = \left(\frac{R_{G2}}{R_{G1} + R_{G2}}\right) V dd - \left(\sqrt{\frac{2I_{D}}{\mu_{n}C_{ox}}\left(\frac{W}{L}\right)_{1}} + V_{Tn}\right)$$

Small-Signal Output Resistance: Simple Current Mirror/Source (Finite r_o)

- A simple current mirror/source has an output resistance equal to a single transistor r_o
- In order to maintain a high output impedance we need a minimum output compliance voltage

Compliance Voltage = $V_{DSAT2} = V_{GS2} - V_{T2}$

rout

Simple Current Mirror Accuracy

- While $V_{DS1} = V_{GS1} = V_{GS2}$, V_{DS2} may not equal V_{DS1}
 - This causes an error in the mirroring ratio
- To improve accuracy we can (a) force V_{DS2} to be equal to V_{DS1} (Cascode Current Mirror), or (b) force V_{DS1} to be equal to V_{DS2} (Low-Voltage Cascode Current Mirror)

Cascode Current Mirror

- A cascode device can shield a current source, thereby reducing the voltage variations across it.
- But, how do we ensure that $V_{DS2} = V_{DS1}$?
- We can generate V_b such that $V_b V_{GS3} = V_{DS1}(= V_{GS1})$ with a stacked diode connected transistor

MOS Cascode Topology Output Resistance

Cascode Current Mirror Compliance Voltage

 What is the minimum output voltage V_P such that all the output transistors remain in saturation?

$$V_P = V_Y + V_{DSAT3} = V_{GS1} + V_{GS3} - V_T$$

Compliance Voltage = $V_{GS1} + V_{DSAT3}$

• Note that this output stage biasing technique "wastes" one threshold voltage, as V_Y could potentially be lower by a V_T and M_2 would still be in saturation

How Can We Get a Lower Compliance Voltage?

- The left figure uses the minimum possible V_b such that M_2 and M_3 remain in saturation
 - However, as $V_X \neq V_Y$, the output current does not accurately track I_{REF}
- The right figure (our original cascode current mirror) achieves good accuracy, but again wastes a threshold voltage relate to the left figure

Low-Voltage Cascode Current Mirror

Compliance Voltage = $V_{DSAT3} + V_{DSAT4}$

- M2 and M4 should be sized such that
 - $V_{GS2} = V_{GS4}$
- M1 and M3 biased near edge of saturation
 - $V_{DS1} \approx V_{DS3} \approx V_{DSAT}$
 - $V_b = V_{GS2} + (V_{GS1} V_{T1}) = V_{GS4} + (V_{GS3} V_{T3})$

Alternative V_b Generation

- Saves one current branch
- M5 sized such that $V_{GS5} \approx V_{GS2}$
 - Some body effect error here
- Size M6 and Rb such that

•
$$V_{DS6} = V_{GS6} - R_b I_1 \approx V_{GS1} - V_{T1}$$

Next Time

Table-Based Design