ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 6: Current Mirrors

Sam Palermo
Analog \& Mixed-Signal Center
Texas A\&M University

Announcements \& Agenda

- Reading
- Razavi Chapter 5
- Biasing in ICs
- Simple Current Mirror
- Cascode Current Mirror
- Low-Voltage Cascode Current Mirror

Current Source Properties

- Output Resistance

- Finite output resistance degrades current source accuracy and amplifier gain
- Other important properties:
- Voltage headroom (compliance voltage)
- Accuracy
- Noise

How Should We Bias Our Circuits?

- Resistive Biasing
- Assuming saturation

$$
\begin{gathered}
I_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G}-V_{T n}\right)^{2} \\
=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(\frac{R_{G 2}}{R_{G 1}+R_{G 2}} V d d-V_{T n}\right)^{2}
\end{gathered}
$$

- I_{D} is sensitive to
- Supply (Vdd)
- Process (V_{Tn} and $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \mathrm{W} / \mathrm{L}$)

- Temperature (V_{Tn} and μ_{n})
- In IC design we often assume that we have one precise current source and we copy its value to our circuits

Simple Current Mirror

- That copy circuit is a current mirror
- Simple Current Mirror

$$
\begin{gathered}
\text { What is } \mathbf{V}_{\mathbf{G}} \text { ? } \\
I_{D}=I_{\text {REF }}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}\left(V_{G}-V_{T n}\right)^{2} \\
V_{G}=\sqrt{\frac{2 I_{\text {REF }}}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}}}+V_{\text {Tn }}
\end{gathered}
$$

- If VG is applied to another transistor

$$
I_{\text {out }}=\frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(\sqrt{\frac{2 I_{\text {REF }}}{\mu_{n} C_{\text {ox }}\left(\frac{W}{L}\right)_{1}}}+V_{\text {Tn }}-V_{\text {Tn }}\right)^{2} \longrightarrow I_{\text {out }}=\frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{1}} I_{\text {REF }}
$$

Ideal Current Mirror Example

- This bias scheme reduces sensitivity to process, voltage, and temperature variations

CS Amplifier w/ Current Source

- Need to insure that M3 remains in saturation

$$
V_{s}=V_{G}-\left(V_{o 1}+V_{T n}\right)=\left(\frac{R_{G 2}}{R_{G 1}+R_{G 2}}\right) V d d-\left(\sqrt{\frac{2 I_{D}}{\mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}}}+V_{T n}\right)
$$

Small-Signal Output Resistance: Simple Current Mirror/Source (Finite r_{0})

- A simple current mirror/source has an output resistance equal to a single transistor r_{0}
- In order to maintain a high output impedance we need a minimum output compliance voltage

Compliance Voltage $=V_{D S A T 2}=V_{G S 2}-V_{T 2}$
\downarrow

$-V_{T 2}$

Simple Current Mirror Accuracy

$$
\begin{aligned}
I_{D 1}= & \frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S 1}\right) \\
I_{D 2}= & \frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{2}\left(V_{G S}-V_{T H}\right)^{2}\left(1+\lambda V_{D S 2}\right) \\
& \frac{I_{D 2}}{I_{D 1}}=\frac{(W / L)_{2}}{(W / L)_{1}} \cdot \frac{1+\lambda V_{D S 2}}{1+\lambda V_{D S 1}} .
\end{aligned}
$$

- While $\mathrm{V}_{\mathrm{DS} 1}=\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}, \mathrm{~V}_{\mathrm{DS} 2}$ may not equal $\mathrm{V}_{\mathrm{DS} 1}$
- This causes an error in the mirroring ratio
- To improve accuracy we can (a) force $\mathrm{V}_{\mathrm{DS} 2}$ to be equal to $\mathrm{V}_{\mathrm{DS1}}$ (Cascode Current Mirror), or (b) force $\mathrm{V}_{\mathrm{DS} 1}$ to be equal to $\mathrm{V}_{\mathrm{DS} 2}$ (Low-Voltage Cascode Current Mirror)

Cascode Current Mirror

(a)

(b)

(c)

- A cascode device can shield a current source, thereby reducing the voltage variations across it.
- But, how do we ensure that $\mathrm{V}_{\mathrm{DS} 2}=\mathrm{V}_{\mathrm{DS} 1}$?
- We can generate V_{b} such that $\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{GS} 3}=\mathrm{V}_{\mathrm{DS} 1}\left(=\mathrm{V}_{\mathrm{GS} 1}\right)$ with a stacked diode connected transistor

MOS Cascode Topology Output Resistance

Cascode Current Mirror Compliance Voltage

- What is the minimum output voltage V_{P} such that all the output transistors remain in saturation?

$$
\begin{aligned}
& V_{P}=V_{Y}+V_{D S A T 3}=V_{G S 1}+V_{G S 3}-V_{T} \\
& \text { Compliance Voltage }=V_{G S 1}+V_{D S A T 3}
\end{aligned}
$$

- Note that this output stage biasing technique "wastes" one threshold voltage, as V_{Y} could potentially be lower by a V_{T} and M_{2} would still be in saturation

How Can We Get a Lower Compliance Voltage?

(a)

(b)

- The left figure uses the minimum possible V_{b} such that M_{2} and M_{3} remain in saturation
- However, as $\mathrm{V}_{\mathrm{X}} \neq \mathrm{V}_{\mathrm{Y}}$, the output current does not accurately track $\mathrm{I}_{\mathrm{REF}}$
- The right figure (our original cascode current mirror) achieves good accuracy, but again wastes a threshold voltage relate to the left figure

Low-Voltage Cascode Current Mirror

Compliance Voltage $=V_{\text {DSAT3 }}+V_{\text {DSAT4 }}$

- M2 and M4 should be sized such that
- $V_{G S 2}=V_{G S 4}$
- M1 and M3 biased near edge of saturation
- $\mathrm{V}_{\mathrm{DS} 1} \approx \mathrm{~V}_{\mathrm{DS} 3} \approx \mathrm{~V}_{\mathrm{DSAT}}$
- $\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{GS} 2}+\left(\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{T} 1}\right)=\mathrm{V}_{\mathrm{GS} 4}+\left(\mathrm{V}_{\mathrm{GS} 3}-\mathrm{V}_{\mathrm{T} 3}\right)$

Alternative V_{b} Generation

- Saves one current branch
- M5 sized such that $\mathrm{V}_{\mathrm{GS5}} \approx \mathrm{~V}_{\mathrm{GS2}}$
- Some body effect error here
- Size M6 and Rb such that
- $V_{D S 6}=V_{G S 6}-R_{b} I_{1} \approx V_{G S 1}-V_{T 1}$

Next Time

- Table-Based Design

